The Key Mesoscale Systems and Mesoscale Vortices of the Henan Extreme Precipitation in 2021
Abstract
:1. Introduction
2. Data and Methodology
2.1. Surface Data
2.2. Doppler Radar Data
3. Western Henan Low-Pressure Vortex
3.1. Surface Analysis
3.2. Evolution of the WHLV from Radar Observations
3.2.1. Spiral Rain Bands of the WHLV
3.2.2. Cyclonic Rotating Flow and Low-Level Jet
4. Meso-Vortices That Caused Extreme Heavy Precipitation
5. The Zhengzhou Storm
5.1. Formation of the Zhengzhou Storm
5.2. Meso-Vortex of the Zhengzhou Storm
5.3. Low-Level Structure of the Zhengzhou Storm
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Sun, J.; Li, Y.; Xia, R.; Du, Y.; Yang, S.; Zhang, Y.; Chen, J.; Dai, K.; Shen, X.; et al. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of new China. J. Meteor. Res. 2020, 34, 427–459. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, F.; Luo, D.; Tan, Z.; Fang, J.; Sun, J.; Shen, X.; Zhang, Y.; Wang, S.; Han, W. Review of Chinese atmospheric science research over the past 70 years: Synoptic meteorology. Sci. China. Earth. Sci. 2019, 62, 46. [Google Scholar] [CrossRef]
- Tao, S.Y. Torrential Rain in China; Science Press: Beijing, China, 1980; 225p. [Google Scholar]
- Li, G.; Chen, J. New progresses in the research of heavy rain vortices formed over the Southwest China. Torrential Rain Disasters 2018, 37, 293–302. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Yang, S.N.; Dai, K.; Chen, T.; Yao, R.; Xu, J. Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing. Part II: Preliminary causation analysis and thinking. Meteor. Mon. 2012, 38, 1267–1277. [Google Scholar] [CrossRef]
- Lei, L.; Sun, J.; He, N.; Liu, Z.; Zeng, J. A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016. Acta. Meteor. Sin. 2017, 75, 685–699. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhang, X. Analysis on extremity and characteristics of the 19 July 2016 severe torrential rain in the north of Henan Province. Meteor. Mon. 2018, 44, 1136–1147. [Google Scholar] [CrossRef]
- Xia, R.D.; Zhang, D.L. An observational analysis of three extreme rainfall episodes of 19–20 July 2016 along the Taihang Mountains in North China. Mon. Weather. Rev. 2019, 147, 4199–4220. [Google Scholar] [CrossRef]
- Zhao, S.X.; Sun, J.H.; Lu, R.; Fu, S. Analysis of the 20 July 2016 unusual heavy rainfall in North China and Beijing. Meteor. Mon. 2018, 44, 351–360. [Google Scholar] [CrossRef]
- Yu, X. Investigation of Beijing extreme flooding event on 21 July 2012. Meteor. Mon. 2012, 38, 1313–1329. [Google Scholar] [CrossRef]
- Fu, S.; Li, W.; Ling, J. On the evolution of a long-lived mesoscale vortex over the Yangtze River Basin: Geometric features and interactions among systems of different scales. J. Geophys. Res. Atmos. 2015, 120, 11889–11917. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Chen, C.; He, H.; Huang, H. A numerical study of mesoscale vortex formation in the midlatitudes: The role of moist processes. Adv. Atmos. Sci. 2019, 36, 65–78. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, S.; Xu, G.; Meng, Q. Study on a mesoscale convective vortex causing heavy rainfall during the mei-yu season in 2003. Adv. Atmos. Sci. 2010, 27, 1193–1209. [Google Scholar] [CrossRef]
- Zhai, G.; Zhou, L.; Wang, Z. Analysis of a group of weak small-scale vortexes in the planetary boundary layer in the mei-yu front. Adv. Atmos. Sci. 2007, 24, 399–408. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, W.; Zhao, R.; Liu, J. The statistical analysis of low vortex during Meiyu season in the lower reaches of the Yangtze. J. Appl. Meteorol. Sci. 2010, 21, 11–18. [Google Scholar]
- Fu, S.-M.; Mai, Z.; Sun, J.-H.; Li, W.-L.; Ding, Y.; Wang, Y.-Q. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J. Atmos. Sci. 2019, 76, 3803–3830. [Google Scholar] [CrossRef]
- Gao, S.T.; Zhao, S.X.; Zhou, X.P.; Sun, S.Q.; Tao, S.Y. Progress of research on sub-synoptic scale and mesoscale torrential rain systems. Chinese. J. Atmos. Sci. 2003, 27, 618–627. [Google Scholar] [CrossRef]
- Xu, J.; Li, R.; Zhang, Q.; Chen, Y.; Liang, X.; Gu, X. Extreme large-scale atmospheric circulation associated with the “21•7” Henan flood. Sci. China. Earth Sci. 2022, 65, 1847–1860. [Google Scholar] [CrossRef]
- Su, A.F.; Lü, X.N.; Cui, L.M.; Li, Z.; Xi, L.; Li, H. Prediction and test of optimal integrated precipitation based on similar spatial distribution of precipitation. Torrential Rain Disaster 2021, 40, 445–454. [Google Scholar] [CrossRef]
- Chyi, D.; He, L.F.; Wang, X.M.; Chen, S. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J. Appl. Meteor. Sci. 2022, 33, 1–15. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, K.; Lu, Y.; Zheng, Y.; Xue, M.; Tan, Z.M.; Xu, X.; Huang, H.; Chen, H.; Xu, F.; et al. Variability of microphysical characteristics in the “21·7” Henan extremely heavy rainfall event. Sci. China Earth Sci. 2022, 65, 1861–1878. [Google Scholar] [CrossRef]
- Ran, L.K.; Li, S.W.; Zhou, Y.S.; Yang, S.; Ma, S.P.; Zhou, K.; Shen, D.D.; Jiao, B.F.; Li, N. Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in Henan Province. Chinese. J. Atmos. Sci. 2021, 45, 1366–1383. [Google Scholar] [CrossRef]
- Yin, J.F.; Gu, H.D.; Liang, X.D.; Miao, Y.; Sun, J.S.; Xie, Y.X.; Li, F.; Wu, C. A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021. J. Meteor. Res. 2022, 36, 6–25. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Wang, X.M.; Shen, L.; Wang, D.; Li, H. Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Trans. Atmos. Sci. 2021, 44, 672–687. [Google Scholar] [CrossRef]
- Group Beijing. A diagnostic analysis about the “75.8” heavy rain in Henan. Acta Meteorol. Sin. 1979, 4, 44–45. [Google Scholar] [CrossRef]
- Doswell, C.A., III; Brooks, H.E.; Maddox, R.A. Flash flood forecasting: An ingredients-based methodology. Weather. Forecast. 1996, 11, 560–581. [Google Scholar] [CrossRef]
- Nielsen, E.R.; Schumacher, R.S. Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices. J. Atmos. Sci. 2018, 75, 2983–3009. [Google Scholar] [CrossRef]
- Nielsen, E.R.; Schumacher, R.S. Observations of extreme short-term precipitation associated with supercells and mesovortices. Mon. Weather. Rev. 2020, 148, 159–182. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Zhang, Y.; Doswell, C.A. Extreme rainfall and flooding from supercell thunderstorms. J. Hydrol. 2001, 2, 469–489. [Google Scholar] [CrossRef]
- Wu, F.F.; Yu, X.D.; Zhang, Z.G.; Zhou, X.G.; Wei, Y.Y. The characteristics of the mesocyclone and severe weather associated with convective storms. Meteor. Mon. 2012, 38, 1330–1338. [Google Scholar] [CrossRef]
- Zhai, G.; Zhang, H.; Shen, H.; Zhu, P.; Su, T.; Li, X. Role of a meso-γ vortex in meiyu torrential rainfall over the Hangzhou Bay, China: An Observational Study. J. Meteor. Res. 2015, 29, 966–980. [Google Scholar] [CrossRef]
- Li, M.X.; Luo, Y.L.; Zhang, D.L.; Chen, M.X.; Wu, C.; Yin, J.F.; Ma, R.Y. Analysis of a record-breaking rainfall event associated with a monsoon coastal megacity of South China using multisource data. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6404–6414. [Google Scholar] [CrossRef]
- Yin, J.F.; Zhang, D.L.; Luo, Y.L.; Ma, R.Y. On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Weather Rev. 2020, 148, 955–979. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D. On the local rain-rate extreme associated with a mesovortex over South China: Observational structures, characteristics, and evolution. Mon. Weather Rev. 2022, 150, 1075–1096. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Luo, Y.L.; Tang, Y.; Xu, X.; Yu, S.T.; Wu, C. Cause–effect relationship between meso-γ-scale rotation and extreme short-term precipitation: Observational analyses at minute and sub-kilometer scales. J. Meteorol. Res. 2022, 36, 539–552. [Google Scholar] [CrossRef]
- Jackson, R.; Collis, S.; Lang, T.; Potvin, C.; Munson, T. PyDDA: A Pythonic Direct Data Assimilation Framework for Wind Retrievals. J. Open Res. Softw. 2020, 8, 20. [Google Scholar] [CrossRef]
- Gao, J.; Xue, M.; Shapiro, A.; Droegemeier, K.K. A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Weather. Rev. 1999, 127, 2128–2142. [Google Scholar] [CrossRef]
- Shapiro, A.; Potvin, C.K.; Gao, J. Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol. 2009, 26, 2089–2106. [Google Scholar] [CrossRef]
- Shou, S.-W.; Li, S.-S.; Wang, S.-H.; Xu, H.-M.; Yu, Y.-B.; Zhao, Y.-D. Synoptic Analysis; Meteorological Press: Beijing, China, 2002; 325p. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Chyi, D.; Wang, X.M.; Yu, X.D.; Zhang, J.H. Analysis on the development and maintenance mechanism of the extreme heavy rainfall in Henan on July 2021. Acta Meteorol. Sin. 2023, 81, 1–18. [Google Scholar] [CrossRef]
- Rotunno, R.; Klemp, J.B. The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Weather. Rev. 1982, 110, 136–151. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes; John Wiley & Sons: Hoboken, NJ, USA, 2010; 407p. [Google Scholar] [CrossRef]
- Yu, X. Observational investigation of a tornadic heavy precipitation supercell storm. Chin. J. Atmos. Sci. 2008, 32, 508–522. [Google Scholar] [CrossRef]
- Zhang, Z.; Qi, Y.C.; Li, D.H.; Zhao, Z.F.; Cui, L.M.; Su, A.F.; Wang, X.M. Raindrop size distribution characteristics of the extreme rainstorm event in Zhengzhou 20 July, 2021 and its impacts on radar quantitative precipitation estimation. Chin. J. Atmos. Sci. 2022, 46, 1002–1016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zheng, Y.; Fan, L.; Zhu, H.; Yu, X.; Su, A.; Liu, X. The Key Mesoscale Systems and Mesoscale Vortices of the Henan Extreme Precipitation in 2021. Sustainability 2023, 15, 4875. https://doi.org/10.3390/su15064875
Wang X, Zheng Y, Fan L, Zhu H, Yu X, Su A, Liu X. The Key Mesoscale Systems and Mesoscale Vortices of the Henan Extreme Precipitation in 2021. Sustainability. 2023; 15(6):4875. https://doi.org/10.3390/su15064875
Chicago/Turabian StyleWang, Xiuming, Yongguang Zheng, Limiao Fan, He Zhu, Xiaoding Yu, Aifang Su, and Xiaoling Liu. 2023. "The Key Mesoscale Systems and Mesoscale Vortices of the Henan Extreme Precipitation in 2021" Sustainability 15, no. 6: 4875. https://doi.org/10.3390/su15064875
APA StyleWang, X., Zheng, Y., Fan, L., Zhu, H., Yu, X., Su, A., & Liu, X. (2023). The Key Mesoscale Systems and Mesoscale Vortices of the Henan Extreme Precipitation in 2021. Sustainability, 15(6), 4875. https://doi.org/10.3390/su15064875