Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Thematic Layer
3.2. Assignment of Weights and Rankings
4. Results and Discussion
4.1. Geomorphology
4.2. Land Use/Land Cover (LULC)
4.3. Lineament Density
4.4. Geology
4.5. Soil
4.6. Drainage Density
4.7. Rainfall
4.8. Slope
4.9. Groundwater-Potential Zones
4.10. Validation of Obtained Groundwater-Potential Zones
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, M.; Paul, P.K. Quantification of groundwater resource of Kandi subdivision of Murshidabad district, West Bengal. Environ. Dev. Sustain. 2020, 22, 5849–5871. [Google Scholar] [CrossRef]
- Mukherjee, S. Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur-Kanpur, India. Hydrogeol. J. 1996, 19, e64. [Google Scholar]
- Kanagaraj, G.; Suganthi, S.; Elango, L.; Magesh, N.S. Assessment of groundwater potential zones in Vellore district, Tamil Nadu, India using geospatial techniques. Earth Sci. Inform. 2019, 12, 211–223. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K.N.; Singh, S.K.; Varade, A.M. An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India. Environ. Dev. Sustain. 2020, 22, 4867–4887. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Velis, M.; Conti, K.I.; Biermann, F. Groundwater and human development: Synergies and trade-offs within the context of the sustainable development goals. Sustain. Sci. 2017, 12, 1007–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mall, R.K.; Gupta, A.; Singh, R.; Singh, R.S.; Rathore, L.S. Water resources and climate change: An Indian perspective. Curr. Sci. 2006, 90, 1610–1626. [Google Scholar]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Pal, S.C. Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal, India. Environ. Dev. Sustain. 2020, 22, 5905–5923. [Google Scholar] [CrossRef]
- Saba, U.S.; Umar, R. Identification of the processes controlling groundwater quality in shallow aquifers of Moradabad city, west Uttar Pradesh, India. Environ. Dev. Sustain. 2021, 23, 12994–13015. [Google Scholar] [CrossRef]
- Boughariou, E.; Allouche, N.; Ben Brahim, F.; Nasri, G.; Bouri, S. Delineation of groundwater potentials of Sfax region, Tunisia, using fuzzy analytical hierarchy process, frequency ratio, and weights of evidence models. Environ. Dev. Sustain. 2021, 23, 14749–14774. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Sedghamiz, A. Geostatistical Analysis of Spatial and Temporal Variations of Groundwater Level. Environ. Monit. Assess. 2007, 129, 277–294. [Google Scholar] [CrossRef]
- Kanoua, W.; Merkel, B.J. Groundwater recharge in Titas Upazila in Bangladesh. Arab. J. Geosci. 2015, 8, 1361–1371. [Google Scholar] [CrossRef]
- Rashid, M.; Lone, M.A.; Ahmed, S. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Environ. Monit. Assess. 2012, 184, 4829–4839. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.T.; Rao, V.V.S.; Padalu, G.; Dhakate, R.; Sarma, V.S. Application of electrical resistivity tomography methods for delineation of groundwater contamination and potential zones. Arab. J. Geosci. 2014, 7, 1373–1384. [Google Scholar] [CrossRef]
- Nugraha, G.U.; Nur, A.A.; Pranantya, P.A.; Lubis, R.F.; Bakti, H. Analysis of groundwater potential zones using Dar-Zarrouk parameters in Pangkalpinang city, Indonesia. Environ. Dev. Sustain. 2002, 25, 1–23. [Google Scholar] [CrossRef]
- Masoud, M.H.Z.; Basahi, J.M.; Zaidi, F.K. Assessment of artificial groundwater recharge potential through estimation of permeability values from infiltration and aquifer tests in unconsolidated alluvial formations in coastal areas. Environ. Monit. Assess. 2019, 191, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, C. Application of different aquifer parameters for groundwater potential evaluation—Implications for resources development. Arab. J. Geosci. 2020, 13, 752. [Google Scholar] [CrossRef]
- Maity, D.K.; Mandal, S. Identification of groundwater potential zones of the Kumari river basin, India: An RS & GIS based semi-quantitative approach. Environ. Dev. Sustain. 2019, 21, 1013–1034. [Google Scholar]
- Surinaidu, L.; Rahman, A.; Ahmed, S. Distributed groundwater recharge potentials assessment based on GIS model and its dynamics in the crystalline rocks of South India. Sci. Rep. 2021, 11, 1–16. [Google Scholar]
- Magesh, N.S.; Chandrasekar, N.; Soundranayagam, J.P. Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: A GIS approach. Environ. Earth Sci. 2011, 64, 373–381. [Google Scholar] [CrossRef]
- Jaafarzadeh, M.S.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Rouhani, H. Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. Sci. Rep. 2021, 11, 5587. [Google Scholar] [CrossRef] [PubMed]
- Sahani, N. Application of analytical hierarchy process and GIS for ecotourism potentiality mapping in Kullu District, Himachal Pradesh, India. Environ. Dev. Sustain. 2020, 22, 6187–6211. [Google Scholar] [CrossRef]
- Hinton, J.C. GIS and remote sensing integration for environmental applications. Int. J. Geogr. Inf. Syst. 1996, 10, 877–890. [Google Scholar] [CrossRef]
- Jha, M.K.; Chowdhury, A.; Chowdary, V.M.; Peiffer, S. Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resour. Manag. 2007, 21, 427–467. [Google Scholar] [CrossRef]
- Gnanachandrasamy, G.; Zhou, Y.; Bagyaraj, M.; Venkatramanan, S.; Ramkumar, T.; Wang, S. Remote Sensing and GIS Based Groundwater Potential Zone Mapping in Ariyalur District, Tamil Nadu. J. Geol. Soc. India 2018, 92, 484–490. [Google Scholar] [CrossRef]
- Arulbalaji, P.; Padmalal, D.; Sreelash, K. GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: A case study from Southern Western Ghats, India. Sci. Rep. 2019, 9, 2082. [Google Scholar] [CrossRef] [Green Version]
- Ayyandurai, R.; Venkateswaran, S.; Karunanidhi, D. Hydrogeochemical assessment of groundwater quality and suitability for irrigation in the coastal part of Cuddalore district, Tamil Nadu, India. Mar. Pollut. Bull. 2022, 174, 113258. [Google Scholar] [CrossRef]
- Chockalingam, K.; Mohan, R.; Palusamy, A. Hydro geochemical study of groundwater in eastern part of Vellar River, Chidambaram Taluk, Cuddalore District, Tamil Nadu. Arab. J. Geosci. 2021, 14, 1128. [Google Scholar] [CrossRef]
- Sajil Kumar, P.J.; Jose, A.; James, E.J. Spatial and Seasonal Variation in Groundwater Quality in Parts of Cuddalore District, South India. Natl. Acad. Sci. Lett. 2013, 36, 167–179. [Google Scholar] [CrossRef]
- Chidambaram, S.; Sarathidasan, J.; Srinivasamoorthy, K.; Thivya, C.; Thilagavathi, R.; Prasanna, M.V.; Singaraja, C.; Nepolian, M. Assessment of hydrogeochemical status of groundwater in a coastal region of Southeast coast of India. Appl. Water Sci. 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Kumar, X.R.A.; Giridharan, L.; Shyamala, J.; Velmurugan, P.; Jayaprakash, M. Urbanisation impact of groundwater quality in Cuddalore District, East Coast of India. J. Environ. Chem. Ecotoxicol. 2013, 5, 63–73. [Google Scholar]
- Srinivasamoorthy, K.; Vasanthavigar, M.; Vijayaraghavan, K.; Sarathidasan, R.; Gopinath, S. Hydrochemistry of groundwater in a coastal region of Cuddalore district, Tamilnadu, India: Implication for quality assessment. Arab. J. Geosci. 2013, 6, 441–454. [Google Scholar] [CrossRef]
- Jeevanandam, M.; Nagarajan, R.; Manikandan, M.; Senthilkumar, M.; Srinivasalu, S.; Prasanna, M.V. Hydrogeochemistry and microbial contamination of groundwater from Lower Ponnaiyar Basin, Cuddalore District, Tamil Nadu, India. Environ. Earth Sci. 2012, 67, 867–887. [Google Scholar] [CrossRef]
- Srinivasamoorthy, K.; Vasanthavigar, M.; Chidambaram, S.; Anandhan, P.; Sarma, V.S. Characterisation of groundwater chemistry in an eastern coastal area of Cuddalore district, Tamil Nadu. J. Geol. Soc. India 2011, 78, 549–558. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Ramanathan, A.L.; Nainwal, H.C.; Chidambaram, S. Evaluation of the hydro geochemistry of groundwater using factor analysis in the Cuddalore coastal region, Tamil Nadu, India. Int. J. Mol. Sci. 2008, 37, 181–185. [Google Scholar]
- Jeevanandam, M.; Kannan, R.; Srinivasalu, S.; Rammohan, V. Hydrogeochemistry and Groundwater Quality Assessment of Lower Part of the Ponnaiyar River Basin, Cuddalore District, South India. Environ. Monit. Assess. 2007, 132, 263–274. [Google Scholar] [CrossRef]
- Chawla, D.; Jacob, N.; Mohokar, H.V. Identification of groundwater discharge in Cuddalore coast, Tamil Nadu using radium isotopes. J. Radioanal. Nucl. Chem. 2014, 300, 29–32. [Google Scholar] [CrossRef]
- Sonkamble, S. Electrical resistivity and hydrochemical indicators distinguishing chemical characteristics of subsurface pollution at Cuddalore coast, Tamil Nadu. J. Geol. Soc. India 2014, 83, 535–548. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Ramanathan, A.L.; Nainwal, H.C.; Chidambarm, S. Hydrogeophysical investigation of groundwater in Cuddalore coastal area, Tamilnadu, India. Geosciences 2012, 2, 133–139. [Google Scholar]
- Ayyandurai, R.; Venkateswaran, S. Appraisal of groundwater potential zonation mapping in coastal track of Cuddalore district using geospatial techniques in Tamil Nadu India. Indian J. Ecol. 2021, 48, 1011–1018. [Google Scholar]
- Dinagaran, V. District Groundwater Brochure Cuddalore District, Tamil Nadu Government of India Ministry of Water Resources Central Ground Water Board South Eastern Coastal Region Chennai. Tech. Rep. Ser. 2009. [Google Scholar]
- Prasanna, M.V.; Chidambaram, S.; Senthil Kumar, G.; Ramanathan, A.L.; Nainwal, H.C. Hydrogeochemical assessment of groundwater in Neyveli Basin, Cuddalore District, South India. Arab. J. Geosci. 2011, 4, 319–330. [Google Scholar] [CrossRef]
- Anbarasu, S.; Brindha, K.; Elango, L. Multi-influencing factor method for delineation of groundwater potential zones using remote sensing and GIS techniques in the western part of Perambalur district, southern India. Earth Sci. Inform. 2020, 13, 317–332. [Google Scholar] [CrossRef]
- Kumar, V.A.; Mondal, N.C.; Ahmed, S. Identification of Groundwater Potential Zones Using RS, GIS and AHP Techniques: A Case Study in a Part of Deccan Volcanic Province (DVP), Maharashtra, India. J. Indian Soc. Remote Sens. 2020, 48, 497–511. [Google Scholar] [CrossRef]
- Saravanan, S.; Saranya, T.; Abijith, D.; Jacinth, J.J.; Singh, L. Delineation of groundwater potential zones for Arkavathi sub-watershed, Karnataka, India using remote sensing and GIS. Environ. Challenges 2021, 5, 100380. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, P.; Singh, P. Integrating GIS and remote sensing for delineation of groundwater potential zones in Bundelkhand Region, India. Egypt. J. Remote Sens. Space Sci. 2022, 25, 387–404. [Google Scholar] [CrossRef]
- Dar, T.; Rai, N.; Bhat, A. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol. Ecol. Landsc. 2021, 5, 292–307. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Rajasekhar, M.; Raju, G.S.; Sreenivasulu, Y.; Raju, R.S. Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. Hydroresearch 2019, 2, 97–108. [Google Scholar] [CrossRef]
- Mohammadi-Behzad, H.R.; Charchi, A.; Kalantari, N.; Nejad, A.M.; Vardanjani, H.K. Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: A case study in the Leylia–Keynow watershed, southwest of Iran. Carbonates Evaporites 2019, 34, 1307–1319. [Google Scholar] [CrossRef]
- Al-Djazouli, M.O.; Elmorabiti, K.; Rahimi, A.; Amellah, O.; Fadil, O.A.M. Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: A case of Waddai, eastern Chad. Geojournal 2021, 86, 1881–1894. [Google Scholar] [CrossRef]
- Karanth, K.R. Ground Water Assessment: Development and Management; Tata McGraw-Hill Education: New York, NY, USA, 1987. [Google Scholar]
- Machiwal, D.; Jha, M.K.; Mal, B.C. Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques. Water Resour. Manag. 2011, 25, 1359–1386. [Google Scholar] [CrossRef]
- Saranya, T.; Saravanan, S. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Model. Earth Syst. Environ. 2020, 6, 1105–1122. [Google Scholar] [CrossRef]
- Arunbose, S.; Srinivas, Y.; Rajkumar, S.; Nair, N.C.; Kaliraj, S. Remote sensing, GIS and AHP techniques based investigation of groundwater potential zones in the Karumeniyar river basin, Tamil Nadu, southern India. Groundw. Sustain. Dev. 2021, 14, 100586. [Google Scholar] [CrossRef]
- Rajesh, J.; Pande, C.B.; Kadam, S.A.; Gorantiwar, S.D.; Shinde, M.G. Exploration of groundwater potential zones using analytical hierarchical process (AHP) approach in the Godavari river basin of Maharashtra in India. Appl. Water Sci. 2021, 11, 182. [Google Scholar] [CrossRef]
- Ibrahim-Bathis, K.; Ahmed, S.A. Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Bhadran, A.; Girishbai, D.; Jesiya, N.; Gopinath, G.; Krishnan, R.G.; Vijesh, V. A GIS based Fuzzy-AHP for delineating groundwater potential zones in tropical river basin, southern part of India. Geosyst. Geoenviron. 2022, 1, 100093. [Google Scholar] [CrossRef]
- Raju, R.S.; Raju, G.S.; Rajasekhar, M. Identification of groundwater potential zones in Mandavi River basin, Andhra Pradesh, India using remote sensing, GIS and MIF techniques. Hydroresearch 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Golla, V.; Etikala, B.; Veeranjaneyulu, A.; Subbarao, M.; Surekha, A.; Narasimhlu, K. Data sets on delineation of groundwater potential zones identified by geospatial tool in Gudur area, Nellore district, Andhra Pradesh, India. Data Brief 2018, 20, 1984–1991. [Google Scholar] [CrossRef]
- Hussein, A.-A.; Govindu, V.; Nigusse, A.G.M. Evaluation of groundwater potential using geospatial techniques. Appl. Water Sci. 2017, 7, 2447–2461. [Google Scholar] [CrossRef] [Green Version]
- Ghasemizadeh, R.; Hellweger, F.; Butscher, C.; Padilla, I.; Vesper, D.; Field, M.; Alshawabkeh, A. Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol. J. 2012, 20, 1441–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senapati, U.; Das, T.K. GIS-based comparative assessment of groundwater potential zone using MIF and AHP techniques in Cooch Behar district, West Bengal. Appl. Water Sci. 2022, 12, 43. [Google Scholar] [CrossRef]
- Sener, E.; Davraz, A. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol. J. 2013, 21, 701–714. [Google Scholar] [CrossRef]
- Doke, A.B.; Zolekar, R.B.; Patel, H.; Das, S. Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hardrock basaltic terrain in India. Ecol. Indic. 2021, 127, 107685. [Google Scholar] [CrossRef]
- Muniraj, K.; Jesudhas, C.J.; Chinnasamy, A. Delineating the Groundwater Potential Zone in Tirunelveli Taluk, South Tamil Nadu, India, Using Remote Sensing, Geographical Information System (GIS) and Analytic Hierarchy Process (AHP) Techniques. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2020, 90, 661–676. [Google Scholar] [CrossRef]
- Kaliraj, S.; Chandrasekar, N.; Magesh, N.S. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab. J. Geosci. 2014, 7, 1385–1401. [Google Scholar] [CrossRef]
- Singh, P.; Gupta, A.; Singh, M. Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. Egypt. J. Remote Sens. Space Sci. 2014, 17, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, J.; Mani, A.; Jayaraman, V.; Manivel, M. Groundwater resources development in hard rock terrain—An approach using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 204–215. [Google Scholar] [CrossRef]
- Shailaja, G.; Kadam, A.K.; Gupta, G.; Umrikar, B.N.; Pawar, N.J. Integrated geophysical, geospatial and multiple-criteria decision analysis techniques for delineation of groundwater potential zones in a semi-arid hard-rock aquifer in Maharashtra, India. Hydrogeol. J. 2019, 27, 639–654. [Google Scholar] [CrossRef]
- Venkateswaran, S.; Deepa, S. Assessment of Groundwater Quality using GIS Techniques in Vaniyar Watershed, Ponnaiyar River, Tamil Nadu. Aquat. Procedia 2015, 4, 1283–1290. [Google Scholar] [CrossRef]
- Das, S. Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundw. Sustain. Dev. 2019, 8, 617–629. [Google Scholar] [CrossRef]
- Abuzied, S.M.; Yuan, M.; Ibrahim, S.K.; Kaiser, M.F.; Seleem, T.A. Delineation of Groundwater Potential Zones in Nuweiba Area (Egypt) Using Remote Sensing and GIS Techniques. Int. J. Signal Process. Syst. 2016, 4, 109–117. [Google Scholar] [CrossRef]
- Agarwal, E.; Agarwal, R.; Garg, R.D.; Garg, P.K. Delineation of groundwater potential zone: An AHP/ANP approach. J. Earth Syst. Sci. 2013, 122, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, N.; Poongothai, S. Delineation of Groundwater Potential Zones in Lower Ponnaiyar Rural Watershed, Cuddalore District, Tamilnadu, India. Int. J. Civ. Eng. 2017, 6, 15–26. [Google Scholar]
- Gupta, D.; Yadav, S.; Tyagi, D.; Tomar, L. Multi-criteria decision analysis for identifying of groundwater potential sites in Haridwar, India. Eng. J. Appl. Scopes 2018, 3, 9–15. [Google Scholar]
- Raj, S.; Rawat, K.S.; Singh, S.K.; Mishra, A.K. Groundwater potential zones identification and validation in Peninsular India. Geol. Ecol. Landsc. 2022, 1–15. [Google Scholar] [CrossRef]
- Patra, S.; Mishra, P.; Mahapatra, S.C. Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J. Clean. Prod. 2018, 172, 2485–2502. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; University of South Carolina: Columbus, OH, USA, 1986. [Google Scholar]
- Usman, M.; Liedl, R.; Shahid, M.A.; Abbas, A. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. J. Geogr. Sci. 2015, 25, 1479–1506. [Google Scholar] [CrossRef]
Thematic Maps | GM | LULC | LD | GE | SM | DD | RF | SL |
---|---|---|---|---|---|---|---|---|
GM | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
LULC | 1/2 | 1 | 2 | 2 | 3 | 3 | 4 | 5 |
LD | 1/2 | 1/2 | 1 | 2 | 2 | 4 | 5 | 6 |
GE | 1/3 | 1/2 | 1/2 | 1 | 2 | 3 | 4 | 4 |
SM | 1/4 | 1/3 | 1/3 | 1/2 | 1 | 2 | 3 | 3 |
DD | 1/4 | 1/3 | 1/4 | 1/3 | 1/2 | 1 | 2 | 2 |
RF | 1/5 | 1/4 | 1/5 | 1/4 | 1/3 | ½ | 1 | 2 |
SL | 1/5 | 1/5 | 1/5 | 1/4 | 1/3 | ½ | 1/2 | 1 |
Thematic Maps | GM | LULC | LD | GE | SM | DD | RF | SL | Weightage | CR |
---|---|---|---|---|---|---|---|---|---|---|
GM | 0.309 | 0.391 | 0.310 | 0.321 | 0.304 | 0.222 | 0.204 | 0.179 | 0.280 | 0.02 |
LULC | 0.155 | 0.195 | 0.310 | 0.214 | 0.228 | 0.167 | 0.163 | 0.179 | 0.201 | |
LD | 0.155 | 0.098 | 0.155 | 0.214 | 0.152 | 0.222 | 0.204 | 0.214 | 0.177 | |
GE | 0.103 | 0.098 | 0.078 | 0.107 | 0.152 | 0.167 | 0.163 | 0.143 | 0.126 | |
SM | 0.077 | 0.065 | 0.052 | 0.054 | 0.076 | 0.111 | 0.122 | 0.107 | 0.083 | |
DD | 0.077 | 0.065 | 0.039 | 0.036 | 0.038 | 0.056 | 0.082 | 0.071 | 0.058 | |
RF | 0.062 | 0.049 | 0.031 | 0.027 | 0.025 | 0.028 | 0.041 | 0.071 | 0.042 | |
SL | 0.062 | 0.039 | 0.026 | 0.027 | 0.025 | 0.028 | 0.020 | 0.036 | 0.033 |
Factor | Weightage | Classes | Rating |
---|---|---|---|
Geomorphology | 28.006 | Alluvial Plain | 13.872 |
Coastal Plain | 7.254 | ||
Flood Plain | 3.839 | ||
Pediplain | 2.015 | ||
Upland | 1.026 | ||
Land use and Land cover | 20.136 | Water bodies | 9.974 |
Sandy Area | 5.215 | ||
Plantaion | 2.760 | ||
Forest | 1.449 | ||
Built up land | 0.738 | ||
Lineament Density (km/km2) | 17.678 | 2.13–1.71 | 8.756 |
1.70–1.29 | 4.579 | ||
1.28–0.09 | 2.423 | ||
0.08–0.05 | 1.272 | ||
0.04–0 | 0.648 | ||
Geology | 12.627 | Sand, clay and shells | 7.424 |
Clay and sandstone | 3.378 | ||
Clay | 1.825 | ||
Soil | 8.305 | Inceptisols | 4.536 |
Entisols | 2.170 | ||
Aflisols | 1.110 | ||
Vertisols | 0.489 | ||
Drainage Density (km/km2) | 5.794 | 0–0.48 | 2.870 |
0.49–0.86 | 1.501 | ||
0.87–1.20 | 0.794 | ||
1.21–1.55 | 0.417 | ||
1.56–2.39 | 0.212 | ||
Rainfall (mm) | 4.173 | >1200 | 2.067 |
1200–1151 | 1.081 | ||
1150–1101 | 0.572 | ||
1100–1001 | 0.300 | ||
<1000 | 0.153 | ||
Slope | 3.284 | 0–1.34° | 1.627 |
1.35–2.68° | 0.851 | ||
2.69–4.69° | 0.450 | ||
4.70–10.20° | 0.236 | ||
10.21–34.23° | 0.120 |
S. No | GWP | Very Good | Good | Moderate | Poor | Very Poor | Total | Correct Samples |
---|---|---|---|---|---|---|---|---|
1 | Very Good | 8 | 1 | 0 | 0 | 0 | 9 | 8 |
2 | Good | 1 | 4 | 0 | 1 | 1 | 7 | 4 |
3 | Moderate | 0 | 0 | 5 | 1 | 1 | 7 | 5 |
4 | Poor | 0 | 0 | 0 | 5 | 1 | 6 | 5 |
5 | Very Poor | 0 | 1 | 0 | 0 | 5 | 6 | 5 |
Total | 9 | 6 | 5 | 7 | 8 | 35 | 27 | |
Overall accuracy | 77.14% | |||||||
Kappa coefficient | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathiyamoorthy, M.; Masilamani, U.S.; Chadee, A.A.; Golla, S.D.; Aldagheiri, M.; Sihag, P.; Rathnayake, U.; Patidar, J.; Shukla, S.; Singh, A.K.; et al. Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques. Sustainability 2023, 15, 5339. https://doi.org/10.3390/su15065339
Sathiyamoorthy M, Masilamani US, Chadee AA, Golla SD, Aldagheiri M, Sihag P, Rathnayake U, Patidar J, Shukla S, Singh AK, et al. Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques. Sustainability. 2023; 15(6):5339. https://doi.org/10.3390/su15065339
Chicago/Turabian StyleSathiyamoorthy, Mahenthiran, Uma Shankar Masilamani, Aaron Anil Chadee, Sreelakhmi Devi Golla, Mohammed Aldagheiri, Parveen Sihag, Upaka Rathnayake, Jyotendra Patidar, Shivansh Shukla, Aryan Kumar Singh, and et al. 2023. "Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques" Sustainability 15, no. 6: 5339. https://doi.org/10.3390/su15065339
APA StyleSathiyamoorthy, M., Masilamani, U. S., Chadee, A. A., Golla, S. D., Aldagheiri, M., Sihag, P., Rathnayake, U., Patidar, J., Shukla, S., Singh, A. K., Kumar, B., & Martin, H. (2023). Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques. Sustainability, 15(6), 5339. https://doi.org/10.3390/su15065339