Study on the Adsorption Characteristics of Calcareous Sand for Pb(II), Cu(II) and Cd(II) in Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Batch Tests
3. Results and Discussion
3.1. Influence of the Solid–Liquid Ratio on the Removal Rate
3.2. Influence of the Initial pH0 on the Removal Rate
- (1)
- In the solution with lower pH, the H+ content is high. H+ has a stronger adsorption point binding ability than heavy metal ions. H+ competes and occupies more adsorption sites. At the same time, some calcium sand is dissolved by acid at low pH, resulting in a decrease in the removal rate.
- (2)
- Due to the difference in the attractive force of the active sites such as -CO32− and -Ca2+, -Mg2+, for H+ or OH− in aqueous solution, a certain charge exists. When the pH of the solution is low, due to protonation, there is a large amount of H+ resulting ina positive charge. A strong repulsion exists between Pb2+, which is not favorable for adsorption; as the pH increases, the surface of the calcareous sand deprotonates, the proton concentration decreases, and the positive charge on the surface is reduced, which reduces the competitive adsorption of H+ and surface complexes on metal ions. These conditions are favorable for adsorption and tend to increase the adsorption quantity [4,37].
- (3)
- The slight increase in pH after the reaction is caused by the surface complexation reaction and the consumption of H+ by the calcium components [5].
3.3. Influence of Ionic Strength on the Removal Rate
3.4. Adsorption Kinetics Characteristics
3.5. Isothermal Adsorption Characteristics
3.6. Adsorption Thermodynamic Characteristics
4. Conclusions
- (1)
- The initial pH and the solid–liquid ratio have a significant influence on the removal efficiency. At T = 30 °C, r = 1.0 g/L, and C0 = 1000 mg/L and for 12 h of reaction time, the removal efficiencies of Pb(II), Cu(II) and Cd(II) are 97.6%, 88.15% and 65.72%, respectively.
- (2)
- The optimal adsorption pH of calcareous sand is between 3.5 and 5.0. Strong acids and higher temperatures are not favorable for the adsorption by calcareous sand. As the ionic strength increases, the adsorption ability of calcareous sand decreases.
- (3)
- At 60 min, the adsorption quantity reaches 80% of the maximum adsorption quantity, and the equilibrium can be reached within 120 min. The pseudo-second-order kinetic model is suitable to simulate the dynamic adsorption process of calcareous sand, and the isothermal process is found to obey the Langmuir model.
- (4)
- Thermodynamic test results indicate that the adsorption process is spontaneously exothermic and that low temperature is favorable to the adsorption reaction.
- (5)
- Calcareous sand has a very high adsorption capacity for Pb(II), Cu(II) and Cd(II), with a maximum adsorption quantity Qm of 1052.95 mg/g, 1329.84 mg/g and 1050.56 mg/g, respectively, indicating that calcareous sand can be used as a potential adsorbent for wastewater treatment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, C.K. Analysis of present situation about lead pollution in China. Environ. Sustain. Dev. 2017, 42, 91–92. [Google Scholar]
- Lin, B.L.; Wu, L.L.; Cui, S.; Shen, X.D.; Zhang, X.Z.; Zhou, Y. Research progress of novel adsorbents of heavy metal ions. Mater. Rev. 2015, 29, 18–23. [Google Scholar]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Zhang, L.L. Adsorption behaviors of heavy metal Pb(II) on clay. Chin. J. Geotech. Eng. 2012, 34, 1584–1589. [Google Scholar]
- Zhang, J.L.; Liu, D.W.; Yang, Q. Adsorption behaviors of bone char to heavy metal Pb(II). Chin. J. Environ. Eng. 2014, 8, 1784–1790. [Google Scholar]
- Zhang, J.L.; Li, Y. Adsorption behaviors of lead on multi-walled carbon nanotube-hydroxyapatite composites. Environ. Sci. 2015, 36, 2554–2563. [Google Scholar]
- Shi, Y.T.; Zhang, J.L.; Yang, Q. Adsorption behaviors of Pb(II) on white pottery clay. J. Dalian Univ. Technol. 2016, 56, 396–405. [Google Scholar]
- Li, Z.Z.; Tang, X.W.; Chen, Y.M.; Wang, Y. Sorption behavior and mechanism of Pb(II) on Chinese loess. J. Environ. Eng. 2009, 135, 58–67. [Google Scholar] [CrossRef]
- Saha, P.; Datta, S.; Sanyal, S.K. Application of natural clayey soil as adsorbent for the removal of copper from wastewater. J. Environ. Eng. 2010, 136, 1409–1417. [Google Scholar] [CrossRef]
- Abdel-Halim, S.H.; Shehata, A.M.A.; El-Shahat, M.F. Removal of lead ions from industrial waste water by different types of natural materials. Water Res. 2003, 37, 1678–1683. [Google Scholar] [CrossRef]
- Singh, S.P.; Ma, L.Q.; Hendry, M.J. Characterization of aqueous lead removal by phosphatic clay: Equilibrium and kinetic studies. J. Hazard. Mater. 2006, 136, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.G.A.; Neto, A.F.A.; Gimenes, M.L.; Silva, M.G.C. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J. Hazard. Mater. 2010, 177, 362–371. [Google Scholar] [CrossRef]
- Priyantha, N.; Bandaranayaka, A. Investigation of kinetics of Cr(VI)-fired brick clay interaction. J. Hazard. Mater. 2011, 188, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Djukić, A.; Jovanović, U.; Tuvić, T.; Andrić, V.; Novaković, J.G.; Ivanović, N.; Matovića, L. The potential of ball-milled Serbian natural clay for removal of heavy metal contaminants from wastewaters: Simultaneous sorption of Ni, Cr, Cd and Pb ions. Ceram. Int. 2013, 39, 7173–7178. [Google Scholar] [CrossRef]
- Du, Y.J.; Hayashi, S. A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material. Appl. Clay Sci. 2006, 32, 14–24. [Google Scholar] [CrossRef]
- Mouni, L.; Merabet, D.; Robert, D.; Bouzaza, A. Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ onto Amizour soil (Algeria). Geoderma 2009, 154, 30–35. [Google Scholar] [CrossRef]
- Waseem, M.; Mustafa, S.; Naeem, A.; Shah, K.H.; Shah, I. Mechanism of Cd (II) sorption on silica synthesized by sol-gel method. Chem. Eng. J. 2011, 169, 78–83. [Google Scholar] [CrossRef]
- Putz, A.M.; Ivankov, O.I.; Kuklin, A.I.; Ryukhtin, V.; Ianasi, C.; Ciopec, M.; Negrea, A.; Trif, L.; Horvath, Z.E.; Almasy, L. Ordered mesoporous silica prepared in different solvent conditions: Application for Cu(II) and Pb(II) adsorption. Gels 2022, 8, 443. [Google Scholar] [CrossRef]
- Habte, L.; Shiferaw, N.; Khan, M.D.; Thriveni, T.; Ahn, J.W. Sorption of Cd2+ and Pb2+ on aragonite synthesized from eggshell. Sustainability 2020, 12, 1174. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.N.; Le, P.H.P.; Pham, D.N.P.; Hoang, T.H.; Nadda, A.K.; Le, T.S.; Pham, T.D. Highly adsorptive protein inorganic nanohybrid of Moringa seeds protein and rice husk nanosilica for effective adsorption of pharmaceutical contaminants. Chemosphere 2022, 307, 135856. [Google Scholar] [CrossRef]
- Truong, T.T.; Le, T.H.; Pham, T.D. Adsorption characteristics of Copper (II) ion on Cu-doped ZnO nanomaterials based on green synthesis from Piper chaudocanm, L. leaves extract. Colloid Polym. Sci. 2022, 300, 1343–1354. [Google Scholar] [CrossRef]
- Selmy, S.A.H. Inorganic and organic ligands induced changes in Pb sorption of arid clay and calcareous loamy sand soils. Arch. Agron. Soil Sci. 2018, 64, 1582–1594. [Google Scholar] [CrossRef]
- Elbana, T.A.; Selim, H.M. Lead mobility in calcareous soils: Influence of cadmium and copper. Soil Sci. 2013, 178, 417–424. [Google Scholar] [CrossRef]
- Lv, B.F.; Yu, W.J.; Luo, J.L.; Qian, B.; Asefa, M.B.; Li, N. Study on the adsorption mechanism of graphene oxide by calcareous sand in South China Sea. Adsorpt. Sci. Technol. 2021, 2021, 2227570. [Google Scholar] [CrossRef]
- Salzman, S.A.; Allinson, G.; Stagnitti, F.; Hill, R.J.; Thwaites, L.; Ierodiaconou, D.; Carr, R.; Sherwood, J.; Versace, V. Adsorption and desorption characteristics of fluoride in the calcareous and siliceous sand sheet aquifers of south-west Victoria, Australia. WIT Trans. Ecol. Environ. 2008, 111, 159–174. [Google Scholar]
- Ranjbar, F.; Jalali, M. Measuring and modeling ammonium adsorption by calcareous soils. Environ. Monit. Assess. 2013, 185, 3191–3199. [Google Scholar] [CrossRef] [PubMed]
- Baghenejad, M.; Javaheri, F.; Moosavi, A.A. Adsorption isotherms of some heavy metals under conditions of their competitive adsorption onto highly calcareous soils of southern Iran. Arch. Agron. Soil Sci. 2016, 62, 1462–1473. [Google Scholar] [CrossRef] [Green Version]
- Ghiri, M.N.; Rezaei, M.; Sameni, A. Zinc sorption-desorption by sand, silt and clay fractions in calcareous soils of Iran. Arch. Agron. Soil Sci. 2012, 58, 945–957. [Google Scholar] [CrossRef]
- Moharami, S.; Jalali, M. Effects of cations and anions on iron and manganese sorption and desorption capacity in calcareous soils from Iran. Environ. Earth Sci. 2013, 68, 847–858. [Google Scholar] [CrossRef]
- Mashal, K.; Al-Degs, Y.S.; Al-Qinna, M.; Salahat, M. Elucidation of phosphorous sorption by calcareous soils using principal component analysis. Chem. Ecol. 2014, 30, 133–146. [Google Scholar] [CrossRef]
- Ouachtak, H.; Akhouairi, S.; Addi, A.A.; Akbour, R.A.; Jada, A.; Douch, J.; Hamdani, M. Mobility and retention of phenolic acids through a goethite-coated quartz sand column. Colloids Surf. A 2018, 546, 9–19. [Google Scholar] [CrossRef]
- Ouachtak, H.; Akhouairi, S.; Haounati, R.; Addi, A.A.; Jada, A.; Taha, M.L.; Douch, J. 3, 4-Dihydroxybenzoic acid removal from water by goethite modified natural sand column fixed-bed: Experimental study and mathematical modeling. Desalin. Water Treat. 2020, 194, 439–449. [Google Scholar] [CrossRef]
- Chen, H.Y. Study on the Inner Pore in Calcareous Sand; Graduate School of the Chinese Academy of Sciences, Wuhan Institute of Rock and Soil Mechanics: Wuhan, China, 2005. [Google Scholar]
- Lv, B.L. Engineering parameters of calcareous coral sand. Constr. Technol. 2015, 44, 146–148. [Google Scholar]
- Balasubramanian, R.; Perumal, S.V.; Vijayaraghavan, K. Equilibrium isotherm studies for the multicomponent adsorption of Lead, Zinc, and Cadmium onto Indonesian peat. Ind. Eng. Chem. Res. 2009, 48, 2093–2099. [Google Scholar] [CrossRef]
- Montazer-Rahmati, M.M.; Rabbani, P.; Abdolali, A.; Keshtkar, A.R. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J. Hazard. Mater. 2011, 185, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.H.; Lei, L.; He, H.; Jia, D.M. Study on the adsorption of copper ions by epichlorohydrin-crosslinked chitosan/sodium alginate adsorbent. J. South China Univ. Technol. Nat. Sci. 2012, 40, 148–154. [Google Scholar]
- Lützenkirchen, J. Ionic strength effects on cation sorption to oxides: Macroscopic observations and their significance in microscopic interpretation. J. Colloid Interface Sci. 1997, 195, 149–155. [Google Scholar] [CrossRef]
- Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem. 2005, 40, 3267–3275. [Google Scholar] [CrossRef]
- Liu, H.N.; Qing, B.J.; Ye, X.S.; Li, Q.; Lee, K.; Wu, Z.J. Boron adsorption by composite magnetic particles. Chem. Eng. J. 2009, 151, 235–240. [Google Scholar] [CrossRef]
- Wu, Z.J.; You, L.J.; Xiang, H.; Jiang, Y. Comparison of dye adsorption by mesoporous hybrid gels: Understanding the interactions between dyes and gel surfaces. J. Colloid Interface Sci. 2006, 303, 346–352. [Google Scholar] [CrossRef]
- Goldberg, S. Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. J. Colloid Interface Sci. 2005, 285, 509–517. [Google Scholar] [CrossRef]
- Wu, Z.J.; Liu, H.N.; Zhang, H.F. Research progress on mechanisms about the effect of ionic strength on adsorption. Environ. Chem. 2010, 29, 997–1003. [Google Scholar]
- Chen, C.; Wang, X. Sorption of Th(IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Appl. Radiat. Isot. 2007, 65, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.R.; Kulandaivel, A.; Mehrez, S.; Mahariq, I.; Elbadawy, I.; Mohanavel, V.; Jalil, A.T.; Saleh, M.M. Developing a high-performance electromagnetic microwave absorber using BaTiO3/CoS2/CNTs triphase hybrid. Ceram. Int. 2023, 49, 2557–2569. [Google Scholar] [CrossRef]
- Yang, Y.R.; Li, G.; Luo, T.; Al-Bahrani, M.; Al-Ammar, E.A.; Sillanpaa, M.; Ali, S.; Leng, X.J. The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks. Energy 2023, 268, 126548. [Google Scholar] [CrossRef]
- Yang, Y.R.; Logesh, K.; Mehrez, S.; Huynen, I.; Elbadawy, I.; Mohanavel, V.; Alamri, S. Rational construction of wideband electromagnetic wave absorber using hybrid FeWO4-based nanocomposite structures and tested by the free-space method. Ceram. Int. 2023, 49, 2130–2139. [Google Scholar] [CrossRef]
- Lin, F.F.; Yi, X.Y.; Dang, Z.; Zheng, L.C. Adsorption of Cd2+ and Pb2+ from aqueous solution by modified peanut shells. J. Agro Environ. Sci. 2011, 30, 1404–1408. [Google Scholar]
- Li, B.; Li, H.; Zhu, H.L.; Tian, R.; Gao, X.D. Dynamic light scattering of aggregation of colloids in yellow earth different in pH. Acta Pedol. Sin. 2013, 50, 89–95. [Google Scholar]
- Wu, H.H.; Wu, D.Q.; Peng, J.L. Experimental study on the surface reactions of heavy metal ion with calcite. Acta Petrol. Mineral. 1999, 18, 301–308. [Google Scholar]
- Ni, H.; Li, Y.L.; Cui, R.P.; Lu, Y.; Yang, G.D. Kinetics and thermodynamics of Cu2+ and Pb2+ adsorption from aqueous solutions onto dolomite adsorbent. Chin. J. Environ. Eng. 2016, 10, 3077–3083. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Seiichi, K.; Tatsuo, I.; Abe, Y. Adsorption Science, 2nd ed.; Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
- Conte, L.O.; Schenone, A.V.; Alfano, O.M. Photo-Fenton degradation of the herbicide 2, 4-D in aqueous medium at pH conditions close to neutrality. J. Environ. Manag. 2016, 170, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, S.; Janković-Castvan, I.; Tanasković, D.; Pavićević, V. Sorption of Pb2+, Cd2+, and Sr2+ ions on calcium hydroxyapatite powder obtained by the hydrothermal method. J. Environ. Eng. 2008, 134, 683–688. [Google Scholar] [CrossRef]
- Hu, Q.H.; Meng, Y.Y.; Sun, T.X.; Mahmood, Q.; Wu, D.L.; Zhu, J.H.; Lu, G. Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin. J. Hazard. Mater. 2011, 185, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.P.; Wang, Z.Z.; Liu, J.; Wu, Z.C. Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. J. Hazard. Mater. 2013, 260, 210–219. [Google Scholar] [CrossRef]
- Wibowo, E.; Rokhmat, M.; Khairurrijal, S.; Abdullah, M. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination 2017, 409, 146–156. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; da Silva, M.L.C.P. Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method. Desalination 2010, 263, 29–35. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, Y.X.; Liu, Q.; Huang, S.H.; Wu, X.Y.; Wang, Z.W.; Zhang, L.S.; Chi, R. Modified tailings of weathered crust elution-deposited rare earth ores as adsorbents for recovery of rare earth ions from solutions: Kinetics and thermodynamics studies. Miner. Eng. 2023, 191, 107937. [Google Scholar] [CrossRef]
Ion | Parameters | C0/(mg/L) | ||
---|---|---|---|---|
1000 | 1250 | 1500 | ||
Pb(II) | qe.exp/(mg/g) | 973.8 | 1014.1 | 1022.9 |
qe.cal/(mg/g) | 1043.2 | 1088.9 | 1103.6 | |
h/(mg/g/min) | 134.0 | 137.9 | 150.9 | |
k2 × 10−4/(g/mg/min) | 1.231 | 1.163 | 1.239 | |
R2 | 0.9996 | 0.9992 | 0.9996 | |
Cu(II) | qe.exp/(mg/g) | 894.56 | 986.63 | 1065.35 |
qe.cal/(mg/g) | 927.72 | 997.50 | 1085.74 | |
h/(mg/g/min) | 215.81 | 947.81 | 577.64 | |
k2 × 10−4/(g/mg/min) | 2.50 | 9.52 | 4.90 | |
R2 | 0.9999 | 0.9999 | 0.9998 | |
Cd(II) | qe.exp/(mg/g) | 657.3 | 729.71 | 795.53 |
qe.cal/(mg/g) | 676.72 | 752.38 | 818.18 | |
h/(mg/g/min) | 184.18 | 198.65 | 194.59 | |
k2 × 10−4/(g/mg/min) | 4.021 | 3.50 | 2.90 | |
R2 | 0.9999 | 0.9999 | 0.9995 |
Ion | Parameters | Temperature/(°C) | ||
---|---|---|---|---|
30 | 40 | 50 | ||
Pb(Ⅱ) | Qm/(mg/g) | 1052.95 | 1052.74 | 1050.41 |
b/(L/mg) | 0.315 | 0.116 | 0.421 | |
RL × 10−3 | 3.679 | 4.257 | 1.186 | |
R2 | 0.999 | 0.999 | 0.999 | |
Cu(Ⅱ) | Qm/(mg/g) | 1329.84 | 1289.01 | 1247.07 |
b/(L/mg) | 0.013 | 0.013 | 0.032 | |
RL × 10−3 | 0.037 | 0.036 | 0.015 | |
R2 | 0.997 | 0.995 | 0.995 | |
Cd(Ⅱ) | Qm/(mg/g) | 1050.56 | 892.59 | 841.93 |
b/(L/mg) | 0.004 | 0.016 | 0.009 | |
RL × 10−3 | 0.114 | 0.030 | 0.054 | |
R2 | 0.997 | 0.992 | 0.994 |
Ion | Parameters | T/(K) | C0/(mg/L) | ||||
---|---|---|---|---|---|---|---|
1000 | 1250 | 1500 | 1750 | 2000 | |||
Pb(II) | ∆G/(kJ/mol) | 303.15 | −9.12 | −3.68 | −2 | −1.01 | −0.32 |
313.15 | −8.51 | −3.71 | −1.99 | −0.97 | −0.26 | ||
323.15 | −8.17 | −3.71 | −1.97 | −0.96 | −0.18 | ||
∆S × 10−2/(J/mol/K) | 303.15 | −4.5 | 0.38 | 0.1 | −0.03 | −0.25 | |
313.15 | −4.55 | 0.38 | 0.09 | −0.05 | −0.27 | ||
323.15 | −4.52 | 0.36 | 0.08 | −0.05 | −0.29 | ||
∆H/(kJ/mol) | - | −22.76 | −2.54 | −1.7 | −1.12 | −1.09 | |
R2 | - | 0.999 | 0.999 | 0.999 | 0.979 | 0.997 | |
Cu(II) | ∆G/(kJ/mol) | 303.15 | −5.39 | −3.33 | −2.26 | −1.8 | −1.2 |
313.15 | −4.3 | −2.96 | −2.13 | −1.48 | −1.1 | ||
323.15 | −3.78 | −2.7 | −1.75 | −1.29 | −0.99 | ||
∆S × 10−2/(J/mol/K) | 303.15 | −0.07 | −0.02 | −0.02 | −0.01 | 0.01 | |
313.15 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | ||
323.15 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | ||
∆H/(kJ/mol) | - | −25.44 | −9.77 | −6.81 | −6.11 | −2.7 | |
R2 | - | 0.983 | 0.996 | 0.976 | 0.992 | 0.999 | |
Cd(II) | ∆G/(kJ/mol) | 303.15 | −1.64 | −0.85 | −0.31 | 0.08 | 0.47 |
313.15 | −1.54 | −0.66 | −0.09 | 0.26 | 0.8 | ||
323.15 | −1.5 | −0.57 | −0.02 | 0.4 | 0.92 | ||
∆S × 10−2/(J/mol/K) | 303.15 | −0.003 | −0.007 | −0.008 | −0.008 | −0.011 | |
313.15 | 0.005 | 0.002 | 0.001 | −0.001 | −0.003 | ||
323.15 | 0.005 | 0.002 | 0.001 | −0.001 | −0.003 | ||
∆H/(kJ/mol) | - | −2.47 | −2.91 | −2.68 | −2.29 | −2.72 | |
R2 | - | 0.988 | 0.984 | 0.98 | 0.993 | 0.956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Yan, D.; Zhang, J.; Liu, J. Study on the Adsorption Characteristics of Calcareous Sand for Pb(II), Cu(II) and Cd(II) in Aqueous Solution. Sustainability 2023, 15, 5372. https://doi.org/10.3390/su15065372
Li G, Yan D, Zhang J, Liu J. Study on the Adsorption Characteristics of Calcareous Sand for Pb(II), Cu(II) and Cd(II) in Aqueous Solution. Sustainability. 2023; 15(6):5372. https://doi.org/10.3390/su15065372
Chicago/Turabian StyleLi, Gang, Deqiang Yan, Jinli Zhang, and Jia Liu. 2023. "Study on the Adsorption Characteristics of Calcareous Sand for Pb(II), Cu(II) and Cd(II) in Aqueous Solution" Sustainability 15, no. 6: 5372. https://doi.org/10.3390/su15065372
APA StyleLi, G., Yan, D., Zhang, J., & Liu, J. (2023). Study on the Adsorption Characteristics of Calcareous Sand for Pb(II), Cu(II) and Cd(II) in Aqueous Solution. Sustainability, 15(6), 5372. https://doi.org/10.3390/su15065372