Effect of CO2 Mineralization on the Composition of Alkali-Activated Backfill Material with Different Coal-Based Solid Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportion
2.3. Thermoldynamic Model and Calculation
3. Results and Discussion
3.1. Composition of Alkali-Activated CSWs
3.2. CO2-Mineralization Property of Alkali-Activated CSWs
3.3. Effect of CO2 Mineralization on the Volume of Alkali-Activated CSWs
3.4. CO2 Sequestrated Potential of CSWs in Underground Space
4. Conclusions
- (1)
- The hydration products of alkali-activated CG, FA, and CGS are calcium silicate hydrate (C-S-H), magnesium silicate hydrate (M-S-H), kaolinite, goethite, natrolite, and liquid. Alkali-activated FA also produces gibbsite, troilite, and OH hydrotalcite because of the different chemical compositions;
- (2)
- The cementitious hydrate content in alkali-activated FA and CGS is almost identical; however, the porosity of alkali-activated FA is significantly lower than that of alkali-activated CGS, and the cementitious hydrate content in alkali-activated CG is the lowest. For the same amount of NaOH, alkali-activated FA offers superior performance;
- (3)
- Hydrates, such as C-S-H, M-S-H, and goethite, can easily be carbonated to produce carbonates and water. The carbonization reaction results in volume changes in the pastes. The maximum theoretical CO2 sequestration capacity should be less than 20% based on the pastes; otherwise, the backfill materials will be destroyed;
- (4)
- CG, FA, and CGS have a high potential for use as backfill materials in underground space and in CO2 sequestration. In particular, FA offers superior performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSW | Coal-based solid waste |
CG | coal gangue |
FA | fly ash |
CGS | coal gasification slag |
GEMS | Gibbs Energy Minimization Software |
References
- Zhang, Y.L.; Ling, T.C. Reactivity Activation of Waste Coal Gangue and Its Impact on the Properties of Cement-Based Materials—A Review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Li, Z.; Xu, G.; Shi, X. Reactivity of Coal Fly Ash Used in Cementitious Binder Systems: A State-of-the-Art Overview. Fuel 2021, 301, 121031. [Google Scholar] [CrossRef]
- Miao, Z.; Guo, Z.; Qiu, G.; Jia, W.; Jiao, K.; Zhang, Y.; Wu, J. Insight into the Role of Slag Particles in Coal Gasification Fine Slag on Hierarchical Porous Composites Preparation and CO2 Capture. Fuel 2022, 310, 122475. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, H.; Zhao, X.; Miao, C.; Yang, P.; Zhou, Z.; Ji, Q.; Chen, L. Speciation, Bioaccessibility and Human Health Risk Assessment of Chromium in Solid Wastes from an Ultra-Low Emission Coal-Fired Power Plant, China. Environ. Pollut. 2022, 315, 120400. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Duan, D.; Huang, D.; Chen, Q.; Tu, M.; Wu, K.; Wang, D. Lightweight Ceramsite Made of Recycled Waste Coal Gangue & Municipal Sludge: Particular Heavy Metals, Physical Performance and Human Health. J. Clean. Prod. 2022, 376, 134309. [Google Scholar]
- Zhou, N.; Du, E.; Zhang, J.; Zhu, C.; Zhou, H. Mechanical Properties Improvement of Sand-Based Cemented Backfill Body by Adding Glass Fibers of Different Lengths and Ratios. Constr. Build. Mater. 2021, 280, 122408. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.X.; Wu, Z.Y.; Chen, Y. Overview of Solid Backfilling Technology Based on Coal-Waste Underground Separation in China. Sustainability 2019, 11, 2118. [Google Scholar] [CrossRef] [Green Version]
- Xue, G.L.; Yilmaz, E.; Song, W.D.; Cao, S. Compressive Strength Characteristics of Cemented Tailings Backfill with Alkali-Activated Slag. Appl. Sci. 2018, 8, 1537. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.H.; Ding, X.T.; Ren, Q.F.; Luo, Z.Q.; Jiang, Q. Effect of Incorporating Waste Limestone Powder into Solid Waste Cemented Paste Backfill Material. Appl. Sci. 2019, 9, 2076. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Hu, Y.; Lu, Y. Driving Forces of China’s Provincial Bilateral Carbon Emissions and the Redefinition of Corresponding Responsibilities. Sci. Total Environ. 2023, 857, 159404. [Google Scholar] [CrossRef]
- Dogan, E.; Turkekul, B. CO2 Emissions, Real Output, Energy Consumption, Trade, Urbanization and Financial Development: Testing the EKC Hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Dai, J.; Xie, H.; Lv, C. Coal Utilization Eco-Paradigm towards an Integrated Energy System. Energy Policy 2017, 109, 370–381. [Google Scholar] [CrossRef]
- Li, K. Diffusion and Adsorption Study of CO2 in Mined out Areas of Coal Mines Filled with Coal Gangue Materials; China University of Mining and Technology: Xuzhou, China, 2021. [Google Scholar]
- Shi, X.; Wang, X.; Wang, X. Dual Waste Utilization in Cemented Paste Backfill Using Steel Slag and Mine Tailings and the Heavy Metals Immobilization Effects. Powder Technol. 2022, 403, 117413. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Li, A.; Zhou, N. Reutilisation of Coal Gangue and Fly Ash as Underground Backfill Materials for Surface Subsidence Control. J. Clean. Prod. 2020, 254, 120113. [Google Scholar] [CrossRef]
- Wang, X.; Ni, W.; Li, J.; Zhang, S.; Hitch, M.; Pascual, R. Carbonation of Steel Slag and Gypsum for Building Materials and Associated Reaction Mechanisms. Cem. Concr. Res. 2019, 125, 105893. [Google Scholar] [CrossRef]
- Zaibo, Z.; Juanhong, L.; Aixiang, W.; Hongjiang, W. Coupled Effects of Superplasticizers and Glazed Hollow Beads on the Fluidy Performance of Cemented Paste Backfill Containing Alkali-Activated Slag and MSWI Fly Ash. Powder Technol. 2022, 399, 116726. [Google Scholar] [CrossRef]
- Behera, S.K.; Mishra, D.P.; Singh, P.; Mishra, K.; Mandal, S.K.; Ghosh, C.N.; Kumar, R.; Mandal, P.K. Utilization of Mill Tailings, Fly Ash and Slag as Mine Paste Backfill Material: Review and Future Perspective. Constr. Build. Mater. 2021, 309, 125120. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, L.; Zhang, Q.; Zheng, J.; Cui, L. Strength and Microstructural Evolution of Alkali-Activated Slag-Based Cemented Paste Backfill: Coupled Effects of Activator Composition and Temperature. Powder Technol. 2022, 401, 117322. [Google Scholar] [CrossRef]
- Wang, P.; Mao, X.; Chen, S.-E. CO2 Sequestration Characteristics in the Cementitious Material Based on Gangue Backfilling Mining Method. Int. J. Min. Sci. Technol. 2019, 29, 721–729. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, L.; Wang, Y.; Chen, J.; Qi, C. The Carbon Uptake and Mechanical Property of Cemented Paste Backfill Carbonation Curing for Low Concentration of CO2. Sci. Total Environ. 2022, 852, 158516. [Google Scholar] [CrossRef]
- Shao, S.; Ma, B.; Wang, C.; Chen, Y. Thermal Behavior and Chemical Reactivity of Coal Gangue during Pyrolysis and Combustion. Fuel 2023, 331, 125927. [Google Scholar] [CrossRef]
- Giergiczny, Z. Fly Ash and Slag. Cem. Concr. Res. 2019, 124, 105826. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Z.; Jing, Y.; Fan, P.; Qi, Z.; Bao, W.; Wang, J.; Yan, X.; Lv, P.; Dong, L. Review of the Characteristics and Graded Utilisation of Coal Gasification Slag. Chin. J. Chem. Eng. 2021, 35, 92–106. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Soe, J.T.; Zhang, S.; Ahn, J.-W.; Park, M.B.; Ahn, W.-S. Synthesis of Nanoporous Materials via Recycling Coal Fly Ash and Other Solid Wastes: A Mini Review. Chem. Eng. J. 2017, 317, 821–843. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Bravo, M.; Silva, R.V.; Jiménez, J.R.; Fernandez-Rodriguez, J.M.; de Brito, J. Effect of Reactive Magnesium Oxide in Alkali-Activated Fly Ash Mortars Exposed to Accelerated CO2 Curing. Constr. Build. Mater. 2022, 342, 127999. [Google Scholar] [CrossRef]
- Miao, Z.; Xu, J.; Chen, L.; Wang, R.; Zhang, Y.; Wu, J. Hierarchical Porous Composites Derived from Coal Gasification Fine Slag for CO2 Capture: Role of Slag Particles in the Composites. Fuel 2022, 309, 122334. [Google Scholar] [CrossRef]
- Nedeljković, M.; Ghiassi, B.; Melzer, S.; Kooij, C.; van der Laan, S.; Ye, G. CO2 binding capacity of alkali-activated fly ash and slag pastes. Ceram. Int. 2018, 44, 19646–19660. [Google Scholar] [CrossRef]
- Zhang, W.; Chai, J.; Feng, X.; Dong, C.; Sun, Q.; Li, M.; Wang, L. Preparation and microstructure of coal gangue-based geopolymer. J. China Univ. Min. Technol. 2021, 50, 539–547. [Google Scholar]
- Gu, Y.; Wang, D.; Fang, K.; Yao, G.; Wang, Q.; Zhang, M.; Sun, R.; Lv, N. Dissolution Characteristics of Coal Gasification Slag and Its Effect on Cement-Based Materials. Bull. Chin. Ceram. Soc. 2021, 40, 1579–1585. [Google Scholar]
- Jani, P.; Imqam, A. Class C fly ash-based alkali activated cement as a potential alternative cement for CO2 storage applications. J. Pet. Sci. Eng. 2021, 201, 108408. [Google Scholar] [CrossRef]
- Wang, J.; Huang, T.; Cheng, G.; Liu, Z.; Li, S.; Wang, D. Effects of Fly Ash on the Properties and Microstructure of Alkali-Activated FA/BFS Repairing Mortar. Fuel 2019, 256, 115919. [Google Scholar] [CrossRef]
- Kulik, D.; Wagner, T.; Dmytrieva, S.; Kosakowski, G.; Hingerl, F.; Chudnenko, K.; Berner, U. GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computat. Geosci. 2013, 17, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.; Kulik, D.; Hingerl, F.; Dmytrieva, S. GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Can. Mineral. 2012, 50, 1173–1195. [Google Scholar] [CrossRef]
- Thoenen, T.; Kulik, D. Nagra/PSI Chemical Thermodynamic Data Base 01/01 for the GEM-Selektor (V.2-PSI) Geochemical Modeling Code: Release 28-02-03; Internal Report TM-44-03-04; Paul Scherrer Institute: Villigen, Switzerland, 2003; Available online: http://gems.web.psi.ch/TDB/doc/pdf/TM-44-03-04-web.pdf (accessed on 28 February 2003).
- Lothenbach, B.; Kulik, D.A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G.D.; Myers, R.J. Cemdata18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials. Cem. Concr. Res. 2019, 115, 472–506. [Google Scholar] [CrossRef] [Green Version]
- You, N.; Shi, J.; Zhang, Y. Corrosion Behaviour of Low-Carbon Steel Reinforcement in Alkali-Activated Slag-Steel Slag and Portland Cement-Based Mortars under Simulated Marine Environment. Corros. Sci. 2020, 175, 108874. [Google Scholar] [CrossRef]
- Li, N.; Farzadnia, N.; Shi, C. Microstructural Changes in Alkali-Activated Slag Mortars Induced by Accelerated Carbonation. Cem. Concr. Res. 2017, 100, 214–226. [Google Scholar] [CrossRef]
- Gallucci, E.; Zhang, X.; Scrivener, K. Effect of temperature on the microstructure of calcium silicate hydrate (CSH). Cem. Concr. Res. 2013, 53, 185–195. [Google Scholar] [CrossRef]
- Zhang, T.; Vandeperre, L.; Cheeseman, C. Formation of magnesium silicate hydrate (MSH) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 2014, 65, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zheng, Y.; Guo, Z.; Ma, Y.; Wang, Y.; Gu, T.; Yang, T.; Jiao, L.; Liu, K.; Hu, Z. Effect of CO2 solution on Portland cement paste under flowing, migration, and static conditions. J. Nat. Gas. Sci. Eng. 2021, 95, 104179. [Google Scholar] [CrossRef]
- Xie, H.; Gao, M.; Liu, J.; Zhou, H.; Zhang, R.; Chen, P.; Liu, Z.; Zhang, A. Research on exploitation and volume estimation of underground space in coal mines. J. China Coal Soc. 2018, 43, 1487–1503. [Google Scholar]
Material | SiO2 | Al2O3 | FexOy | CaO | MgO | K2O | Na2O | TiO2 | SO3 |
---|---|---|---|---|---|---|---|---|---|
CG | 65.50 | 24.50 | 3.86 | 3.04 | 0.55 | 1.93 | 0.62 | / | / |
FA | 41.33 | 41.55 | 5.21 | 8.49 | 0.49 | / | 0.69 | 1.40 | 0.84 |
CGS | 55.52 | 17.66 | 12.24 | 9.17 | 2.11 | / | / | / | 3.30 |
Group | Binder Type | Binder Weight/g | Activator/% | CO2 Dosage/% | w/b |
---|---|---|---|---|---|
Alkali-activated CG | CG + NaOH | 100 | 0–20 | 0–100 | 0.8 |
Alkali-activated FA | FA + NaOH | 100 | 0–20 | 0–100 | 0.8 |
Alkali-activated CGS | CGS + NaOH | 100 | 0–20 | 0–100 | 0.8 |
Mineral | Alkali-Activated CG | Alkali-Activated FA | Alkali-Activated CGS |
---|---|---|---|
C-S-H | 6.98 | 15.77 | 17.13 |
M-S-H | 1.09 | 0.95 | 4.05 |
Kaolinite | 19.20 | 13.13 | 11.35 |
Goethite | 1.28 | 1.42 | 2.88 |
Troilite | 0.01 | 0.24 | 0.93 |
Natrolite | 18.88 | 19.08 | 16.75 |
Quartz | 11.75 | / | 6.12 |
Gibbsite | / | 16.84 | / |
Pore | 25.62 | 14.99 | 30.31 |
Material | Solid Waste/g | NaOH/g | Water/g | Volume of Binder/cm3 | CO2 Storage on Binder/% |
---|---|---|---|---|---|
Alkali-activated CG | CG-92 | 8 | 80 | 84.80 | 20 |
Alkali-activated FA | AA-92 | 8 | 80 | 82.42 | 20 |
Alkali-activated CGS | CGS-92 | 8 | 80 | 89.52 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, B.; Zhang, J.; Li, M.; Zhou, N.; Qiu, X.; Fang, K.; Wang, X. Effect of CO2 Mineralization on the Composition of Alkali-Activated Backfill Material with Different Coal-Based Solid Wastes. Sustainability 2023, 15, 4933. https://doi.org/10.3390/su15064933
Huo B, Zhang J, Li M, Zhou N, Qiu X, Fang K, Wang X. Effect of CO2 Mineralization on the Composition of Alkali-Activated Backfill Material with Different Coal-Based Solid Wastes. Sustainability. 2023; 15(6):4933. https://doi.org/10.3390/su15064933
Chicago/Turabian StyleHuo, Binbin, Jixiong Zhang, Meng Li, Nan Zhou, Xincai Qiu, Kun Fang, and Xiao Wang. 2023. "Effect of CO2 Mineralization on the Composition of Alkali-Activated Backfill Material with Different Coal-Based Solid Wastes" Sustainability 15, no. 6: 4933. https://doi.org/10.3390/su15064933
APA StyleHuo, B., Zhang, J., Li, M., Zhou, N., Qiu, X., Fang, K., & Wang, X. (2023). Effect of CO2 Mineralization on the Composition of Alkali-Activated Backfill Material with Different Coal-Based Solid Wastes. Sustainability, 15(6), 4933. https://doi.org/10.3390/su15064933