Environmental Assessment of Local Food Policies through a Territorial Life Cycle Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- Farmers are encouraged to implement more sustainable farming practices and sell locally
- Industries are encouraged to environmental management practices concerning local supply chain, store waste, and energy management
- Inhabitants are encouraged to modify their diets towards less processed and more organic, local, and plant-based food
2.2. Territorial LCA-Based Assessment of Local Food Policies
2.2.1. Goal and Scope Definition
2.2.2. Data Collection & Life-Cycle Inventory
- Semi-structured interviews with four local farmers (e.g., 70% of the local farmers)
- Semi-structured interviews with 13 local food retail managers (e.g., 60% of the local industries)
- Online and direct survey with a representative sample of the municipality population of 218 respondents (e.g., 5% of households).
- the respondents who participated or benefited from diverse activities of the MEAD and municipality’s local food policies (schools, companies…),
- the respondents who did neither participate nor are implicated in any form of those policies.
2.2.3. Impact Assessment
- Global warming: characterizing global warming potential in yr kg CO2-equivalent affecting the entire world ecosystems
- Land use: characterizing the amount of natural agricultural and urban land transformed and occupied in m2·yr measuring their degradation and consequent biodiversity loss
- Water consumption: characterizing freshwater depletion in m3 considering its scarcity in selected world regions
- Fossil resource scarcity: characterizing the amount of extracted fossil fuel (coal, oil, natural gas) based on the lower heating value in kg oil equivalent (having a lower heating value of 42MJ)
2.2.4. Interpretation
2.2.5. Adaptations to Territorial LCA: System Functions
3. Results
3.1. Changes Driven by the Municipal Food Strategy
3.2. Environmental Impact Reduction
4. Discussion
4.1. Application of Adapted Territorial LCA to Policy Assessment
4.2. Positive Impact of Local Food Policies & Policy Implications
4.3. Lack of Appreciation for Alternative Farming Systems in LCA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kissinger, G.; Herold, M.; de Sy, V. Drivers of Deforestation and Forest Degradation A Synthesis Report for REDD+ Policy-Makers; Lexeme Consulting: Vancouver, BC, Canada, 2012. [Google Scholar]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; et al. Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Rockström, J.; Steffen, W.L.; Noone, K.; Persson, Å.; Stuart, F.; Iii, C.; Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; et al. Planetary Boundaries: Exploring the Safe Operating Planetary Boundaries: Exploring the Safe Operating Space for Humanity Space for Humanity Citation Details Citation Details. Humanity. Ecol. Soc. 2009, 14, 2. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.; Cloy, J.; Rees, R. The true extent of agriculture’s contribution to national greenhouse gas emissions. Environ. Sci. Policy 2014, 39, 1–12. [Google Scholar] [CrossRef]
- Islam, S.; Wong, A.T. Climate Change and Food In/Security: A Critical Nexus. Environments 2017, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lu, Y.; He, G.; Wang, C.; Yuan, J.; Cao, X. Spatial variability of sustainable development goals in China: A provincial level evaluation. Environ. Dev. 2019, 35, 100483. [Google Scholar] [CrossRef]
- Doernberg, A.; Horn, P.; Zasada, I.; Piorr, A. Urban food policies in German city regions: An overview of key players and policy instruments. Food Policy 2019, 89, 101782. [Google Scholar] [CrossRef]
- Ilieva, R.T. Urban Food Planning, Seeds of Transition in the Global North, 1st ed.; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Sonnino, R.; Tegoni, C.L.; De Cunto, A. The challenge of systemic food change: Insights from cities. Cities 2018, 85, 110–116. [Google Scholar] [CrossRef]
- Stefanovic, L. SDG Performance in Local Organic Food Systems and the Role of Sustainable Public Procurement. Sustainability 2022, 14, 11510. [Google Scholar] [CrossRef]
- Glasgow Declaration Glasgow Food and Climate Declaration. 2021. Available online: https://www.glasgowdeclaration.org/ (accessed on 8 March 2022).
- Milan Pact Milan Urban Food Policy Pact. 2015. Available online: https://www.milanurbanfoodpolicypact.org/ (accessed on 10 October 2022).
- French Ministry of Ecological and Solidary Transition. Projet de Stratégie Nationale Bas Carbone; French Ministry of Ecological and Solidary Transition: Paris, France, 2020.
- Ministry of Agriculture and Food Reconnaissance Des Projets Alimentaires Territoriaux (PAT). Notice. Lancement Du Dispositif de Reconnaissance: 1er Mars 2017. 2017. Available online: https://rnpat.fr/wp-content/uploads/2017/06/RnPAT1.1_PatDGAL_2017.pdf (accessed on 8 December 2022).
- Brand, C.; Bricas, N.; Conaré, D.; Daviron, B.; Debru, J.; Michel, L.; Soulard, C.-T. Construire Des Politiques Alimentaires Urbaines; Quae: Versaille, France, 2017. [Google Scholar]
- Doernberg, A.; Piorr, A.; Zasada, I.; Wascher, D.; Schmutz, U. Sustainability assessment of short food supply chains (SFSC): Developing and testing a rapid assessment tool in one African and three European city regions. Agric. Hum. Values 2022, 39, 885–904. [Google Scholar] [CrossRef]
- Chiffoleau, Y.; Dourian, T. Sustainable Food Supply Chains: Is Shortening the Answer? A Literature Review for a Research and Innovation Agenda. Sustainability 2020, 12, 9831. [Google Scholar] [CrossRef]
- Majewski, E.; Komerska, A.; Kwiatkowski, J.; Malak-Rawlikowska, A.; Wąs, A.; Sulewski, P.; Gołaś, M.; Pogodzińska, K.; Lecoeur, J.-L.; Tocco, B.; et al. Are Short Food Supply Chains More Environmentally Sustainable than Long Chains? A Life Cycle Assessment (LCA) of the Eco-Efficiency of Food Chains in Selected EU Countries. Energies 2020, 13, 4853. [Google Scholar] [CrossRef]
- Csordás, A.; Lengyel, P.; Füzesi, I. Who Prefers Regional Products? A Systematic Literature Review of Consumer Characteristics and Attitudes in Short Food Supply Chains. Sustainability 2022, 14, 8990. [Google Scholar] [CrossRef]
- Malak-Rawlikowska, A.; Majewski, E.; Wąs, A.; Borgen, S.O.; Csillag, P.; Donati, M.; Freeman, R.; Hoàng, V.; Lecoeur, J.-L.; Mancini, M.C.; et al. Measuring the Economic, Environmental, and Social Sustainability of Short Food Supply Chains. Sustainability 2019, 11, 4004. [Google Scholar] [CrossRef] [Green Version]
- Loiseau, E.; Colin, M.; Alaphilippe, A.; Coste, G.; Roux, P. To what extent are short food supply chains (SFSCs) environmentally friendly? Application to French apple distribution using Life Cycle Assessment. J. Clean. Prod. 2020, 276, 124166. [Google Scholar] [CrossRef]
- Rizet, C.; Cruz, C.; de Lapparent, M. Impact of Logistical Choices on Freight Transport Carbon Efficiency. In Proceedings of the World Conference on Transport Research, Rio de Janeiro, Brazil, 15–18 July 2013. [Google Scholar]
- Pirog, R.S.; Van Pelt, T.; Enshayan, K.; Cook, E. Food, Fuel, and Freeways: An Iowa Perspective on How Far Food Travels, Fuel Usage, and Greenhouse Gas Emissions; Leopold Center for Sustainable Agriculture, Iowa State University: Ames, UK, 2001. [Google Scholar]
- Raton, G.; Goncalves, A.; Gaillard, L.; Wallet, F. Logistique Des Circuits Courts Alimentaires de Proximité: État Des Lieux, Nouveaux Enjeux et Pistes D’Évolution, Rapport Pour La Fondation Carasso et Le RMT Alimentation Locale; IFSTTAR-Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux: Ile-de-France, France, 2020. [Google Scholar]
- Schlich, E.; Fleissner, U. The Ecology of Scale: Assessment of Regional Energy Turnover and Comparison with Global Food (5 pp). Int. J. Life Cycle Assess. 2004, 10, 219–223. [Google Scholar] [CrossRef]
- Rizet, C.; Keita, B. Chaînes Logistiques et Consommation D’énergie: Cas Du Yaourt et Du Jean; 2005. Available online: https://hal.archives-ouvertes.fr/hal-00546042 (accessed on 10 October 2022).
- Ghamkhar, R.; Hicks, A. Spatially explicit life cycle assessment of fish: Comparison of local vs imported provision in Wisconsin. Environ. Res. Infrastruct. Sustain. 2021, 1, 021002. [Google Scholar] [CrossRef]
- Farmery, A.K.; Gardner, C.; Green, B.S.; Jennings, S.; Watson, R.A. Domestic or imported? An assessment of carbon footprints and sustainability of seafood consumed in Australia. Environ. Sci. Policy 2015, 54, 35–43. [Google Scholar] [CrossRef]
- Michalský, M.; Hooda, P.S. Greenhouse gas emissions of imported and locally produced fruit and vegetable commodities: A quantitative assessment. Environ. Sci. Policy 2015, 48, 32–43. [Google Scholar] [CrossRef]
- Mundler, P.; Laughrea, S. The contributions of short food supply chains to territorial development: A study of three Quebec territories. J. Rural. Stud. 2016, 45, 218–229. [Google Scholar] [CrossRef]
- Chiffoleau, Y.; Millet-Amrani, S.; Canard, A. From Short Food Supply Chains to Sustainable Agriculture in Urban Food Systems: Food Democracy as a Vector of Transition. Agriculture 2016, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Caputo, P.; Zagarella, F.; Cusenza, M.A.; Mistretta, M.; Cellura, M. Energy-environmental assessment of the UIA-OpenAgri case study as urban regeneration project through agriculture. Sci. Total Environ. 2020, 729, 138819. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 2017, 3, e1602638. [Google Scholar] [CrossRef] [Green Version]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- González-García, S.; Green, R.F.; Scheelbeek, P.F.; Harris, F.; Dangour, A.D. Dietary recommendations in Spain–affordability and environmental sustainability? J. Clean. Prod. 2020, 254, 120125. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Röös, E.; Karlsson, H.; Witthöft, C.; Sundberg, C. Evaluating the sustainability of diets–combining environmental and nutritional aspects. Environ. Sci. Policy 2015, 47, 157–166. [Google Scholar] [CrossRef]
- Allen, T.; Prosperi, P.; Cogill, B.; Padilla, M.; Peri, I. A Delphi Approach to Develop Sustainable Food System Metrics. Soc. Indic. Res. 2018, 141, 1307–1339. [Google Scholar] [CrossRef] [Green Version]
- FAO SAFA Tool by FAO: FAO Food and Agriculture Organization. SAFA de FAO Sustainability Assessment of Food and Agriculture Systems (SAFA); FAO: Rome, Italy, 2013. [Google Scholar]
- Perez-Neira, D.; Simón, X.; Copena, D. Agroecological public policies to mitigate climate change: Public food procurement for school canteens in the municipality of Ames (Galicia, Spain). Agroecol. Sustain. Food Syst. 2021, 45, 1528–1553. [Google Scholar] [CrossRef]
- Kulak, M.; Graves, A.; Chatterton, J. Reducing greenhouse gas emissions with urban agriculture: A Life Cycle Assessment perspective. Landsc. Urban Plan. 2013, 111, 68–78. [Google Scholar] [CrossRef]
- Benis, K.; Ferrão, P. Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA)—A life cycle assessment approach. J. Clean. Prod. 2017, 140, 784–795. [Google Scholar] [CrossRef]
- Aguiar, D.R.; da Costa, G.N.; Simões, G.T.C.; Figueiredo, A.M. Diet-Related Greenhouse Gas Emissions in Brazilian State Capital Cities. Environ. Sci. Policy 2021, 124, 542–552. [Google Scholar] [CrossRef]
- Larsen, H.N.; Hertwich, E.G. The case for consumption-based accounting of greenhouse gas emissions to promote local climate action. Environ. Sci. Policy 2009, 12, 791–798. [Google Scholar] [CrossRef]
- Yang, W.; Zhen, L.; Wei, Y. Food consumption and its local dependence: A case study in the Xilin Gol Grassland, China. Environ. Dev. 2019, 34, 100470. [Google Scholar] [CrossRef]
- Park, Y.S.; Egilmez, G.; Kucukvar, M. Emergy and end-point impact assessment of agricultural and food production in the United States: A supply chain-linked Ecologically-based Life Cycle Assessment. Ecol. Indic. 2016, 62, 117–137. [Google Scholar] [CrossRef]
- Perminova, T.; Sirina, N.; Laratte, B.; Baranovskaya, N.; Rikhvanov, L. Methods for land use impact assessment: A review. Environ. Impact Assess. Rev. 2016, 60, 64–74. [Google Scholar] [CrossRef]
- Van der Werf, H.; Kanyarushoki, C.; Corson, M.S. L’Analyse de Cycle de Vie: Un Nouveau Regard Sur Les Systèmes de Production Agricole. Innov. Agron. 2011, 12, 121–133. [Google Scholar]
- Karkour, S.; Rachid, S.; Maaoui, M.; Lin, C.-C.; Itsubo, N. Status of Life Cycle Assessment (LCA) in Africa. Environments 2021, 8, 10. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kotsanopoulos, K.V.; Veikou, A. Life Cycle Assessment (ISO 14040) Implementation in Foods of Animal and Plant Origin: Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1253–1282. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management d Life Cycle Assessment d Principles and Framework. International Organisation for Standardisation: Geneva, Switzerland, 2006.
- Dong, Y.; Miraglia, S.; Manzo, S.; Georgiadis, S.; Sørup, H.J.D.; Boriani, E.; Hald, T.; Thöns, S.; Hauschild, M.Z. Environmental sustainable decision making–The need and obstacles for integration of LCA into decision analysis. Environ. Sci. Policy 2018, 87, 33–44. [Google Scholar] [CrossRef]
- Madhu, K.; Pauliuk, S. Integrating Life Cycle Assessment into the Framework of Environmental Impact Assessment for Urban Systems: Framework and Case Study of Masdar City, Abu Dhabi. Environments 2019, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- González-García, S.; Dias, A.C. Integrating lifecycle assessment and urban metabolism at city level: Comparison between Spanish cities. J. Ind. Ecol. 2019, 23, 1062–1076. [Google Scholar] [CrossRef]
- Loiseau, E. Élaboration D’une Démarche d’évaluation Environnementale D’un Territoire Basée Sur Le Cadre Méthodologique de l’Analyse Du Cycle de Vie (ACV): Application Au Territoire Du Bassin de Thau. Ph.D. Thesis, SupAgro University, Montpellier, France, 2014. [Google Scholar]
- Loiseau, E.; Aissani, L.; Le Féon, S.; Laurent, F.; Cerceau, J.; Sala, S.; Roux, P. Territorial Life Cycle Assessment (LCA): What exactly is it about? A proposal towards using a common terminology and a research agenda. J. Clean. Prod. 2018, 176, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Nitschelm, L.; Aubin, J.; Corson, M.S.; Viaud, V.; Walter, C. Spatial differentiation in Life Cycle Assessment LCA applied to an agricultural territory: Current practices and method development. J. Clean. Prod. 2016, 112, 2472–2484. [Google Scholar] [CrossRef]
- Borghino, N.; Corson, M.; Nitschelm, L.; Wilfart, A.; Fleuet, J.; Moraine, M.; Breland, T.A.; Lescoat, P.; Godinot, O. Contribution of LCA to decision making: A scenario analysis in territorial agricultural production systems. J. Environ. Manag. 2021, 287, 112288. [Google Scholar] [CrossRef] [PubMed]
- Rogy, N.; Roux, P.; Salou, T.; Pradinaud, C.; Sferratore, A.; Géhéniau, N.; Hélias, A.; Loiseau, E. Water supply scenarios of agricultural areas: Environmental performance through Territorial Life Cycle Assessment. J. Clean. Prod. 2022, 366, 132862. [Google Scholar] [CrossRef]
- Utopies. Autonomie Alimentaire Des Villes. État Des Lieux et Enjeux Pour La Filière Agro-Alimentaire Française. Note de Position N°12; Utopies: Paris, France, 2017. [Google Scholar]
- Tuscano, M.; Lamine, C.; Bre-Garnier, M. Fostering responsible food consumption: A framework combining practice theories and pragmatism applied to an institutional experimental tool. J. Rural. Stud. 2021, 86, 663–672. [Google Scholar] [CrossRef]
- Mairie de Mouans-Sartoux MEAD Maison D’éducation à L’alimentation Durable. Available online: https://mead-mouans-sartoux.fr/ (accessed on 15 September 2022).
- Ministère de L’agriculture et de la Souveraineté Alimentaire Le PAT de Mouans-Sartoux. Available online: https://agriculture.gouv.fr/le-pat-de-mouans-sartoux-des-dispositifs-inedits-pour-aller-vers-une-alimentation-100-locale (accessed on 19 October 2022).
- Observatoire de la Restauraton Durable. Résultats Enquête Quantitative D’élèves 2019; Observatoire de la Restauraton Durable: Mouans-Sartoux, France, 2019. [Google Scholar]
- Urbanism Department of Municipality of Mouans-Sartoux PLU. Plan Local D’urbanisme; Urbanism Department of Municipality of Mouans-Sartoux PLU: Nice, France, 2021. [Google Scholar]
- Pérole, G. À Mouans-Sartoux, Une Restauration Collective Issue Intégralement de l’agriculture Biologique Depuis 2012 In Mouans-Sartoux, a Municipal Catering Entirely Coming from Organic Agriculture. Agron. Environ. Sociétés 2017, 7, 119–124. [Google Scholar]
- ADEME. Quantifier L’impact Ges’une Action de Réduction Émissions. Recueil de Fiches «Exemple»; ADEME: Brussels, Belgium, 2021. [Google Scholar]
- Albertí, J.; Roca, M.; Brodhag, C.; Fullana-I-Palmer, P. Allocation and system boundary in life cycle assessments of cities. Habitat Int. 2018, 83, 41–54. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Colomb, V.; Ait-Amar, S.; Basset-Mens, C.; Gac, A.; Gaillard, G.; Koch, P.; Mousset, J.; Salou, T.; Tailleur, A.; Van Der Werf, H.M. AGRIBALYSE®, the French LCI Database for Agricultural Products: High-Quality Data for Producers and Environmental Labelling; EDP Sciences: Les Ulis, France, 2015. [Google Scholar]
- RPG. Registre Parcellaire Graphique (RPG): Contours des Parcelles et Ilots Culturaux et Leur Groupe de Cultures Majoritaire. 2019. Available online: https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/ (accessed on 3 June 2022).
- INSEE. Database SIRENE. 2021. Available online: https://www.Sirene.Fr/Sirene/Public/Creation-Fichier (accessed on 19 October 2022).
- Enedis. Enedis Open Data. In Consommation et Thermosensibilité Electriques Annuelles à la Maille Commune. 2021. Available online: https://data.enedis.fr/explore/dataset/consommation-electrique-par-secteur-dactivite-commune/information/ (accessed on 17 October 2022).
- ANSES. Étude Individuelle Nationale Des Consommations Alimentaires 3 (INCA 3); ANSES: Buenos Aires, Argentina, 2017.
- Harchaoui, S.; Chatzimpiros, P. Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013. J. Ind. Ecol. 2018, 23, 412–425. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy Intensity of Agriculture and Food Systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Rost, S.; Gerten, D.; Bondeau, A.; Lucht, W.; Rohwer, J.; Schaphoff, S. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 2008, 44, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; Van Zelm, R. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Impact World 2008, 1, 1–126. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Amani, P.; Schiefer, G. Review on Suitability of Available LCIA Methodologies for Assessing Environmental Impact of the Food Secto. Int. J. Food Syst. Dyn. 2011, 2, 194–206. [Google Scholar]
- Loiseau, E.; Roux, P.; Junqua, G.; Maurel, P.; Bellon-Maurel, V. Adapting the LCA framework to environmental assessment in land planning. Int. J. Life Cycle Assess. 2013, 18, 1533–1548. [Google Scholar] [CrossRef]
- FranceAgriMer. La Consommation de Viande En France En 2021. Service de La Statistique et de La Prospective (SSP); FranceAgriMer.: Ile de France, France, 2022.
- Agence Française Pour le Développement et la Promotion de l’Agriculture. Biologique Baromètre de Consommation et Perception Des Produits Biologiques En France; Consumer Science & Analytics: Puteaux, France, 2022. [Google Scholar]
- Loiseau, E.; Roux, P.; Junqua, G.; Maurel, P.; Bellon-Maurel, V. Implementation of an adapted LCA framework to environmental assessment of a territory: Important learning points from a French Mediterranean case study. J. Clean. Prod. 2014, 80, 17–29. [Google Scholar] [CrossRef]
- Morgan, K. Nourishing the city: The rise of the urban food question in the Global North. Urban Stud. 2014, 52, 1379–1394. [Google Scholar] [CrossRef]
- Allen, T.; Prosperi, P.; Cogill, B. Metrics of Sustainable Diets and Food Systems; Workshop Report; Bioversity International & CIHEAM-IAMM: Montpellier, France, 2014. [Google Scholar]
- Zerbian, T.; Adams, M.; Dooris, M.; Pool, U. The Role of Local Authorities in Shaping Local Food Systems. Sustainability 2022, 14, 12004. [Google Scholar] [CrossRef]
- Lamine, C.; Chiffoleau, Y. Reconnecter agriculture et alimentation dans les territoires: Dynamiques et défis. Pour 2018, 232, 225–232. [Google Scholar] [CrossRef]
- Solagro. Scenario Afterres 2050: Le Scénario Qui Imagine L’autre Modèle Agricole de Demain; Solagro: Quito, Ecuador, 2016. [Google Scholar]
- Poux, X.; Aubert, P.M. Une Europe Agroécologique En 2050: Une Agriculture Multifonctionnelle Pour Une Alimentation Saine; Enseignements d’une Modélisation Du Système Alimentaire Européen, Study NÅã09/18; Iddri-AScA: Paris, France, 2018. [Google Scholar]
- European Commission. Farm to Fork Strategy; European Commission: Brussels, Belgium, 2020.
- Goossens, Y.; Annaert, B.; De Tavernier, J.; Mathijs, E.; Keulemans, W.; Geeraerd, A. Life cycle assessment (LCA) for apple orchard production systems including low and high productive years in conventional, integrated and organic farms. Agric. Syst. 2017, 153, 81–93. [Google Scholar] [CrossRef]
- Alaphilippe, A.; Simon, S.; Brun, L.; Hayer, F.; Gaillard, G. Life Cycle Analysis Reveals Higher Agroecological Benefits of Or-ganic and Low-Input Apple Production. Agron. Sustain. Dev. 2013, 33, 581–592. [Google Scholar] [CrossRef]
- Nitschelm, L.; Flipo, B.; Auberger, J.; Chambaut, H.; Colomb, V.; Gac, A.; Dauguet, S.; Espagnol, S.; le Gall, C.; Malnoe, C.; et al. Transition Towards Organic And Sustainable Food Systems. Using Life Cycle Assessment to Assess and Improve the Environmental Performance of Organic Production Systems; Organic Eprints: Odense, Denmark, 2020. [Google Scholar]
- Institut Technique de l’Agriculture Biologique (ITAB). Questions Sur La Pertinence Des Données Agribalyse 3.0 Pour l’évaluation Environnementale Des Produits Agricoles et l’affichage Environnemental Des Produits Alimentaires; Institut Technique de l’Agriculture Biologique: Paris, France, 2020. [Google Scholar]
- Sautereau, N.; Benoit, M. Quantifier et Chiffrer Économiquement Les Externalités de l’agriculture Biologique? Institut Technique de l’Agriculture Biologique: Paris, France, 2016. [Google Scholar]
- Sandhu, H.S.; Wratten, S.D.; Cullen, R. Organic agriculture and ecosystem services. Environ. Sci. Policy 2010, 13, 1–7. [Google Scholar] [CrossRef]
- Nitschelm, L.; Flipo, B.; Auberger, J.; Chambaut, H.; Dauguet, S.; Espagnol, S.; Gac, A.; Le Gall, C.; Malnoé, C.; Perrin, A.; et al. Life cycle assessment data of French organic agricultural products. Data Brief 2021, 38, 107356. [Google Scholar] [CrossRef] [PubMed]
- Jeanneret, P.; Baumgartner, D.U.; Knuchel, R.F.; Koch, B.; Gaillard, G. An expert system for integrating biodiversity into agricultural life-cycle assessment. Ecol. Indic. 2014, 46, 224–231. [Google Scholar] [CrossRef]
- Lindner, J.P.; Fehrenbach, H.; Winter, L.; Bloemer, J.; Knuepffer, E. Valuing Biodiversity in Life Cycle Impact Assessment. Sustainability 2019, 11, 5628. [Google Scholar] [CrossRef] [Green Version]
- ADEME L’outil ClimAgri. 2014. Available online: https://www.territoires-climat.ademe.fr/ressource/122-41 (accessed on 15 November 2022).
- Solagro Dialecte: Tool to Assess the Environmental Performance of Farms. 2000. Available online: http://dialecte.solagro.org/ (accessed on 17 November 2022).
- Boone, L.; Roldán-Ruiz, I.; Van Linden, V.; Muylle, H.; Dewulf, J. Environmental sustainability of conventional and organic farming: Accounting for ecosystem services in life cycle assessment. Sci. Total Environ. 2019, 695, 133841. [Google Scholar] [CrossRef]
- APESA.; OLENTICA.; BIO Intelligence Service. Impact Sanitaire et Environnementaux du Compostage Domestique—Rapport. Partie B—109 Pages. 2015. Available online: https://librairie.ademe.fr/ (accessed on 21 October 2022).
Activity Type | Activity Descriptors | Units | Public Data Sources | Precisions about the Data | Background Data LCI |
---|---|---|---|---|---|
Production | Annual production | t | RPG data (RPG, 2019) [73] | Municipal agricultural board Farmers’ interview | Agribalyse V3.0 |
Processing & retail industry | Annual electricity consumption | MWh | Industry identification: SIRENE database (INSEE, 2021) [74] Annual consumption: Enedis Open data (Enedis, 2021) [75] | Municipal electives Retail managers’ interview | Ecoinvent 3 |
Transport | Annual farmers transport | kg-km | Agribalyse data on the transport of French food products | Farmers’ interview | Ecoinvent 3 |
Consumer trips to the shopping | km | NA | Population survey | Ecoinvent 3 | |
Consumption | Annual food consumption by the local population | kg | Local food diets: INCA3 database (Anses, 2017) [76] | Population survey | Agribalyse V3.0 |
Studied Change (2017–2022) | Evolution of Implicated Sub-Sample | Evolution of Non-Implicated Sub-Sample | Average Evolution of Mouans-Sartoux Inhabitants | National Evolution |
---|---|---|---|---|
Consumption of ultra-processed food | −40% | −20% | −30% | On the increase (precise % NA) |
Consumption of meat | −32% | −14% | −23% | +0.7% |
Consumption of organic products | 39% | 18% | 28% | 15% |
(% of the consumption of organic products on regular basis) | ||||
Use of bike to the supermarket | +21% | +6% | +14% | NA |
Food waste reduction | −4% | −1.5% | −2.7% | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lulovicova, A.; Bouissou, S. Environmental Assessment of Local Food Policies through a Territorial Life Cycle Approach. Sustainability 2023, 15, 4740. https://doi.org/10.3390/su15064740
Lulovicova A, Bouissou S. Environmental Assessment of Local Food Policies through a Territorial Life Cycle Approach. Sustainability. 2023; 15(6):4740. https://doi.org/10.3390/su15064740
Chicago/Turabian StyleLulovicova, Andrea, and Stephane Bouissou. 2023. "Environmental Assessment of Local Food Policies through a Territorial Life Cycle Approach" Sustainability 15, no. 6: 4740. https://doi.org/10.3390/su15064740
APA StyleLulovicova, A., & Bouissou, S. (2023). Environmental Assessment of Local Food Policies through a Territorial Life Cycle Approach. Sustainability, 15(6), 4740. https://doi.org/10.3390/su15064740