Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm
Abstract
:1. Introduction
- The Ballard Mark V stack, the BSC 500 W stack, and the NedStack PS6 are the three stacks for which the ARO is used to determine the optimal values for the seven uncertain PEMFC model parameters;
- The results of ARO are compared to various algorithms such as manta rays foraging optimizer (MRFO), salp swarm optimizer (SSO), whale optimization algorithm (WOA), jellyfish search algorithm (JSA), grasshopper optimizer algorithm (GOA), circle search algorithm (CSA) and enhanced transient search optimization (ETSO);
- The optimized model’s P-I and V-I curves are compared with the three stacks’ measured curves.
2. Problem Description
2.1. PEMFC Principle of Operation
2.2. PEMFC Model
- The energy required to start the chemical reaction is the activation voltage drop;
- The energy lost in the resistance of the contacts, membrane, and electrodes is the ohmic voltage drop;
- The concentration voltage drop is losses that happen because the oxygen and hydrogen consumption rate is higher than the rate of their supply at a high current density, which causes their concentration to decrease.
2.3. Problem Formulation
3. Artificial Rabbits Optimization (ARO)
3.1. Energy Shrink (Switch between Exploration and Exploitation)
3.2. Detour Foraging (Exploration)
3.3. Random Hiding (Exploitation)
4. Test Cases and Simulations Results
4.1. Test Case (1): Ballard Mark V
4.2. Test Case (2): BSC 500 W
4.3. Test Case (3): NedStack PS6
4.4. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaheen, A.M.; Hasanien, H.M.; El Moursi, M.S.; EL-Fergany, A.A. Precise modeling of PEM fuel cell using improved chaotic MayFly optimization algorithm. Int. J. Energy Res. 2021, 45, 18754–18769. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H. Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System. ChemSusChem 2022, 15, e202101798. [Google Scholar] [CrossRef] [PubMed]
- Yakout, A.H.; Hasanien, H.M.; Kotb, H. Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer. Ain Shams Eng. J. 2021, 12, 3765–3774. [Google Scholar] [CrossRef]
- Menesy, A.S.; Sultan, H.M.; Selim, A.; Ashmawy, M.G.; Kamel, S. Developing and Applying Chaotic Harris Hawks Optimization Technique for Extracting Parameters of Several Proton Exchange Membrane Fuel Cell Stacks. IEEE Access 2020, 8, 1146–1159. [Google Scholar] [CrossRef]
- Selem, S.I.; Hasanien, H.M.; EL-Fergany, A.A. Parameters extraction of PEMFC’s model using manta rays foraging optimizer. Int. J. Energy Res. 2020, 44, 4629–4640. [Google Scholar] [CrossRef]
- Gouda, E.A.; Kotb, M.F.; EL-Fergany, A.A. Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis. Energy 2021, 221, 119836. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Yu, L.; Shu, H.; Yu, T.; Zhang, X.; Yao, W.; Sun, L. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms. Clean. Prod. 2020, 265, 121660. [Google Scholar] [CrossRef]
- Shang, Z.; Hossain, M.; Wycisk, R.; Pintauro, P.N. Poly(phenylene sulfonic acid)-expanded polytetrafluoroethylene composite membrane for low relative humidity operation in hydrogen fuel cells. J. Power Sources 2022, 535, 231375. [Google Scholar] [CrossRef]
- Budak, Y.; Devrim, Y. Investigation of micro-combined heat and power application of PEM fuel cell systems. Energy Convers. Manag. 2018, 160, 486–494. [Google Scholar] [CrossRef]
- Karanfil, G. Importance and applications of DOE/optimization methods in PEM fuel cells: A review. Int. J. Energy Res. 2020, 44, 4–25. [Google Scholar] [CrossRef]
- Gong, X.; Dong, F.; Mohamed, M.A.; Abdalla, O.M.; Ali, Z.M. A secured energy management architecture for smart hybrid microgrids considering PEM-fuel cell and electric vehicles. IEEE Access 2020, 8, 47807–47823. [Google Scholar] [CrossRef]
- Bizon, N.; Mazare, A.G.; Ionescu, L.M.; Enescu, F.M. Optimization of the proton exchange membrane fuel cell hybrid power system for residential buildings. Energy Convers. Manag. 2018, 163, 22–37. [Google Scholar] [CrossRef]
- El-Hay, E.A.; El-Hameed, M.A.; El-Fergany, A.A. Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor. Energy 2018, 163, 699–711. [Google Scholar] [CrossRef]
- El-Hay, E.A.; El-Hameed, M.A.; El-Fergany, A.A. Improved performance of PEM fuel cells stack feeding switched reluctance motor using multi-objective dragonfly optimizer. Neural Comput. Applic. 2019, 31, 6909–6924. [Google Scholar] [CrossRef]
- Sun, L.; Jin, Y.; Pan, L.; Shen, J.; Lee, K.Y. Efficiency analysis and control of a grid-connected PEM fuel cell in distributed generation. Energy Convers. Manag. 2019, 195, 587–596. [Google Scholar] [CrossRef]
- EL-Fergany, A.A. Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimizer. IET Renew. Power Gener. 2018, 12, 9–17. [Google Scholar] [CrossRef]
- EL-Fergany, A.A.; Hasanien, H.M.; Agwa, A.M. Semi-empirical PEM fuel cells model using whale optimization algorithm. Energy Convers. Manag. 2019, 201, 112197. [Google Scholar] [CrossRef]
- Mann, R.F.; Amphlett, J.C.; Hooper, M.A.I.; Jensen, H.M.; Peppley, B.A.; Roberge, P.R. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J. Power Sources 2000, 86, 173–180. [Google Scholar] [CrossRef]
- Alotto, P.; Guarnieri, M. Stochastic methods for parameter estimation of multiphysics models of fuel cells. IEEE Trans. Magn. 2014, 50, 701–704. [Google Scholar] [CrossRef]
- Restrepo, C.; Garcia, G.; Calvente, J.; Giral, R.; Martinez-Salamero, L. Static and dynamic current–voltage modeling of a proton exchange membrane fuel cell using an input–output diffusive approach. IEEE Trans. Ind. Electron. 2016, 63, 1003–1015. [Google Scholar] [CrossRef]
- Alotto, P.; Guarnieri, M.; Moro, F.; Stella, A. A proper generalized decomposition approach for fuel cell polymeric membrane modeling. IEEE Trans. Magn. 2011, 47, 1462–1465. [Google Scholar] [CrossRef]
- Geem, Z.W.; Noh, J.S. Parameter estimation for a proton exchange membrane fuel cell model using GRG technique. Fuel Cells 2016, 16, 640–645. [Google Scholar] [CrossRef]
- Askarzadeh, A. Parameter estimation of fuel cell polarization curve using BMO algorithm. Int. J. Hydrogen Energy 2013, 38, 15405–15413. [Google Scholar] [CrossRef]
- EL-Fergany, A.A. Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer. Renew. Energy 2018, 119, 641–648. [Google Scholar] [CrossRef]
- Seleem, S.I.; Hasanien, H.M.; EL-Fergany, A.A. Equilibrium optimizer for parameter extraction of a fuel cell dynamic model. Renew. Energy 2021, 169, 117–128. [Google Scholar] [CrossRef]
- Alsaidan, I.; Shaheen, A.M.; Hasanien, H.M.; Alaraj, M.; Alnafisah, A.S. Proton Exchange Membrane Fuel Cells Modeling Using Chaos Game Optimization Technique. Sustainability 2021, 13, 7911. [Google Scholar] [CrossRef]
- Sultan, H.M.; Menesy, A.S.; Kamel, S.; Turky, R.A.; Hasanien, H.M.; Al-Durra, A. Optimal Values of Unknown Parameters of Polymer Electrolyte Membrane Fuel Cells Using Improved Chaotic Electromagnetic Field Optimization. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Detroit, MI, USA, 10–16 October 2020; pp. 1–8. [Google Scholar]
- Rizk-Allah, R.M.; EL-Fergany, A.A.; SMIEEE. Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model. Int. J. Hydrogen Energy 2021, 46, 37612–37627. [Google Scholar] [CrossRef]
- Rao, Y.; Shao, Z.; Ahangarnejad, A.H.; Gholamalizadeh, E.; Sobhani, B. Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model. Energy Convers. Manag. 2019, 182, 1–8. [Google Scholar] [CrossRef]
- Fahim, S.R.; Hasanien, H.M.; Turky, R.A.; Alkuhayli, A.; Al-Shamma’a, A.A.; Noman, A.M.; Tostado-Veliz, M.; Jurado, F. Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm. Energies 2021, 14, 5022. [Google Scholar] [CrossRef]
- Qias, M.H.; Hasanien, H.M.; Turky, R.A.; Alghuwainem, S.; Loo, K.H.; Elgendy, M. Optimal PEM Fuel Cell Model Using a Novel Circle Search Algorithm. Electronics 2022, 11, 1808. [Google Scholar] [CrossRef]
- Ali, M.; El-Hameed, M.A.; Farahat, M.A. Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew. Energy 2017, 111, 455–462. [Google Scholar] [CrossRef]
- Abaza, A.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Optimal Estimation of Proton Exchange Membrane Fuel Cells Parameter Based on Coyote Optimization Algorithm. Appl. Sci. 2021, 11, 2052. [Google Scholar] [CrossRef]
- Zaki, A.A.; Tolba, M.A.; Abo El-Magd, A.G.; Zaky, M.M.; El-Rifaie, A.L. Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers. IEEE Access 2020, 8, 166998–167018. [Google Scholar]
- Chen, Y.; Wang, N. Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2019, 44, 3075–3087. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Macias, A.; Khalatbarisoltani, A.; Boulon, L.; Kelouwani, S. Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy 2019, 183, 912–925. [Google Scholar] [CrossRef]
- Niu, Q.; Zhang, L.; Li, K. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells. Energy Convers. Manag. 2014, 86, 1173–1185. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Coelho, L. A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model. Int. J. Hydrogen Energy 2014, 39, 11165–11174. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer. Int. J. Energy Res. 2013, 37, 1196–1204. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. Int. J. Energy Res. 2011, 36, 5047–5053. [Google Scholar] [CrossRef]
- Chakraborty, U.K.; Abbott, T.E.; Das, S.K. PEM fuel cell modeling using differential evolution. Energy 2012, 40, 387–399. [Google Scholar] [CrossRef]
- Priya, K.; Rajasekar, N. Application of flower pollination algorithm for enhanced proton exchange membrane fuel cell modelling. Int. J. Hydrogen Energy 2019, 44, 18438–18449. [Google Scholar] [CrossRef]
- Outeiro, M.T.; Chibante, R.; Carvalho, A.S.; Almeida, A.T. A new parameter extraction method for accurate modeling of PEM fuel cells. Int. J. Energy Res. 2009, 33, 978–988. [Google Scholar] [CrossRef]
- Hasanien, H.M.; Shaheen, M.A.; Turky, R.A.; Qais, M.H.; Alghuainem, S.; Kamel, S.; Tostado-Veliz, M.; Jurado, F. Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm. Energy 2022, 247, 123530. [Google Scholar] [CrossRef]
- Ashraf, H.; Abdellatif, S.O.; Elkholy, M.M.; El-Fergany, A.A. Computational Techniques Based on Artificial Intelligence for Extracting Optimal Parameters of PEMFCs: Survey and Insights. Arch. Comput. Methods Eng. 2022, 29, 3943–3972. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
- Fawzi, M.; El-Fergany, A.A.; Hasanien, H.M. Effective methodology based on neural network optimizer for extracting model parameters of PEM fuel cells. Int. J. Energy Res. 2019, 43, 8136–8147. [Google Scholar] [CrossRef]
- Sun, S.; Su, Y.; Yin, C.; Jermsittiparsert, K. Optimal parameters estimation of PEMFCs model using converged moth search algorithm. Energy Rep. 2020, 6, 1501–1509. [Google Scholar] [CrossRef]
- Fathy, A.; Abd Elaziz, M.; Alharbi, A.G. A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell. Renew. Energy 2020, 146, 1833–1845. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Zhang, G.; Jermsittiparsert, K.; Razmjooy, N. Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm. Energy Rep. 2019, 5, 1616–1625. [Google Scholar] [CrossRef]
Parameters | ξ1 | ξ2 | ξ3 | ξ4 | λ | Rc | β |
---|---|---|---|---|---|---|---|
Max Value | −0.8532 | 0.005 | 9.8 × 10−5 | −9.5 × 10−5 | 24 | 0.0008 | 0.5 |
Min Value | −1.1997 | 0.001 | 3.6 × 10−5 | −2.6 × 10−4 | 10 | 0.0001 | 0.0136 |
Im | Vm | Ve | |
---|---|---|---|
5.060 | 33.25 | 32.9678 | 0.0796 |
10.626 | 30.80 | 31.0685 | 0.0721 |
16.192 | 29.75 | 29.7941 | 0.0019 |
20.240 | 28.70 | 29.0203 | 0.1026 |
27.830 | 28.00 | 27.7316 | 0.0721 |
34.408 | 26.60 | 26.6930 | 0.0087 |
37.444 | 26.25 | 26.2217 | 0.0008 |
43.010 | 25.20 | 25.3538 | 0.0236 |
48.070 | 24.50 | 24.5456 | 0.0021 |
56.166 | 23.80 | 23.1730 | 0.3931 |
61.226 | 22.05 | 22.2323 | 0.0332 |
67.298 | 21.00 | 20.9511 | 0.0024 |
71.852 | 19.60 | 19.7474 | 0.0217 |
SSE | 0.8139117035 |
Parameter | ARO | MRFO [5] | WOA [17] | CSA [31] | ETSO [44] | NNO [47] |
---|---|---|---|---|---|---|
ξ1 | −1.158859 | −1.0898 | −1.1978 | −1.181342 | −0.853429 | −0.97997 |
ξ2 | 3.5208 × 10−3 | 3.8249 × 10−3 | 4.4183 × 10−3 | 3.5691 × 10−3 | 2.5591 × 10−3 | 3.6946 × 10−3 |
ξ3 | 4.0526 × 10−5 | 7.7306 × 10−5 | 9.7214 × 10−5 | 3.9929 × 10−5 | 3.61 × 10−5 | 9.0871 × 10−5 |
ξ4 | −16.7251 × 10−5 | −16.283 × 10−5 | −16.273 × 10−5 | −16.283 × 10−5 | −16.287 × 10−5 | −16.282 × 10−5 |
λ | 23.99 | 23 | 23 | 23 | 23 | 23 |
Rc | 0.1 × 10−3 | 0.1 × 10−3 | 0.1002 × 10−3 | 0.1 × 10−3 | 0.1 × 10−3 | 0.1 × 10−3 |
β | 0.015884 | 0.0136 | 0.0136 | 0.0136 | 0.0136 | 0.0136 |
SSE | 0.8139117035 | 0.8533 | 0.8537 | 0.85360752 | 0.8536 | 0.8536 |
STD | 2.706 e−14 | 0.0247 | 0.0239 | 2.29 e−6 | 0.020247 | 0.00854 |
Im | Vm | Ve | |
---|---|---|---|
0.600 | 29.000 | 28.9972 | 0.00000771 |
2.100 | 26.310 | 26.3059 | 0.00001651 |
3.580 | 25.090 | 25.0936 | 0.00001264 |
5.080 | 24.250 | 24.2546 | 0.00002135 |
7.170 | 23.370 | 23.3754 | 0.00002933 |
9.550 | 22.570 | 22.5846 | 0.00021360 |
11.350 | 22.060 | 22.0713 | 0.00012831 |
12.540 | 21.750 | 21.7585 | 0.00007163 |
13.730 | 21.450 | 21.4613 | 0.00012685 |
15.730 | 21.090 | 20.9877 | 0.01045679 |
17.020 | 20.680 | 20.6945 | 0.00021052 |
19.110 | 20.220 | 20.2310 | 0.00012069 |
21.200 | 19.760 | 19.7709 | 0.00011976 |
23.000 | 19.360 | 19.3660 | 0.00003629 |
25.080 | 18.860 | 18.8665 | 0.00004181 |
27.170 | 18.270 | 18.2747 | 0.00002228 |
28.060 | 17.950 | 17.9533 | 0.00001096 |
29.260 | 17.300 | 17.2929 | 0.00005074 |
SSE | 0.01169778 |
Parameter | ARO | JSA [6] | SSO [24] | CSA [31] | CMSA [48] |
---|---|---|---|---|---|
ξ1 | −1.176201 | −0.96887 | −0.8532 | −1.176591 | −0.785 |
ξ2 | 3.7344 × 10−3 | 2.693 × 10−3 | 4.8115 × 10−3 | 3.4965 × 10−3 | 4.5 × 10−3 |
ξ3 | 7.3729 × 10−5 | 4.67 × 10−5 | 9.4334 × 10−5 | 5.8319 × 10−5 | 8.86 × 10−5 |
ξ4 | −19.3017 × 10−5 | −19 × 10−5 | −19.205 × 10−5 | −19.2897 × 10−5 | −19.3 × 10−5 |
λ | 20.87724 | 20.8389 | 23 | 21.324206 | 23 |
Rc | 0.1 × 10−3 | 0.1 × 10−3 | 0.3499 × 10−3 | 0.1464 × 10−3 | 0.312 × 10−3 |
β | 0.016126 | 0.016111 | 0.01589 | 0.0161 | 0.017 |
SSE | 0.01169778 | 0.011699 | 0.01219 | 0.0117362 | 0.012 |
STD | 1.17746 × 10−8 | 1.66 × 10−4 | 8.711 × 10−4 | 2.34547 × 10−4 | NR |
Im | Vm | Ve | |
---|---|---|---|
2.25 | 61.64 | 62.3350 | 0.4830 |
6.75 | 59.75 | 59.7633 | 0.0002 |
9.00 | 58.94 | 59.0332 | 0.0087 |
15.75 | 57.54 | 57.4846 | 0.0031 |
20.25 | 56.80 | 56.7084 | 0.0084 |
24.75 | 56.13 | 56.0376 | 0.0085 |
31.50 | 55.23 | 55.1542 | 0.0058 |
36.00 | 54.66 | 54.6200 | 0.0016 |
45.00 | 53.61 | 53.6374 | 0.0008 |
51.75 | 52.86 | 52.9521 | 0.0085 |
67.50 | 51.91 | 51.4562 | 0.2060 |
72.00 | 51.22 | 51.0460 | 0.0303 |
90.00 | 49.66 | 49.4465 | 0.0456 |
99.00 | 49.00 | 48.6596 | 0.1158 |
105.80 | 48.15 | 48.0666 | 0.0070 |
110.30 | 47.52 | 47.6739 | 0.0237 |
117.00 | 47.10 | 47.0877 | 0.0002 |
126.00 | 46.48 | 46.2954 | 0.0341 |
135.00 | 45.66 | 45.4946 | 0.0274 |
141.80 | 44.85 | 44.8822 | 0.0010 |
150.80 | 44.24 | 44.0597 | 0.0325 |
162.00 | 42.45 | 43.0134 | 0.3174 |
171.00 | 41.66 | 42.1509 | 0.2409 |
182.30 | 40.68 | 41.0353 | 0.1262 |
189.00 | 40.09 | 40.3542 | 0.0698 |
195.80 | 39.51 | 39.6460 | 0.0185 |
204.80 | 38.73 | 38.6788 | 0.0026 |
211.50 | 38.15 | 37.9337 | 0.0468 |
220.50 | 37.38 | 36.8931 | 0.2370 |
SSE | 2.1112503 |
Parameter | ARO | MRFO [5] | GOA [16] | VSA [49] | BSOA [50] |
---|---|---|---|---|---|
ξ1 | −1.008511 | −0.9381 | −1.1997 | −0.8946 | −0.89 |
ξ2 | 3.0434 × 10−3 | 3.4861 × 10−3 | 3.5505 × 10−3 | 3.348 × 10−3 | 3.42 × 10−3 |
ξ3 | 4.9796 × 10−5 | 9.512 × 10−5 | 4.6144 × 10−5 | 9.75 × 10−5 | 7.76 × 10−5 |
ξ4 | −9.54 × 10−5 | −9.5436 × 10−5 | −9.54 × 10−5 | −9.54 × 10−5 | −9.55 × 10−5 |
λ | 13.445704 | 13.096 | 13.0092 | 13 | 13 |
Rc | 0.1 × 10−3 | 0.1 × 10−3 | 0.1005 × 10−3 | 0.103 × 10−3 | 0.1 × 10−3 |
β | 0.0136 | 0.014512 | 0.0579 | 0.0429 | 0.05 |
SSE | 2.1112503 | 2.136 | 2.18586 | 2.3426 | 2.18 |
STD | 4.6098 × 10−8 | 0.0326 | NR | NR | NR |
Parameter | % Change | Ballard Mark V | BSC 500 W | NedStack PS6 |
---|---|---|---|---|
SSE | SSE | SSE | ||
Best SSE | 0.8139117035 | 0.01169781 | 2.1112503 | |
ξ1 | +5 | 54.28022983 | 63.76104277 | 313.66027116 |
−5 | 54.28022987 | 63.76104242 | 313.66027172 | |
ξ2 | +5 | 58.87443251 | 71.26953933 | 335.90581476 |
−5 | 58.87443248 | 71.29953969 | 335.90581477 | |
ξ3 | +5 | 2.319303108 | 6.69229121 | 19.59808781 |
−5 | 2.319303114 | 6.69229109 | 19.59808794 | |
ξ4 | +5 | 2.42663234 | 1.28612817 | 8.77495331 |
−5 | 2.42663236 | 1.28612816 | 7.95197487 | |
λ | +5 | 1.28775946 | 0.06319131 | 6.69041065 |
−5 | 1.51252349 | 0.07575757 | 8.02159814 | |
Rc | +5 | 0.81630663 | 0.01184389 | 2.16178152 |
−5 | 0.81304351 | 0.01183594 | 2.15538127 | |
β | +5 | 0.829961696 | 0.03624946 | 2.15138044 |
−5 | 0.829961693 | 0.03624945 | 2.13792101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riad, A.J.; Hasanien, H.M.; Turky, R.A.; Yakout, A.H. Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm. Sustainability 2023, 15, 4625. https://doi.org/10.3390/su15054625
Riad AJ, Hasanien HM, Turky RA, Yakout AH. Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm. Sustainability. 2023; 15(5):4625. https://doi.org/10.3390/su15054625
Chicago/Turabian StyleRiad, Andrew J., Hany M. Hasanien, Rania A. Turky, and Ahmed H. Yakout. 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm" Sustainability 15, no. 5: 4625. https://doi.org/10.3390/su15054625
APA StyleRiad, A. J., Hasanien, H. M., Turky, R. A., & Yakout, A. H. (2023). Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm. Sustainability, 15(5), 4625. https://doi.org/10.3390/su15054625