Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection
2.2.1. Fire Events (the Dependent Variable)
2.2.2. Predictors (the Independent Variables)
2.3. Variable Evaluation and Selection
2.4. Model Training and Validation
2.5. Probability Mapping
2.6. Transferability of the Forest Fire Probability Models
3. Results
3.1. Variable Contribution to Forest Fire Occurrence
3.2. Model Evaluation
3.3. Evaluation of Model Applicability
4. Discussion
4.1. Variable Contribution to Forest Fire Occurrence
4.2. Evaluation of Model Applicability and Transferability
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Code | Units | Source | AT VIF | CZ VIF | AT Mean ± SD | CZ Mean ± SD | z Score | p |
---|---|---|---|---|---|---|---|---|---|
Vegetation | |||||||||
Broad-leaved forest | BF | ha | CORINE 2018 | 1.42 | 1.34 | 6.2 ± 17.3 | 5.0 ± 15.0 | −6.0 | 0.000 |
Coniferous forest | CF | ha | 2.67 | 2.30 | 30 ± 33.8 | 28.8 ± 31.5 | 8.8 | 0.000 | |
Mixed forest | MF | ha | 1.95 | 1.50 | 13.6 ± 23.1 | 11.0 ± 19.2 | −4.6 | 0.000 | |
natural grassland | NG | ha | 1.94 ** | 1.13 ** | 8.5 ± 20.9 | 0.5 ± 4.6 | −115.3 | 0.000 | |
moors and heathland | MH | ha | 1.29 ** | 1.14 ** | 2.7 ± 10.1 | 0.0 ± 1.5 | −86.6 | 0.000 | |
transitional woodland–shrub | TWS | ha | 1.05 | 1.36 | 0.8 ± 4.5 | 3.3 ± 11.6 | 62.1 | 0.000 | |
sparsely vegetated areas | SVA | ha | 1.73 ** | 1.10 ** | 4.2 ± 13.4 | 0.0 ± 0.4 | −100.7 | 0.000 | |
Total forested area (BF + CF + MF) | TFA | ha | 1.3 × 108 ** | 1.9 × 108 ** | 49.9 ± 34.5 | 44.8 ± 33.3 | −22.9 | 0.000 | |
anthropogenic | |||||||||
Distance to Buildings | DisBld | m | OpenStreetMap | 2.40 | 1.93 | 449.7 ± 445 | 457.6 ± 389.9 | 16.7 | 0.429 |
Distance to asphalt roads | DisRo_A | m | 3.59 ** | 1.90 | 955.3 ± 1292.2 | 480.1 ± 517.6 | −37.2 | 0.000 | |
Distance to forest roads | DisRo_B | m | 3.30 | 1.17 | 297 ± 503.5 | 193.3 ± 183.0 | 8.5 | 0.000 | |
Distance to hiking trails | DisRo_C | m | 1.26 | 1.28 | 569.5 ± 536.1 | 783.7 ± 707.5 | 59.0 | 0.000 | |
Distance to Rail | DisRa | m | 1.39 | 1.28 | 6105 ± 4737.4 | 3728.3 ± 2987.5 | −93.6 | 0.000 | |
Distance to Agricultural Land | DisAgL | m | CORINE 2018 | 3.24 | 2.18 | 854.9 ± 1231.1 | 258.7 ± 536.6 | −107.3 | 0.000 |
Population density | PopD | N/km2 | CIESIN | 1.12 | 1.29 | 56.3 ± 203.4 | 76.7 ± 282.9 | −13.6 | 0.000 |
topographic | |||||||||
Distance to Water | DisW | m | OpenStreetMap | 1.30 | 1.10 | 1061.4 ± 847.7 | 253.9 ± 234.6 | −231.4 | 0.000 |
Elevation | E | m | DEM | 28.40 * | 11.96 * | 1019.2 ± 627.8 | 496.3 ± 181.6 | −167.7 | 0.000 |
Aspect | A | degree | 1.03 | 1.02 | 175.5 ± 44.5 | 174.5 ± 43.6 | −2.8 | 0.149 | |
Slope | S | degree | 8.77 ** | 4.04 | 19 ± 11.1 | 6.0 ± 3.6 | −216.0 | 0.000 | |
Topographic wetness index | TWI | 7.46 | 4.00 ** | 5.6 ± 1 | 7.5 ± 0.6 | 274.6 | 0.000 | ||
climatic | |||||||||
mean temperature of the warmest quarter | MTempWrQ | °C | WorldClim | 25.62 * | 8.25 | 14.1 ± 3.6 | 16.1 ± 1.3 | 95.3 | 0.000 |
mean temperature of the driest quarter | MTempDQ | °C | 6.02 | 2.76 | −1.9 ± 2.4 | 0.5 ± 1.7 | 190.5 | 0.000 | |
precipitation in the warmest quarter | PrecWrQ | mm | 8.26 | 4.56 ** | 400.2 ± 98.2 | 254.1 ± 36.2 | −252.8 | 0.000 | |
precipitation in the driest quarter | PrecDQ | mm | 10.09 * | 8.08 | 187.3 ± 63.9 | 111.7 ± 38.8 | −219.4 | 0.000 |
References
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant Increase in Natural Disturbance Impacts on European Forests since 1950. Glob. Chang. Biol. 2022, 29, 1359–1376. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta’, G.; Artes Vivancos, T.; Jacome Felix Oom, D.; Branco, A.; de Rigo, D.; Ferrari, D.; et al. Forest Fires in Europe, Middle East and North Africa 2021; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Senf, C.; Seidl, R. Storm and Fire Disturbances in Europe: Distribution and Trends. Glob. Chang. Biol. 2021, 27, 3605–3619. [Google Scholar] [CrossRef]
- Kocinová, M.; Nedělníková, H. Statistical Yearbook 2021 of the Fire Rescue Service of the Czech Republic; Fire Rescue Service of the Czech republic: Prague, Czech Republic, 2021. [Google Scholar]
- Troumbis, A.Y.; Kalabokidis, K.; Palaiologou, P. Diverging Rationalities between Forest Fire Management Services and the General Public after the 21st-Century Mega-Fires in Greece. J. For. Res. Harbin 2022, 33, 553–564. [Google Scholar] [CrossRef]
- Ciesielski, M.; Bałazy, R.; Borkowski, B.; Szczęsny, W.; Zasada, M.; Kaczmarowski, J.; Kwiatkowski, M.; Szczygieł, R.; Milanović, S. Contribution of Anthropogenic, Vegetation, and Topographic Features to Forest Fire Occurrence in Poland. IForest 2022, 15, 307. [Google Scholar] [CrossRef]
- Milanović, S.; Kaczmarowski, J.; Ciesielski, M.; Trailović, Z.; Mielcarek, M.; Szczygieł, R.; Kwiatkowski, M.; Bałazy, R.; Zasada, M.; Milanović, S.D. Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods. Forests 2023, 14, 46. [Google Scholar] [CrossRef]
- Moreno, M.V.; Conedera, M.; Chuvieco, E.; Pezzatti, G.B. Fire Regime Changes and Major Driving Forces in Spain from 1968 to 2010. Environ. Sci. Policy 2014, 37, 11–22. [Google Scholar] [CrossRef]
- Álvarez-Díaz, M.; González-Gómez, M.; Otero-Giraldez, M.S. Detecting the Socioeconomic Driving Forces of the Fire Catastrophe in NW Spain. Eur. J. For. Res. 2015, 134, 1087–1094. [Google Scholar] [CrossRef]
- Nunes, A.N. Regional Variability and Driving Forces behind Forest Fires in Portugal an Overview of the Last Three Decades (1980–2009). Appl. Geogr. 2012, 34, 576–586. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D.T. Driving Forces of Global Wildfires over the Past Millennium and the Forthcoming Century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [Green Version]
- Leuenberger, M.; Parente, J.; Tonini, M.; Pereira, M.G.; Kanevski, M. Wildfire Susceptibility Mapping: Deterministic vs. Stochastic Approaches. Environ. Model. Softw. 2018, 101, 194–203. [Google Scholar] [CrossRef]
- Müller, M.M.; Vilà-Vilardell, L.; Vacik, H. Towards an Integrated Forest Fire Danger Assessment System for the European Alps. Ecol. Inform. 2020, 60, 101151. [Google Scholar] [CrossRef]
- Costafreda-Aumedes, S.; Comas, C.; Vega-Garcia, C. Human-Caused Fire Occurrence Modelling in Perspective: A Review. Int. J. Wildland Fire 2017, 26, 983–998. [Google Scholar] [CrossRef]
- Su, Z.; Zheng, L.; Luo, S.; Tigabu, M.; Guo, F. Modeling Wildfire Drivers in Chinese Tropical Forest Ecosystems Using Global Logistic Regression and Geographically Weighted Logistic Regression. Nat. Hazards 2021, 108, 1317–1345. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez-Ruano, A.; Peña-Angulo, D.; de la Riva, J. A Comprehensive Spatial-Temporal Analysis of Driving Factors of Human-Caused Wildfires in Spain Using Geographically Weighted Logistic Regression. J. Environ. Manag. 2018, 225, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Vega-Nieva, D.J.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.M.; Pompa-García, M.; Rodríguez-Trejo, D.A.; Carrillo-Parra, A.; González-Cabán, A.; et al. Predicting Forest Fire Kernel Density at Multiple Scales with Geographically Weighted Regression in Mexico. Sci. Total Environ. 2020, 718, 137313. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N. Modelling Long-Term Fire Occurrence Factors in Spain by Accounting for Local Variations with Geographically Weighted Regression. Nat. Hazards Earth Syst. Sci. 2013, 13, 311–327. [Google Scholar] [CrossRef]
- Oliveira, S.; Pereira, J.M.C.; San-Miguel-Ayanz, J.; Lourenço, L. Exploring the Spatial Patterns of Fire Density in Southern Europe Using Geographically Weighted Regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
- Koutsias, N.; Martínez-Fernández, J.; Allgöwer, B. Do Factors Causing Wildfires Vary in Space? Evidence from Geographically Weighted Regression. GIScience Remote Sens. 2013, 47, 221–240. [Google Scholar] [CrossRef]
- Sá, A.C.L.; Turkman, M.A.A.; Pereira, J.M.C. Exploring Fire Incidence in Portugal Using Generalized Additive Models for Location, Scale and Shape (GAMLSS). Model Earth Syst. Env. 2018, 4, 199–220. [Google Scholar] [CrossRef]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire Risk Estimation in the Mediterranean Area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Pausas, J.G. Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applications in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Liu, D.; Yan, L. Temperature-Based Fire Frequency Analysis Using Machine Learning: A Case of Changsha, China. Clim. Risk Manag. 2021, 31, 100276. [Google Scholar] [CrossRef]
- Janiec, P.; Gadal, S. A Comparison of Two Machine Learning Classification Methods for Remote Sensing Predictive Modeling of the Forest Fire in the North-Eastern Siberia. Remote Sens. 2020, 12, 4157. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Wang, Z.; Feng, Z.; Sun, L.; Yang, X.; Zheng, J.; Ma, T. Assessment of China’s forest fire occurrence with deep learning, geographic information and multisource data. J. For. Res. 2022. [Google Scholar] [CrossRef]
- Wan, C.; Roy, S. Sen Geospatial Characteristics of Fire Occurrences in Southern Hemispheric Africa and Madagascar during 2001–2020. J. For. Res. 2022, 1, 1–11. [Google Scholar]
- Hiebl, J.; Frei, C. Daily Precipitation Grids for Austria since 1961—Development and Evaluation of a Spatial Dataset for Hydroclimatic Monitoring and Modelling. Theor. Appl. Climatol. 2018, 132, 327–345. [Google Scholar] [CrossRef]
- Phillips, I.D. Austrian Long-Term Climate 1767–2000: Multiple Instrumental Climate Time Series from Central Europe (Österreichische Beiträge Zu Meteorologie Und Geophysik, Heft 25), by I. Auer, R. Böhm and W. Schöner, Central Institute for Meteorology and Geodynamics, Hohe Warte 38, A-1190 Vienna, 2001. Publication Number 397. No. of Pages: 155. ISSN 1016-6254 (Paperback). Int. J. Climatol. 2002, 22, 1143. [Google Scholar] [CrossRef]
- Wheeler, D. Climate Atlas of Czechia. By R. Tolasz et al. Czech Hydrometeorological Institute, Prague, 2007. 254pp. Hardback ISBN 978-80-86690-1. Weather 2008, 63, 23. [Google Scholar] [CrossRef]
- Waldinventur. Available online: https://www.waldinventur.at/#/ENG (accessed on 7 January 2023).
- Riedl, M.; Šišák, L.; Kahuda, J.; Hofmeister, T.; Ulrich, R. Information on Forests and Forestry in the Czech Republic by 2020; eAGRI Portal: Prague, Czech Republic, 2021. [Google Scholar]
- Kula, E.; Jankovská, Z. Forest Fires and Their Causes in the Czech Republic (1992–2004). J. For. Sci. 2013, 59, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Špulák, P. Wildland Fires in the Czech Republic—Review of Data Spanning 20 Years. ISPRS Int. J. Geo-Inf. 2022, 11, 289. [Google Scholar] [CrossRef]
- Vacik, H.; Arndt, N.; Arpaci, A.; Koch, V.; Müller, M. Characterisation of Forest Fires in Austria. Austrian J. For. Sci. 2011, 128, 1–32. [Google Scholar]
- Müller, M.M.; Vacik, H.; Diendorfer, G.; Arpaci, A.; Formayer, H.; Gossow, H. Analysis of Lightning-Induced Forest Fires in Austria. Theor. Appl. Climatol. 2013, 111, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Data—Eurostat. Available online: https://ec.europa.eu/eurostat/web/main/data (accessed on 8 March 2023).
- Archive Download—NASA|LANCE|FIRMS. Available online: https://firms.modaps.eosdis.nasa.gov/download/ (accessed on 20 December 2021).
- Milanovic, S.; Markovic, N.; Pamucar, D.; Gigovic, L.; Kostic, P.; Milanovic, S.D. Forest Fire Probability Mapping in Eastern Serbia: Logistic Regression versus Random Forest Method. Forests 2021, 12, 5. [Google Scholar] [CrossRef]
- Nhongo, E.J.S.; Fontana, D.C.; Guasselli, L.A.; Bremm, C. Probabilistic Modelling of Wildfire Occurrence Based on Logistic Regression, Niassa Reserve, Mozambique. Geomat. Nat. Hazards Risk 2019, 10, 1772–1792. [Google Scholar] [CrossRef] [Green Version]
- Ye, T.; Wang, Y.; Guo, Z.; Li, Y. Factor Contribution to Fire Occurrence, Size, and Burn Probability in a Subtropical Coniferous Forest in East China. PLoS ONE 2017, 12, e0172110. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Lin, F.; Liu, A. Wildfire Ignition in the Forests of Southeast China: Identifying Drivers and Spatial Distribution to Predict Wildfire Likelihood. Appl. Geogr. 2016, 66, 12–21. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F.; Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and Mapping Wildfire Ignition Risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Carmo, M.; Moreira, F.; Casimiro, P.; Vaz, P. Land Use and Topography Influences on Wildfire Occurrence in Northern Portugal. Landsc. Urban Plan. 2011, 100, 169–176. [Google Scholar] [CrossRef] [Green Version]
- CLC 2018—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download (accessed on 16 March 2021).
- Historical Climate Data—WorldClim 1 Documentation. Available online: https://www.worldclim.org/data/worldclim21.html (accessed on 20 December 2021).
- Geofabrik Download Server. Available online: https://download.geofabrik.de/europe.html (accessed on 16 August 2021).
- Population Count Grid, v3: Gridded Population of the World (GPW), v3|SEDAC. Available online: https://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-count (accessed on 12 July 2021).
- Midi, H.; Sarkar, S.K.; Rana, S. Collinearity Diagnostics of Binary Logistic Regression Model. J. Interdiscip. Math. 2013, 13, 253–267. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Data Pre-Processing. Appl. Predict. Model. 2013, 27–59. [Google Scholar] [CrossRef]
- Beleites, C.; Neugebauer, U.; Bocklitz, T.; Krafft, C.; Popp, J. Sample Size Planning for Classification Models. Anal. Chim. Acta 2013, 760, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Nembrini, S.; König, I.R.; Wright, M.N. The Revival of the Gini Importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosmer, D.; Lemeshow, S.; Sturdivant, R. Applied Logistic Regression, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013; ISBN 978111854838. [Google Scholar]
- Webb, G.I. Model Evaluation. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2011. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- López-Ratón, M.; Rodríguez-Álvarez, M.X.; Cadarso-Suárez, C.; Gude-Sampedro, F. OptimalCutpoints: An R Package for Selecting Optimal Cutpoints in Diagnostic Tests. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Goksuluk, D.; Korkmaz, S.; Zararsiz, G.; Karaagaoglu, A.E. EasyROC: An Interactive Web-Tool for Roc Curve Analysis Using r Language Environment. R J. 2016, 8, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable Selection Using Random Forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Ramo, R.; Chuvieco, E. Developing a Random Forest Algorithm for MODIS Global Burned Area Classification. Remote Sens. 2017, 9, 1193. [Google Scholar] [CrossRef] [Green Version]
- Phelps, N.; Woolford, D.G.; Phelps, N.; Woolford, D.G. Comparing Calibrated Statistical and Machine Learning Methods for Wildland Fire Occurrence Prediction: A Case Study of Human-Caused Fires in Lac La Biche, Alberta, Canada. Int. J. Wildland Fire 2021, 30, 850–870. [Google Scholar] [CrossRef]
- Ngoc Thach, N.; Bao-Toan Ngo, D.; Xuan-Canh, P.; Hong-Thi, N.; Hang Thi, B.; Nhat-Duc, H.; Dieu, T.B. Spatial Pattern Assessment of Tropical Forest Fire Danger at Thuan Chau Area (Vietnam) Using GIS-Based Advanced Machine Learning Algorithms: A Comparative Study. Ecol. Inform. 2018, 46, 74–85. [Google Scholar] [CrossRef]
- Romero, R.; Mestre, A.; Botey, R. A New Calibration for Fire Weather Index in Spain (AEMET). In Advances in Forest Fire Research; University of Coimbra: Coimbra, Portugal, 2014; pp. 1044–1053. [Google Scholar] [CrossRef]
- Penman, T.D.; Bradstock, R.A.; Price, O.; Penman, T.D.; Bradstock, R.A.; Price, O. Modelling the Determinants of Ignition in the Sydney Basin, Australia: Implications for Future Management. Int. J. Wildland Fire 2012, 22, 469–478. [Google Scholar] [CrossRef]
- Kim, S.J.; Lim, C.H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.K. Multi-Temporal Analysis of Forest Fire Probability Using Socio-Economic and Environmental Variables. Remote Sens. 2019, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Zhang, F.; Lin, H.; Xu, S. GIS-Based Forest Fire Risk Model: A Case Study in Laoshan National Forest Park, Nanjing. Remote Sens. 2021, 13, 3704. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, M.; Liu, K. Wildfire Susceptibility Assessment in Southern China: A Comparison of Multiple Methods. Int. J. Disaster Risk Sci. 2017, 8, 164–181. [Google Scholar] [CrossRef] [Green Version]
- Trucchia, A.; Meschi, G.; Fiorucci, P.; Gollini, A.; Negro, D. Defining Wildfire Susceptibility Maps in Italy for Understanding Seasonal Wildfire Regimes at the National Level. Fire 2022, 5, 30. [Google Scholar] [CrossRef]
- Nguyen, Q.-H.; Nguyen, H.-D.; Le, D.T.; Bui, Q.-T. Fine-Tuning LightGBM Using an Artificial Ecosystem-Based Optimizer for Forest Fire Analysis. For. Sci. 2022, 69, 73–82. [Google Scholar] [CrossRef]
- Satir, O.; Berberoglu, S.; Donmez, C. Mapping Regional Forest Fire Probability Using Artificial Neural Network Model in a Mediterranean Forest Ecosystem. Geomat. Nat. Hazards Risk 2015, 7, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Moayedi, H.; Khasmakhi, M.A.S.A. Wildfire Susceptibility Mapping Using Two Empowered Machine Learning Algorithms. Stoch. Environ. Res. Risk Assess. 2022, 37, 49–72. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Interacting Effects of Topography, Vegetation, Human Activities and Wildland-Urban Interfaces on Wildfire Ignition Risk. For. Ecol. Manag. 2017, 397, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Benali, A.; Sá, A.C.L.; Ervilha, A.R.; Trigo, R.M.; Fernandes, P.M.; Pereira, J.M.C. Fire Spread Predictions: Sweeping Uncertainty under the Rug. Sci. Total Environ. 2017, 592, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atchley, A.L.; Linn, R.; Jonko, A.; Hoffman, C.; Hyman, J.D.; Pimont, F.; Sieg, C.; Middleton, R.S.; Atchley, A.L.; Linn, R.; et al. Effects of Fuel Spatial Distribution on Wildland Fire Behaviour. Int. J. Wildland Fire 2021, 30, 179–189. [Google Scholar] [CrossRef]
- Clements, C.B.; Lareau, N.P.; Seto, D.; Contezac, J.; Davis, B.; Teske, C.; Zajkowski, T.J.; Hudak, A.T.; Bright, B.C.; Dickinson, M.B.; et al. Fire Weather Conditions and Fire–Atmosphere Interactions Observed during Low-Intensity Prescribed Fires—RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 90–101. [Google Scholar] [CrossRef]
- Morgan Varner, J.; Kane, J.M.; Kreye, J.K.; Engber, E. The Flammability of Forest and Woodland Litter: A Synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Anderson, H.E. Forest Fuel Ignitibility. Fire Technol. 1970, 6, 312–322. [Google Scholar] [CrossRef]
- Hilton, J.E.; Miller, C.; Sullivan, A.L.; Rucinski, C. Effects of Spatial and Temporal Variation in Environmental Conditions on Simulation of Wildfire Spread. Environ. Model. Softw. 2015, 67, 118–127. [Google Scholar] [CrossRef]
- Balzter, H.; Gerard, F.; George, C.; Weedon, G.; Grey, W.; Combal, B.; Bartholomé, E.; Bartalev, S.; Los, S. Coupling of Vegetation Growing Season Anomalies and Fire Activity with Hemispheric and Regional-Scale Climate Patterns in Central and East Siberia. J. Clim. 2007, 20, 3713–3729. [Google Scholar] [CrossRef] [Green Version]
- Amiro, B.D.; Stocks, B.J.; Alexander, M.E.; Flannigan, M.D.; Wotton, B.M. Fire, Climate Change, Carbon and Fuel Management in the Canadian Boreal Forest. Int. J. Wildland Fire 2001, 10, 405–413. [Google Scholar] [CrossRef]
- Trnka, M.; Možný, M.; Jurečka, F.; Balek, J.; Semerádová, D.; Hlavinka, P.; Štěpánek, P.; Farda, A.; Skalák, P.; Cienciala, E.; et al. Observed and Estimated Consequences of Climate Change for the Fire Weather Regime in the Moist-Temperate Climate of the Czech Republic. Agric. For. Meteorol. 2021, 310, 108583. [Google Scholar] [CrossRef]
- Jurečka, F.; Možný, M.; Balek, J.; Žalud, Z.; Trnka, M. Comparison of Methods for the Assessment of Fire Danger in the Czech Republic. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2019, 67, 1285–1295. [Google Scholar] [CrossRef] [Green Version]
- Mozny, M.; Trnka, M.; Brázdil, R. Climate Change Driven Changes of Vegetation Fires in the Czech Republic. Theor. Appl. Climatol. 2021, 143, 691–699. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Lohmander, P.; Kašpar, J.; Berčák, R.; Holuša, J.; Marušák, R. The Effect of Climate Factors on the Size of Forest Wildfires (Case Study: Prague-East District, Czech Republic). J. For. Res. Harbin 2022, 33, 1291–1300. [Google Scholar] [CrossRef]
- Lohmander, P.; Mohammadi, Z.; Kašpar, J.; Tahri, M.; Berčák, R.; Holuša, J.; Marušák, R. Future Forest Fires as Functions of Climate Change and Attack Time for Central Bohemian Region, Czech Republic. Ann. For. Res. 2022, 65, 17–30. [Google Scholar] [CrossRef]
- Müller, M.M.; Vacik, H.; Valese, E. Anomalies of the Austrian Forest Fire Regime in Comparison with Other Alpine Countries: A Research Note. Forests 2015, 6, 903–913. [Google Scholar] [CrossRef]
- Müller, M.M.; Vacik, H. Characteristics of Lightnings Igniting Forest Fires in Austria. Agric. For. Meteorol. 2017, 240–241, 26–34. [Google Scholar] [CrossRef]
- Arndt, N.; Vacik, H.; Koch, V.; Arpaci, A.; Gossow, H. Modeling Human-Caused Forest Fire Ignition for Assessing Forest Fire Danger in Austria. IForest 2013, 6, 315. [Google Scholar] [CrossRef] [Green Version]
- Nezval, V.; Andrášik, R.; Bíl, M. Vegetation Fires along the Czech Rail Network. Fire Ecol. 2022, 18, 15. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, L.; Jin, S.; Tigabu, M.; Su, Z.; Wang, W. Modeling Anthropogenic Fire Occurrence in the Boreal Forest of China Using Logistic Regression and Random Forests. Forests 2016, 7, 250. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Tigabu, M.; Cao, Q.; Wang, G.; Hu, H.; Guo, F. Comparative Analysis of Spatial Variation in Forest Fire Drivers between Boreal and Subtropical Ecosystems in China. For. Ecol. Manag. 2019, 454, 117669. [Google Scholar] [CrossRef]
- Pinto, G.A.S.J.; Rousseu, F.; Niklasson, M.; Drobyshev, I. Effects of Human-Related and Biotic Landscape Features on the Occurrence and Size of Modern Forest Fires in Sweden. Agric. For. Meteorol. 2020, 291, 108084. [Google Scholar] [CrossRef]
- Adámek, M.; Jankovská, Z.; Hadincová, V.; Kula, E.; Wild, J. Drivers of Forest Fire Occurrence in the Cultural Landscape of Central Europe. Landsc. Ecol. 2018, 33, 2031–2045. [Google Scholar] [CrossRef]
- Arpaci, A.; Malowerschnig, B.; Sass, O.; Vacik, H. Using Multi Variate Data Mining Techniques for Estimating Fire Susceptibility of Tyrolean Forests. Appl. Geogr. 2014, 53, 258–270. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Rodriguez-Perez, J.R.; Marcos-Menendez, J.L.; Alvarez-Taboada, M.F. Modelling the Probability of Lightning-Induced Forest Fire Occurrence in the Province of León (NW Spain). For. Syst. 2011, 20, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Hoelzemann, J.J.; Schultz, M.G.; Brasseur, G.P.; Granier, C.; Simon, M. Global Wildland Fire Emission Model (GWEM): Evaluating the Use of Global Area Burnt Satellite Data. J. Geophys. Res. Atmos. 2004, 109, 14–18. [Google Scholar] [CrossRef]
- Cai, L.; Zhu, Y. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Sci. J. 2015, 14. [Google Scholar] [CrossRef] [Green Version]
- Azimi, S.; Pahl, C. The Effect of IoT Data Completeness and Correctness on Explainable Machine Learning Models. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of the International Conference on Database and Expert Systems Applications, 27–30 September 2021, Vienna, Austria; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12924, pp. 151–160. [Google Scholar] [CrossRef]
- Bekar, İ.; Tavşanoğlu, Ç.; Pezzatti, G.B.; Vacik, H.; Pausas, J.G.; Bugmann, H.; Petter, G.; Bekar, İ.; Tavşanoğlu, Ç.; Pezzatti, G.B.; et al. Cross-Regional Modelling of Fire Occurrence in the Alps and the Mediterranean Basin. Int. J. Wildland Fire 2020, 29, 712–722. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S.; Liu, Y. Exploring the Accuracy and Completeness Patterns of Global Land-Cover/Land-Use Data in OpenStreetMap. Appl. Geogr. 2022, 145, 102742. [Google Scholar] [CrossRef]
- Vilar, L.; Camia, A.; San-Miguel-Ayanz, J. European Journal of Remote Sensing A Comparison of Remote Sensing Products and Forest Fire Statistics for Improving Fire Information in Mediterranean Europe. Eur. J. Remote Sens. 2017, 48, 345–364. [Google Scholar] [CrossRef] [Green Version]
Predictor | Code | Unit | AT | CZ |
---|---|---|---|---|
Coniferous forest | CF | m2 | 0.467 | 0.718 |
Distance to Buildings | DisBld | m | 0.498 | 0.799 |
Distance to asphalt roads | DisRo_A | m | * | 0.765 |
Distance to forest roads | DisRo_B | m | 0.528 | 0.791 |
Distance to hiking trails | DisRo_C | m | 0.652 | 0.762 |
Distance to Rail | DisRa | m | 0.743 | 0.817 |
Distance to Agricultural Land | DisAgL | m | 0.639 | 0.667 |
Population density | PopD | n/km2 | 0.519 | 0.760 |
Distance to Water | DisW | m | 0.555 | 0.705 |
Aspect | A | degree | 0.529 | 0.728 |
Slope | S | degree | * | 1.000 |
Topographic wetness index | TWI | 1.000 | * | |
Mean temperature of the warmest quarter | MTempWrQ | °C | * | 0.814 |
Mean temperature of the driest quarter | MTempDQ | °C | 0.637 | 0.787 |
Precipitation in the warmest quarter | PrecWrQ | mm | 0.863 | * |
Precipitation in the driest quarter | PrecDQ | mm | * | 0.754 |
Country | Cut Off | Training | Validation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | Acc | Prec | Predicted | Acc | Prec | |||||||
0 | 1 | (%) | (%) | 0 | 1 | (%) | (%) | |||||
AT | 0.605 | Observed | 0 | 49,315 | 10,783 | 82.1 | 83.9 | 0 | 21,166 | 4684 | 81.9 | 80.5 |
1 | 63 | 328 | 1 | 36 | 149 | |||||||
CZ | 0.575 | Observed | 0 | 36,657 | 18,533 | 66.5 | 76.8 | 0 | 15,763 | 8139 | 66.0 | 66.1 |
1 | 162 | 535 | 1 | 105 | 205 |
Model | Predicted | Acc | Prec | |||
---|---|---|---|---|---|---|
0 | 1 | (%) | (%) | |||
AT to AT | Observed | 0 | 70,481 | 15,467 | 82.0 | 82.8 |
1 | 99 | 477 | ||||
CZ to CZ | Observed | 0 | 52,420 | 26,672 | 66.4 | 73.5 |
1 | 267 | 740 | ||||
CZ to AT | Observed | 0 | 71,017 | 14,931 | 82.5 | 66.5 |
1 | 193 | 383 | ||||
AT to CZ | Observed | 0 | 9950 | 69,142 | 13.6 | 96.3 |
1 | 37 | 970 |
Forest Fire Probability (%) | Forest Fire Probability Class | AT to AT | AT to CZ | CZ to AT | CZ to CZ |
---|---|---|---|---|---|
0–40 | Very low | 10.7 | 26.5 | 7.2 | 17.4 |
41–65 | Low | 6.6 | 28.0 | 5.9 | 20.9 |
66–85 | Moderate | 25.2 | 27.4 | 13.5 | 24.7 |
86–95 | High | 38.3 | 13.4 | 43.4 | 21.0 |
96–100 | Very high | 19.2 | 4.6 | 29.9 | 16.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanović, S.; Trailović, Z.; Milanović, S.D.; Hochbichler, E.; Kirisits, T.; Immitzer, M.; Čermák, P.; Pokorný, R.; Jankovský, L.; Jaafari, A. Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data. Sustainability 2023, 15, 5269. https://doi.org/10.3390/su15065269
Milanović S, Trailović Z, Milanović SD, Hochbichler E, Kirisits T, Immitzer M, Čermák P, Pokorný R, Jankovský L, Jaafari A. Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data. Sustainability. 2023; 15(6):5269. https://doi.org/10.3390/su15065269
Chicago/Turabian StyleMilanović, Slobodan, Zoran Trailović, Sladjan D. Milanović, Eduard Hochbichler, Thomas Kirisits, Markus Immitzer, Petr Čermák, Radek Pokorný, Libor Jankovský, and Abolfazl Jaafari. 2023. "Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data" Sustainability 15, no. 6: 5269. https://doi.org/10.3390/su15065269
APA StyleMilanović, S., Trailović, Z., Milanović, S. D., Hochbichler, E., Kirisits, T., Immitzer, M., Čermák, P., Pokorný, R., Jankovský, L., & Jaafari, A. (2023). Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data. Sustainability, 15(6), 5269. https://doi.org/10.3390/su15065269