Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China
Abstract
:1. Introduction
1.1. Research Background
1.2. Methodology and Purpose
- Determine the evaluation index system of county rural prefabrication implementation potential by PEST analysis and literature analysis;
- To propose an entropy weighted TOPSIS evaluation method of rural prefabrication implementation potential, by improving the evaluation object and the formula of taking positive and negative ideal solutions, to further match the evaluation results with the real situation.
- Chongqing Municipality was selected for empirical analysis to analyze the advantages and disadvantages of implementing rural prefabrication in its subordinate counties, which could provide a reference for other regions.
2. Materials and Methods
2.1. Selection of Evaluation Indicators
2.2. Entropy Weighted TOPSIS Model
2.3. Study Region
2.4. Data Sources
3. Results
3.1. Evaluation Process
3.2. Analysis of Comprehensive Implementation Potential Evaluation Results
3.3. Analysis of Subsystem Evaluation Results
4. Discussion
4.1. Empirical Findings
4.2. Countermeasures and Suggestions
4.3. Suggestions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GlobalABC 2022 Global Status Report for Buildings and Constructions 2022. Available online: https://globalabc.org/our-work/tracking-progress-global-status-report (accessed on 27 January 2023).
- Jaillon, L.; Poon, C.S. Sustainable construction aspects of using prefabrication in dense urban environment: A Hong Kong case study. Constr. Manag. Econ. 2008, 26, 953–966. [Google Scholar] [CrossRef]
- Shen, L.Y.; Tam, V.W.; Tam, L.; Ji, Y.B. Project feasibility study: The key to successful implementation of sustainable and socially responsible construction management practice. J. Clean. Prod. 2010, 18, 254–259. [Google Scholar] [CrossRef]
- Zhang, W.; Lee, M.W.; Jaillon, L.; Poon, C.S. The hindrance to using prefabrication in Hong Kong’s building industry. J. Clean. Prod. 2018, 204, 70–81. [Google Scholar] [CrossRef]
- Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. Identification of parameters for embodied energy measurement: A literature review. Energy Build. 2010, 42, 1238–1247. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, L.; Li, H.; Wang, Y.; Bi, G.; Antwi-Afari, M.F. An analysis on promoting prefabrication implementation in construction industry towards sustainability. Int. J. Environ. Res. Public Health 2021, 18, 11493. [Google Scholar] [CrossRef]
- Steinhardt, D.A.; Manley, K. Adoption of prefabricated housing–the role of country context. Sustain. Cities Soc. 2016, 22, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Chong, H.Y. Environmental sustainability of off-site manufacturing: A literature review. Eng. Constr. Archit. Manag. 2019, 28, 332–350. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Zhu, Y.; Zhang, Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. J. Clean. Prod. 2015, 109, 131–143. [Google Scholar] [CrossRef]
- Chen, X.; Shuai, C.; Wu, Y.; Zhang, Y. Analysis on the carbon emission peaks of China’s industrial, building, transport, and agricultural sectors. Sci. Total Environ. 2020, 709, 135768. [Google Scholar] [CrossRef]
- Tumminia, G.; Guarino, F.; Longo, S.; Ferraro, M.; Cellura, M.; Antonucci, V. Life cycle energy performances and environmental impacts of a prefabricated building module. Renew. Sustain. Energy Rev. 2018, 92, 272–283. [Google Scholar] [CrossRef]
- Li, X.J.; Xie, W.J.; Jim, C.Y.; Feng, F. Holistic LCA evaluation of the carbon footprint of prefabricated concrete stairs. J. Clean. Prod. 2021, 329, 129621. [Google Scholar] [CrossRef]
- Xinhua. Xinhua Headlines: China Moves to Explore Path toward Carbon Neutrality Goal. 2020. Available online: http://www.xinhuanet.com/english/2020-10/18/c_139449759.htm (accessed on 27 January 2023).
- Shi, Q.; Wang, Z.; Li, B.; Hertogh, M.; Wang, S. Evolutionary Analysis of Prefabrication Implementation in Construction Projects under Low-Carbon Policies. Int. J. Environ. Res. Public Health 2022, 19, 12511. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Zhou, J.; He, P.; Qin, Y.; Ren, D. A selection model based on SWOT analysis for determining a suitable strategy of prefabrication implementation in rural areas. Sustain. Cities Soc. 2019, 50, 101715. [Google Scholar] [CrossRef]
- Yu, Z. The Achievements, Problems and Improvements in the Development of the Rule of Law for Rural Environmental Protection. IOP Conf. Ser. Earth Environ. Sci. 2020, 545, 012001. [Google Scholar] [CrossRef]
- Tan, Y. Vitalization of rural areas and environmental management. IOP Conf. Ser. Mater. Sci. Eng. 2020, 782, 052017. [Google Scholar] [CrossRef]
- Evans, M.; Yu, S.; Song, B.; Deng, Q.; Liu, J.; Delgado, A. Building energy efficiency in rural China. Energy Policy 2014, 64, 243–251. [Google Scholar] [CrossRef]
- Dong, J.; Jin, H. The design strategy of green rural housing of Tibetan areas in Yunnan, China. Renew. Energy 2013, 49, 63–67. [Google Scholar] [CrossRef]
- Qi, F.; Musonda, B.M.; Shen, H.; Wang, Y. Geometric classification method of rural residences at regional scale. Energy Build. 2018, 172, 170–180. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.F. Attention to rural green-building design in China. Appl. Mech. Mater. 2013, 357, 327–331. [Google Scholar] [CrossRef]
- Li, X.P. Applied Research on Straw Bale in Northwest Rural Residential Building. Appl. Mech. Mater. 2012, 204, 3815–3818. [Google Scholar] [CrossRef]
- He, B.J.; Yang, L.; Ye, M.; Mou, B.; Zhou, Y. Overview of rural building energy efficiency in China. Energy Policy 2014, 69, 385–396. [Google Scholar] [CrossRef]
- Liu, W.; Spaargaren, G.; Mol, A.P.; Heerink, N.; Wang, C. Low carbon rural housing provision in China: Participation and decision making. J. Rural Stud. 2014, 35, 80–90. [Google Scholar] [CrossRef]
- Rocchi, L.; Kadziński, M.; Menconi, M.E.; Grohmann, D.; Miebs, G.; Paolotti, L.; Boggia, A. Sustainability evaluation of retrofitting solutions for rural buildings through life cycle approach and multi-criteria analysis. Energy Build. 2018, 173, 281–290. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- General Office of the State Council, PRC. Implementation Plan for Rural Construction Action. 2022. Available online: http://www.gov.cn/gongbao/content/2022/content_5695035.htm (accessed on 27 January 2023).
- Liu, P.; Li, Q.; Song, L.; Jia, R. The index system for the development level evaluation of regional construction industrialization: A case study in Jiangsu, China. Appl. Sci. 2017, 7, 492. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Xue, X.; Wang, Y.; Luo, X.; Shang, S. New media data-driven measurement for the development level of prefabricated construction in China. J. Clean. Prod. 2019, 241, 118353. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Wang, L.; Au-Yong, C.P.; Ali, A.S. Assessment of the development level of regional industrialized building based on cloud model: A case study in Guangzhou, China. J. Build. Eng. 2021, 44, 102547. [Google Scholar] [CrossRef]
- Jin, Z.; Xia, S.; Cao, H.; Geng, X.; Cheng, Z.; Sun, H.; Jia, M.; Liu, Q.; Sun, J. Evaluation and Optimization of Sustainable Development Level of Construction Industrialization: Case Beijing-Tianjin-Hebei Region. Sustainability 2022, 14, 8245. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Ma, Y.Y.; Lin, H.L. Using the entropy and TOPSIS models to evaluate sustainable development of islands: A case in China. Sustainability 2022, 14, 3707. [Google Scholar] [CrossRef]
- Yalcin, A.S.; Kilic, H.S.; Delen, D. The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review. Technol. Forecast. Soc. Change 2022, 174, 121193. [Google Scholar] [CrossRef]
- Govindan, K.; Jepsen, M.B. ELECTRE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2016, 250, 1–29. [Google Scholar] [CrossRef]
- Jahan, A.; Ismail, M.Y.; Sapuan, S.M.; Mustapha, F. Material screening and choosing methods–a review. Mater. Des. 2010, 31, 696–705. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.B.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Tavana, M.; Moradi, M.; Kangi, F. A fuzzy group Electre method for safety and health assessment in hazardous waste recycling facilities. Saf. Sci. 2013, 51, 414–426. [Google Scholar] [CrossRef]
- Seker, S.; Kahraman, C. Socio-economic evaluation model for sustainable solar PV panels using a novel integrated MCDM methodology: A case in Turkey. Socio-Econ. Plan. Sci. 2021, 77, 100998. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Gamal, A.; Chakrabortty, R.K.; Ryan, M.J. Evaluation of sustainable hydrogen production options using an advanced hybrid MCDM approach: A case study. Int. J. Hydrog. Energy 2021, 46, 4567–4591. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Podvezko, V. Integrated determination of objective criteria weights in MCDM. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 267–283. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Nijkamp, P. Stochastic quantitative and qualitative multicriteria analysis for environmental design. Pap. Reg. Sci. 1977, 39, 175–199. [Google Scholar] [CrossRef]
- Huang, W.; Shuai, B.; Sun, Y.; Wang, Y.; Antwi, E. Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: The China case. Transp. Res. Part A Policy Pract. 2018, 111, 292–303. [Google Scholar] [CrossRef]
- Yu, X.; Suntrayuth, S.; Su, J. A comprehensive evaluation method for industrial sewage treatment projects based on the improved entropy-topsis. Sustainability 2020, 12, 6734. [Google Scholar] [CrossRef]
- Bhowmik, C.; Kaviani, M.A.; Ray, A.; Ocampo, L. An integrated entropy-TOPSIS methodology for evaluating green energy sources. Int. J. Bus. Anal. (IJBAN) 2020, 7, 44–70. [Google Scholar] [CrossRef]
- Kaynak, S.; Altuntas, S.; Dereli, T. Comparing the innovation performance of EU candidate countries: An entropy-based TOPSIS approach. Econ. Res. Ekon. Istraživanja 2017, 30, 31–54. [Google Scholar] [CrossRef]
- Igliński, B.; Iglińska, A.; Cichosz, M.; Kujawski, W.; Buczkowski, R. Renewable energy production in the Łódzkie Voivodeship. The PEST analysis of the RES in the voivodeship and in Poland. Renew. Sustain. Energy Rev. 2016, 58, 737–750. [Google Scholar] [CrossRef]
- Dave, M.; Watson, B.; Prasad, D. Performance and perception in prefab housing: An exploratory industry survey on sustainability and affordability. Procedia Eng. 2017, 180, 676–686. [Google Scholar] [CrossRef]
- Gan, X.; Chang, R.; Zuo, J.; Wen, T.; Zillante, G. Barriers to the transition towards off-site construction in China: An Interpretive structural modeling approach. J. Clean. Prod. 2018, 197, 8–18. [Google Scholar] [CrossRef]
- Mao, C.; Liu, G.; Shen, L.; Wang, X.; Wang, J. Structural equation modeling to analyze the critical driving factors and paths for off-site construction in China. KSCE J. Civ. Eng. 2018, 22, 2678–2690. [Google Scholar] [CrossRef]
- Jiang, R.; Mao, C.; Hou, L.; Wu, C.; Tan, J. A SWOT analysis for promoting off-site construction under the backdrop of China’s new urbanisation. J. Clean. Prod. 2018, 173, 225–234. [Google Scholar] [CrossRef]
- O’Neill, D.; Organ, S. A literature review of the evolution of British prefabricated low-rise housing. Struct. Surv. 2016, 34, 191–214. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Reed, R.; Mills, A. Addressing sustainable challenges in China: The contribution of off-site industrialisation. Smart Sustain. Built Environ. 2014, 3, 261–274. [Google Scholar] [CrossRef]
- Kubečková, D.; Vrbová, M. Historical development of thermal protection of prefab residential housing and its future, an example of the Czech Republic. Energies 2021, 14, 2623. [Google Scholar] [CrossRef]
- Chiang, Y.H.; Chan, E.H.W.; Lok, L.K.L. Prefabrication and barriers to entry—A case study of public housing and institutional buildings in Hong Kong. Habitat Int. 2006, 30, 482–499. [Google Scholar] [CrossRef]
- Nanyam, V.N.; Basu, R.; Sawhney, A.; Vikram, H.; Lodha, G. Implementation of precast technology in India–opportunities and challenges. Procedia Eng. 2017, 196, 144–151. [Google Scholar] [CrossRef]
- Arif, M.; Goulding, J.; Rahimian, F.P. Promoting off-site construction: Future challenges and opportunities. J. Archit. Eng. 2012, 18, 75–78. [Google Scholar] [CrossRef]
- Zhao, L.; Mbachu, J.; Domingo, N. Exploratory factors influencing building development costs in New Zealand. Buildings 2017, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Boyd, N.; Khalfan, M.M.; Maqsood, T. Off-site construction of apartment buildings. J. Archit. Eng. 2013, 19, 51–57. [Google Scholar] [CrossRef]
- Li, Z.; Shen, G.Q.; Xue, X. Critical review of the research on the management of prefabricated construction. Habitat Int. 2014, 43, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Tan, Y.; Luo, W.; Xu, S.; Mao, C.; Moon, S. Towards a more extensive application of off-site construction: A technological review. Int. J. Constr. Manag. 2022, 22, 2154–2165. [Google Scholar] [CrossRef]
- Chang, Y.; Li, X.; Masanet, E.; Zhang, L.; Huang, Z.; Ries, R. Unlocking the green opportunity for prefabricated buildings and construction in China. Resour. Conserv. Recycl. 2018, 139, 259–261. [Google Scholar] [CrossRef]
- Arditi, D.; Ergin, U.; Günhan, S. Factors affecting the use of precast concrete systems. J. Archit. Eng. 2000, 6, 79–86. [Google Scholar] [CrossRef]
- Hwang, B.G.; Shan, M.; Looi, K.Y. Key constraints and mitigation strategies for prefabricated prefinished volumetric construction. J. Clean. Prod. 2018, 183, 183–193. [Google Scholar] [CrossRef]
- Blismas, N.; Pasquire, C.; Gibb, A. Benefit evaluation for off-site production in construction. Constr. Manag. Econ. 2006, 24, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Du, T.; Xie, X.; Liang, H.; Huang, A.; Han, Q. County economy comprehensive evaluation and spatial analysis in Chongqing city based on entropy-weight TOPSIS and GIS. Econ. Geogr. 2014, 34, 40–47. (In Chinese) [Google Scholar]
- Correia, J.M.; Sutrisna, M.; Zaman, A.U. Factors influencing the implementation of off-site manufacturing in commercial projects in Western Australia: A proposed research agenda. J. Eng. Des. Technol. 2020, 18, 1449–1468. [Google Scholar] [CrossRef]
- Du, Q.; Bao, T.; Li, Y.; Huang, Y.; Shao, L. Impact of prefabrication technology on the cradle-to-site CO 2 emissions of residential buildings. Clean Technol. Environ. Policy 2019, 21, 1499–1514. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, S.; Su, Y.; Wu, Z. Factors affecting the capital cost of prefabrication—A case study of China. Sustainability 2017, 9, 1512. [Google Scholar] [CrossRef] [Green Version]
- Lou, N.; Guo, J. Study on Key cost drivers of prefabricated buildings based on system dynamics. Adv. Civ. Eng. 2020, 2020, 8896435. [Google Scholar] [CrossRef]
- Moradibistouni, M.; Vale, B.; Isaacs, N. Evaluating sustainability of prefabrication methods in comparison with traditional methods. In Sustainability in Energy and Buildings 2018, Proceedings of the 10th International Conference in Sustainability on Energy and Buildings (SEB’18), Gold Coast, Australia, 24–26 June 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 228–237. [Google Scholar]
- Mao, C.; Xie, F.; Hou, L.; Wu, P.; Wang, J.; Wang, X. Cost analysis for sustainable off-site construction based on a multiple-case study in China. Habitat Int. 2016, 57, 215–222. [Google Scholar] [CrossRef]
- Ataei, Y.; Mahmoudi, A.; Feylizadeh, M.R.; Li, D.F. Ordinal priority approach (OPA) in multiple attribute decision-making. Appl. Soft Comput. 2020, 86, 105893. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Javed, S.A.; Mardani, A. Gresilient supplier selection through fuzzy ordinal priority approach: Decision-making in post-COVID era. Oper. Manag. Res. 2022, 15, 208–232. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Deng, X.; Javed, S.A.; Zhang, N. Sustainable supplier selection in megaprojects: Grey ordinal priority approach. Bus. Strategy Environ. 2021, 30, 318–339. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Abbasi, M.; Deng, X. A novel project portfolio selection framework towards organizational resilience: Robust ordinal priority approach. Expert Syst. Appl. 2022, 188, 116067. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.; Yang, T.; Huang, G.W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
Criterion Layer | Indicator Layer | Code | Unit | Property | References |
---|---|---|---|---|---|
Political | Number of policies to incentivize the construction of prefabricated rural housing | P1 | / | + | [51,52,53,54,55,56] |
Policy targets for the proportion of prefabricated buildings | P2 | % | + | [52,54,55,56,57] | |
Area of the prefabricated rural housing demonstration project | P3 | m2 | + | [52,54,55,56,58] | |
Target output value of the prefabricated component | P4 | 100 million yuan | + | [52,54,56,58,59,60] | |
Economic | GDP per capita | E1 | Yuan | + | [51,52,59,61] |
Production capacity of prefabricated concrete components | E2 | 10,000 m3 | + | [51,56,58,62,63] | |
Production capacity of prefabricated wall panels | E3 | 10,000 m3 | + | [51,56,58,62,63] | |
Production capacity of prefabricated steel components | E4 | 10,000 tons | + | [51,56,58,62,63] | |
Road network density | E5 | / | + | [52,53,55,59,62,63,64] | |
Social | Year-end residential completions | S1 | 10,000 m2 | + | [7,52,55,65] |
Number of rural population | S2 | 10,000 people | + | [7,52,53,55] | |
Disposable income per resident in rural areas | S3 | Yuan | + | [7,51,52,53,55] | |
Technological | Number of prefabrication industrial bases | T1 | / | + | [54,56,58,60,63,64,66,67] |
Number of people working in the construction industry | T2 | 10,000 people | + | [53,55,59,62,66,67] | |
Number of construction general contract enterprises | T3 | / | + | [53,56,58,64,65,68] | |
Number of construction enterprises | T4 | / | + | [53,56,58,59,60,65,66] |
Criterion Layer | Weight | Code | Indicator Layer | Weight |
---|---|---|---|---|
Political | 0.4516 | P1 | Number of policies to incentivize the construction of prefabricated rural housing | 0.1246 |
P2 | Policy targets for the proportion of prefabricated buildings | 0.0547 | ||
P3 | Area of the prefabricated rural housing demonstration project | 0.1817 | ||
P4 | The target output value of the prefabricated component | 0.0907 | ||
Economic | 0.3152 | E1 | GDP per capita | 0.0158 |
E2 | Production capacity of prefabricated concrete components | 0.0765 | ||
E3 | Production capacity of prefabricated wall panels | 0.0858 | ||
E4 | Production capacity of prefabricated steel components | 0.1117 | ||
E5 | Road network density | 0.0255 | ||
Social | 0.0684 | S1 | Year-end residential completions | 0.0389 |
S2 | Number of rural population | 0.0142 | ||
S3 | Disposable income per resident in rural areas | 0.0152 | ||
Technological | 0.1648 | T1 | Number of prefabrication industrial bases | 0.0965 |
T2 | Number of people working in the construction industry | 0.0253 | ||
T3 | Number of construction general contract enterprises | 0.0178 | ||
T4 | Number of construction enterprises | 0.0252 |
County | County | ||||
---|---|---|---|---|---|
Beibei | 0.2959 | 0.0713 | Kaiju | 0.3106 | 0.0313 |
Yubei | 0.2152 | 0.1718 | Liangping | 0.3120 | 0.0196 |
Banan | 0.2489 | 0.1494 | Chengkou | 0.3149 | 0.0002 |
Fuling | 0.2767 | 0.0890 | Fengdu | 0.3071 | 0.0245 |
Qijiang | 0.2514 | 0.1589 | Dianjiang | 0.1862 | 0.2253 |
Dazu | 0.3044 | 0.0401 | Zhongxian | 0.3050 | 0.0239 |
Changshou | 0.2818 | 0.0827 | Yunyang | 0.3073 | 0.0242 |
Jiangjin | 0.2031 | 0.1540 | Fengjie | 0.3068 | 0.0331 |
Hechuan | 0.2887 | 0.0682 | Wushan | 0.3135 | 0.0086 |
Yongchuan | 0.2479 | 0.1583 | Wushi | 0.3141 | 0.0059 |
Nanchuan | 0.2771 | 0.0890 | Qianjiang | 0.3087 | 0.0301 |
Bishan | 0.2953 | 0.0640 | Wulong | 0.3137 | 0.0103 |
Tongliang | 0.2675 | 0.0944 | Shizhu | 0.3137 | 0.0090 |
Tongnan | 0.2295 | 0.1114 | Xiushan | 0.3135 | 0.0105 |
Rongchang | 0.2287 | 0.1591 | Youyang | 0.3142 | 0.0071 |
Wanzhou | 0.3034 | 0.0440 | Pengshui | 0.3137 | 0.0082 |
County | Political | Economic | Social | Technological | Comprehensive | Ranking |
---|---|---|---|---|---|---|
Dianjiang | 0.6365 | 0.4133 | 0.5427 | 0.3758 | 0.5475 | 1 |
Yubei | 0.3902 | 0.6232 | 0.5691 | 0.7757 | 0.4439 | 2 |
Jiangjin | 0.2985 | 0.5277 | 0.8174 | 0.5893 | 0.4312 | 3 |
Rongchang | 0.4248 | 0.4464 | 0.4503 | 0.2807 | 0.4103 | 4 |
Yongchuan | 0.2568 | 0.5143 | 0.6168 | 0.6452 | 0.3897 | 5 |
Qijiang | 0.1952 | 0.4968 | 0.4287 | 0.5972 | 0.3872 | 6 |
Banan | 0.4309 | 0.3445 | 0.6199 | 0.3558 | 0.3751 | 7 |
Tongnan | 0.3823 | 0.2403 | 0.5093 | 0.3896 | 0.3267 | 8 |
Tongliang | 0.2411 | 0.3852 | 0.5311 | 0.4465 | 0.2610 | 9 |
Fuling | 0.2103 | 0.3837 | 0.4659 | 0.6552 | 0.2434 | 10 |
Nanchuan | 0.2243 | 0.2646 | 0.3280 | 0.2703 | 0.2431 | 11 |
Changshou | 0.1023 | 0.4933 | 0.6307 | 0.1766 | 0.2268 | 12 |
Beibei | 0.1866 | 0.4257 | 0.4451 | 0.2098 | 0.1942 | 13 |
Hechuan | 0.1232 | 0.4035 | 0.6336 | 0.4032 | 0.1912 | 14 |
Bishan | 0.1023 | 0.4125 | 0.4697 | 0.3067 | 0.1782 | 15 |
Wanzhou | 0.1036 | 0.2070 | 0.5469 | 0.5070 | 0.1265 | 16 |
Dazu | 0.1023 | 0.3242 | 0.4929 | 0.2895 | 0.1163 | 17 |
Fengjie | 0.0000 | 0.1258 | 0.4715 | 0.3647 | 0.0975 | 18 |
Kaiju | 0.0000 | 0.1072 | 0.6302 | 0.3239 | 0.0916 | 19 |
Qianjiang | 0.1036 | 0.1311 | 0.2945 | 0.1566 | 0.0888 | 20 |
Fengdu | 0.0708 | 0.1680 | 0.3409 | 0.2090 | 0.0739 | 21 |
Yunyang | 0.0000 | 0.1582 | 0.4272 | 0.3234 | 0.0731 | 22 |
Zhong | 0.0363 | 0.1926 | 0.4189 | 0.2023 | 0.0726 | 23 |
Liangping | 0.0000 | 0.2404 | 0.4284 | 0.1875 | 0.0592 | 24 |
Xiushan | 0.0000 | 0.1666 | 0.2145 | 0.1117 | 0.0323 | 25 |
Wulong | 0.0000 | 0.1871 | 0.2259 | 0.0618 | 0.0318 | 26 |
Shizhu | 0.0000 | 0.0939 | 0.2516 | 0.0979 | 0.0280 | 27 |
Wushan | 0.0000 | 0.0884 | 0.1940 | 0.1266 | 0.0266 | 28 |
Pengshui | 0.0000 | 0.0973 | 0.2346 | 0.0810 | 0.0253 | 29 |
Youyang | 0.0000 | 0.0289 | 0.2432 | 0.0374 | 0.0222 | 30 |
Wushi | 0.0000 | 0.0177 | 0.1089 | 0.1218 | 0.0184 | 31 |
Chengkou | 0.0000 | 0.0000 | 0.0076 | 0.0000 | 0.0006 | 32 |
Value Range | Status | Level | Feature Description |
---|---|---|---|
0 < H < 0.2 | worse | I | The level of implementation potential of rural prefabrication is extremely low and not suited to the promotion of prefabricated rural housing. |
0.2 ≤ H < 0.4 | bad | II | The level of implementation potential of rural prefabrication is low and barely suited to the promotion of prefabricated rural housing. |
0.4 ≤ H < 0.6 | normal | III | The level of implementation potential of rural prefabrication is general and basically suited to the promotion of prefabricated rural housing. |
0.6 ≤ H < 0.8 | good | IV | The level of implementation potential of rural prefabrication is good and more suited to the promotion of prefabricated rural housing. |
0.8 ≤ H < 1.0 | excellent | V | The level of implementation potential of rural prefabrication is very high and well suited to the promotion of prefabricated rural housing. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Sun, J. Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China. Sustainability 2023, 15, 4906. https://doi.org/10.3390/su15064906
Shi J, Sun J. Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China. Sustainability. 2023; 15(6):4906. https://doi.org/10.3390/su15064906
Chicago/Turabian StyleShi, Jingyuan, and Jiaqing Sun. 2023. "Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China" Sustainability 15, no. 6: 4906. https://doi.org/10.3390/su15064906
APA StyleShi, J., & Sun, J. (2023). Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China. Sustainability, 15(6), 4906. https://doi.org/10.3390/su15064906