Finite Element Analysis for the Mechanism of Stress Wave Propagation and Crack Extension Due to Blasting of a Frozen Rock Mass
Abstract
:1. Introduction
2. The Principle of RFPA2D
2.1. Overview of Mesoscopic
2.2. Evolutionary Damage Principle of RFPA Meso-Elements
2.3. RFPA Solution for Dynamic Finite Element Equations
3. Numerical Simulation Blasting Process Analysis of Frozen Rock Mass with Ice-filled Cracks
3.1. Model Setup
3.2. Analysis of Blasting Failure Process of Intact Frozen Rock Mass
3.2.1. Blasting Failure Process
3.2.2. The Minimum Principal Stress at the Monitoring Point A
3.3. Ice-Filled Crack Thickness d Influence on Blasting Effect of Frozen Rock Mass
3.3.1. Blasting Failure Process
3.3.2. The Minimum Principal Stress at the Monitoring Point A with Different Ice-Filled Crack Thicknesses
3.4. Normal Distance R Influence on Blasting Effect of Frozen Rock Mass
3.4.1. Blasting Failure Process
3.4.2. The Minimum Principal Stress at the Monitoring Point A with Different Normal Distances
3.5. Ice-Filled Crack Angle α Influence on Blasting Effect of Frozen Rock Mass
3.5.1. Blasting Failure Process
3.5.2. The Minimum Principal Stress at the Monitoring Point A with Different Loading Angles
3.6. Loading Intensity Influence on Blasting Effect of Frozen Rock Mass
3.6.1. Blasting Failure Process
3.6.2. The Minimum Principal Stress at the Monitoring Point A with Different Loading Intensities
3.7. Loading Rate Influence on Blasting Effect of Frozen Rock Mass
3.7.1. Blasting Failure Process
3.7.2. The Minimum Principal Stress at the Monitoring Point A with Different Loading Rates
3.8. Evaluation of the Explosion Stress Wave Attenuation Factor
4. Conclusions
- (1)
- The divergent crack extension pattern is always maintained at the blasting hole. Affected by explosion wave stress, the damage elements range of the ice-filled crack decreases when the ice-filled crack thickness and normal distance increase.
- (2)
- The attenuation trend of explosion stress waves decreases with an increase of ice-filled crack thickness, and decreases slightly with an increase of normal distance and ice-filled crack angle.
- (3)
- The loading intensity and the loading rate have a significant influence on blasting hole fracture patterns. The damage elements range of the ice-filled crack is enlarged when the loading intensity and the loading rate increase. The propagation effect of explosion stress waves is also different.
- (4)
- The ice-filled crack has a guiding effect on the growth of the blasting crack at the blasting hole. Nevertheless, the existence of ice-filled cracks inhibits the propagation of explosion stress waves in frozen rock mass.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, C.C.; Lv, Z.T.; Li, Q.; Huang, J.H.; Bai, X.Y. Transversely Isotropic Frost Heave of Saturated Rock under Unidirectional Freezing Condition and Induced Frost Heaving Force in Cold Region Tunnels. Cold Reg. Sci. Technol. 2018, 152, 48–58. [Google Scholar] [CrossRef]
- Liu, N.F.; Li, N.; Li, G.F.; Song, Z.P.; Wang, S.J. Method for Evaluating the Equivalent Thermal Conductivity of a Freezing Rock Mass Containing Systematic Fractures. Rock Mech. Rock Eng. 2022, 55, 7333–7355. [Google Scholar] [CrossRef]
- Ma, D.D.; Xiang, H.S.; Ma, Q.Y.; Kaunda, E.E.; Huang, K.; Su, Q.Q.; Yao, Z.M. Dynamic damage constitutive model of frozen silty soil with prefabricated crack under uniaxial load. J. Eng. Mech. 2021, 147, 04021033. [Google Scholar] [CrossRef]
- Liu, M.H.; Ma, W.; Niu, F.J.; Luo, J.; Yin, G.A. International Journal of Heat and Mass Transfer Thermal Performance of a Novel Crushed-Rock Embankment Structure for Expressway in Permafrost Regions. Int. J. Heat Mass Transf. 2018, 127, 1178–1188. [Google Scholar] [CrossRef]
- Wan, W.K.; Li, C.C. Microscopic and Acoustic Interpretations of the Physics of Rock Burst and the Difference in Fracturing Patterns in Class I and Class II Rocks. Rock Mech. Rock Eng. 2022, 55, 6841–6862. [Google Scholar] [CrossRef]
- Li, Y.Z.; Dai, F.; Wei, M.D.; Du, H.B. Numerical Investigation on Dynamic Fracture Behavior of Cracked Rocks under Mixed Mode I/II Loading. Eng. Fract. Mech. 2020, 235, 107176. [Google Scholar] [CrossRef]
- Zhang, F.P.; Peng, J.Y.; Qiu, Z.G.; Chen, Q.K.; Li, Y.H.; Liu, J.P. Rock-like Brittle Material Fragmentation under Coupled Static Stress and Spherical Charge Explosion. Eng. Geol. 2017, 220, 266–273. [Google Scholar] [CrossRef]
- Cai, J.G.; Zhao, J. Effects of Multiple Parallel Fractures on Apparent Attenuation of Stress Waves in Rock Masses. Int. J. Rock Mech. Min. Sci. 2000, 37, 661–682. [Google Scholar] [CrossRef]
- Fan, L.F.; Ma, G.W.; Li, J.C. Nonlinear Viscoelastic Medium Equivalence for Stress Wave Propagation in a Jointed Rock Mass. Int. J. Rock Mech. Min. Sci. 2012, 50, 11–18. [Google Scholar] [CrossRef]
- Yari, M.; Bagherpour, R.; Jamali, S.; Asadi, F. Selection of Most Proper Blasting Pattern in Mines Using Linear Assignment Method: Sungun Copper Mine. Arch. Min. Sci. 2015, 60, 375–386. [Google Scholar]
- Lak, M.; Fatehi Marji, M.; Yarahmadi Bafghi, A.; Abdollahipour, A. Analytical and numerical modeling of rock blasting operations using a two-dimensional elasto-dynamic Green’s function. Int. J. Rock Mech. Min. Sci. 2019, 114, 208–217. [Google Scholar] [CrossRef]
- Pyrak-Nolte, L.J.; Morris, J.P. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow. Int. J. Rock Mech. Min. Sci. 2000, 18, 245–262. [Google Scholar] [CrossRef]
- Li, J.C.; Ma, G.W. Experimental Study of Stress Wave Propagation across a Filled Rock Joint. Int. J. Rock Mech. 2009, 46, 471–478. [Google Scholar] [CrossRef]
- Yari, M.; Monjezi, M.; Bagherpour, R. A novel investigation in blasting operation management using decision making methods. Rud. Geol. Naft. Zb. 2014, 29, 69–79. [Google Scholar]
- Butt, H.S.U.; Xue, P.; Jiang, T.Z.; Wang, B. Parametric identification for material of viscoelastic SHPB from wave propagation data incorporating geometrical effects. Int. J. Mech. Sci. 2015, 91, 46–54. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.C.; Cai, M.F.; Zou, Y.; Zhao, J. A Further Study on Wave Propagation Across a Single Joint with Different Roughness. Rock Mech. Rock Eng. 2016, 49, 2701–2709. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, G.; Parameswaran, V.; Das, A. Rate-dependent mechanical behavior of jointed rock with an impersistent joint under different infill conditions. J. Rock. Mech. Geotech. 2022, 14, 1380–1389. [Google Scholar] [CrossRef]
- Luo, H.H.; Yang, R.S.; Ma, X.M.; Zuo, J.J.; Zhang, Y.T.; Li, C.X. The Influence of Prefabricated Cracks at Different Angles on the Propagation Characteristics of Main Cracks in Slot Blasting. J. Mater. Eng. Perform. 2022. [Google Scholar] [CrossRef]
- Ram, O.; Sadot, O. Implementation of the exploding wire technique to study blastwave-structure interaction. Exp. Fluids. 2012, 53, 1335–1345. [Google Scholar] [CrossRef]
- Gharehdash, S.; Barzegar, M.; Palymskiy, I.B.; Fomin, P.A. Blast induced fracture modelling using smoothed particle hydrodynamics. Int. J. Impact Eng. 2020, 135, 103235. [Google Scholar] [CrossRef]
- Jeong, H.; Jeon, B.; Choi, S.; Jeon, S. Fracturing behavior around a blasthole in a brittle material under blasting loading. Int. J. Impact Eng. 2020, 140, 103562. [Google Scholar] [CrossRef]
- Pramanik, R.; Deb, D. Implementation of Smoothed Particle Hydrodynamics for Detonation of Explosive with Application to Rock Fragmentation. Rock Mech. Rock Eng. 2015, 48, 1683–1698. [Google Scholar] [CrossRef]
- Zhou, W.H.; Hu, C.Z.; Bao, J.; Zheng, J.J.; Liang, R. Numerical study on crack propagation and stress wave propagation during blasting of jointed rock mass. Chin. J. Theor. Appl. Mech. 2022, 54, 2501–2512. (In Chinese) [Google Scholar]
- Liang, Z.Z.; Qian, X.K.; Zhang, Y.F.; Liao, Z.Y. Numerical Simulation of Dynamic Fracture Properties of Rocks under Different Static Stress Conditions. J. Cent. South Univ. 2022, 29, 624–644. [Google Scholar] [CrossRef]
- Bendezu, M.; Romanel, C.; Roehl, D. Finite element analysis of blast-induced fracture propagation in hard rocks. Comput. Struct. 2017, 182, 1–13. [Google Scholar] [CrossRef]
- Dehghan Banadaki, M.M.; Mohanty, B. Numerical simulation of stress wave induced fractures in rock. Int. J. Impact Eng. 2012, 40–41, 16–25. [Google Scholar] [CrossRef]
- Zhao, J.J.; Zhang, Y.; Ranjith, P.G. Numerical Simulation of Blasting-Induced Fracture Expansion in Coal Masses. Int. J. Rock Mech. Min. Sci. 2017, 100, 28–39. [Google Scholar] [CrossRef]
- Yari, M.; Ghadyani, D.; Jamali, S. Development of a 3D numerical model for simulating a blast wave propagation system considering me position of the blasting hole and in-situ discontinuities. Rud. Geol. Naft. Zb. 2022, 37, 67–78. [Google Scholar]
- Lak, M.; Fatehi Marji, M.; Yarhamadi Bafghi, A.R.; Abdollahipour, A. Discrete element modeling of explosion-induced fracture extension in jointed rock masses. J. Min. Environ. 2019, 10, 125–138. [Google Scholar]
- Hajibagherpour, A.R.; Mansouri, H.; Bahaaddini, M. Numerical modeling of the fractured zones around a blasthole. Comput. Geotech. 2020, 123, 103535. [Google Scholar] [CrossRef]
- Ning, Y.J.; Yang, J.; Ma, G.W.; Chen, P.W. Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis. Rock Mech. Rock Eng. 2011, 44, 483–490. [Google Scholar] [CrossRef]
- Johnson, G.R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl. Eng. Des. 1994, 150, 265–274. [Google Scholar] [CrossRef]
- Fakhimi, A.; Lanari, M. DEM-SPH simulation of rock blasting. Comput. Geotech. 2014, 55, 158–164. [Google Scholar] [CrossRef]
- Yue, Z.W.; Zhou, J.; Feng, C.; Wang, X.; Peng, L.Z.; Cong, J.Y. Coupling of material point and continuum discontinuum element methods for simulating blast-induced fractures in rock. Comput. Geotech. 2022, 144, 104629. [Google Scholar] [CrossRef]
- Wu, D.; Li, H.B.; Shao, Z.S.; Chen, S.H.; Zhou, C.H.; Liu, L.W. Effects of infilling materials on mechanical behaviors and cracking process of pre-cracked rock: Insights from a hybrid continuum-discontinuum method. Eng. Fract. Mech. 2021, 253, 107843. [Google Scholar] [CrossRef]
- Yan, C.Z.; Xie, X.; Ren, Y.H.; Ke, W.H.; Wang, G. A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing. Int. J. Rock Mech. Min. Sci. 2022, 149, 104964. [Google Scholar] [CrossRef]
- Trivino, L.F.; Mohanty, B. Assessment of crack initiation and propagation in rock from explosion-induced stress waves and gas expansion by cross-hole seismometry and FEM-DEM method. Int. J. Rock Mech. Min. Sci. 2015, 77, 287–299. [Google Scholar] [CrossRef]
- Zhao, A.P.; Feng, C.; Guo, R.K.; Li, S.H.; Jia, J.J. Effect of joints on blasting and stress wave propagation. Chin. J. Rock Mech. Eng. 2018, 37, 2027–2036. (In Chinese) [Google Scholar]
- Bai, Y.; Shan, R.L.; Ju, Y.; Wu, Y.X.; Tong, X.; Han, T.Y.; Dou, H.Y. Experimental study on the strength, deformation and crack evolution behaviour of red sandstone samples containing two ice-filled fissures under triaxial compression. Cold Reg. Sci. Technol. 2020, 174, 103061. [Google Scholar] [CrossRef]
- Wu, N.; Liang, Z.Z.; Li, Y.; Qian, X.K.; Gong, B. Effect of confining stress on representative elementary volume of jointed rock masses. Geomech. Eng. 2019, 18, 627–638. [Google Scholar]
- Zhu, W.C.; Liu, J.; Yang, T.H.; Sheng, J.C.; Elsworth, D. Effects of local rock heterogeneities on the hydromechanics of fractured rocks using a digital-image-based technique. Int. J. Rock Mech. Mining Sci. 2006, 43, 1182–1199. [Google Scholar] [CrossRef]
- Erarslan, N.; Liang, Z.Z.; Williams, D.J. Experimental and Numerical Studies on Determination of Indirect Tensile Strength of Rocks. Rock Mech. Rock Eng. 2012, 45, 739–751. [Google Scholar] [CrossRef]
- Zhu, W.C.; Niu, L.L.; Li, S.H.; Xu, Z.H. Dynamic Brazilian Test of Rock under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation. Rock Mech. Rock Eng. 2015, 48, 1867–1881. [Google Scholar] [CrossRef]
- Qian, X.K.; Liang, Z.Z.; Liao, Z.Y. A Three-Dimensional Numerical Investigation of Dynamic Fracture Characteristics of Rock Specimens with Preexisting Surface Flaws. Adv. Civ. Eng. 2018, 2018, 8027582. [Google Scholar] [CrossRef]
- Qian, X.K.; Liang, Z.Z.; Liao, Z.Y.; Wang, K. Numerical investigation of dynamic fracture in rock specimens containing a pre-existing surface flaw with different dip angles. Eng. Frac. Mech. 2020, 223, 106675. [Google Scholar] [CrossRef]
- Li, P.F.; Wang, T.T.; Tang, C.A.; Zhang, B.B. Propagation Characteristics of Explosion Stress Wave in Ice-filled Rock Mass. Blasting 2022, 39, 44–52. (In Chinese) [Google Scholar]
- Yang, X.; Pu, C.J.; Tang, X.; Xiao, Z.X.; Guan, S.H.; Liao, T. Experimental study of effects of manual crack on blasting cracks propagation. Blasting 2014, 31, 26–31. (In Chinese) [Google Scholar]
- Wang, T.T.; Li, P.F.; Tang, C.A.; Zhang, B.B.; Yu, J.; Geng, T. Tensile Characteristics and Fracture Mode of Frozen Fractured Rock Mass Based on Brazilian Splitting Test. Appl. Sci. 2022, 12, 11788. [Google Scholar] [CrossRef]
Elasticity Modulus (MPa) | m | Compressive Strength (MPa) | m | Poisson Ratio | Friction Angle | Density (kg × m−3) | |
---|---|---|---|---|---|---|---|
Rock | 32,000 | 5 | 147 | 5 | 0.3 | 30° | 2600 |
Ice | 6000 | 10 | 8 | 10 | 0.35 | 26.5° | 917 |
Explosion Model | Ice-Filled Crack Thickness d (m) | ||||
---|---|---|---|---|---|
0.02 | 0.04 | 0.08 | |||
R | 0.2 m | ||||
0.4 m | |||||
0.8 m |
Explosion Model | Ice-Filled Crack Angles α (°) | ||||||
---|---|---|---|---|---|---|---|
R = 0.8 m d = 0.04 m | 15° | 30° | 45° | ||||
60° | 75° | ||||||
No. | Width (m) | R (m) | Angle (°) | Loading Case | Attenuation (%) |
---|---|---|---|---|---|
1 | 0.02 | 0.2 | 0 | I | 7.128 |
2 | 0.02 | 0.4 | 0 | I | 7.292 |
3 | 0.02 | 0.8 | 0 | I | 8.333 |
4 | 0.04 | 0.2 | 0 | I | 18.056 |
5 | 0.04 | 0.4 | 0 | I | 18.056 |
6 | 0.04 | 0.8 | 0 | I | 18.403 |
7 | 0.08 | 0.2 | 0 | I | 30.035 |
8 | 0.08 | 0.4 | 0 | I | 29.689 |
9 | 0.08 | 0.8 | 0 | I | 31.424 |
10 | 0.04 | 0.8 | 15 | I | 19.792 |
11 | 0.04 | 0.8 | 30 | I | 19.444 |
12 | 0.04 | 0.8 | 45 | I | 16.319 |
13 | 0.04 | 0.8 | 60 | I | 17.535 |
14 | 0.04 | 0.8 | 75 | I | 13.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, P.; Tang, C.; Zhang, B.; Yu, J. Finite Element Analysis for the Mechanism of Stress Wave Propagation and Crack Extension Due to Blasting of a Frozen Rock Mass. Sustainability 2023, 15, 4616. https://doi.org/10.3390/su15054616
Wang T, Li P, Tang C, Zhang B, Yu J. Finite Element Analysis for the Mechanism of Stress Wave Propagation and Crack Extension Due to Blasting of a Frozen Rock Mass. Sustainability. 2023; 15(5):4616. https://doi.org/10.3390/su15054616
Chicago/Turabian StyleWang, Tingting, Pingfeng Li, Chun’an Tang, Bingbing Zhang, and Jiang Yu. 2023. "Finite Element Analysis for the Mechanism of Stress Wave Propagation and Crack Extension Due to Blasting of a Frozen Rock Mass" Sustainability 15, no. 5: 4616. https://doi.org/10.3390/su15054616
APA StyleWang, T., Li, P., Tang, C., Zhang, B., & Yu, J. (2023). Finite Element Analysis for the Mechanism of Stress Wave Propagation and Crack Extension Due to Blasting of a Frozen Rock Mass. Sustainability, 15(5), 4616. https://doi.org/10.3390/su15054616