Innovation Capabilities as a Mediator between Business Analytics and Firm Performance
Abstract
:1. Introduction
2. Literature Review
2.1. Innovation Diffusion Theory (IDT)
2.2. TOE Framework and BA
3. Research Model and Hypotheses
3.1. The Effects of Technology Factors
3.1.1. IT Infrastructure
3.1.2. Information Quality
3.2. The Effects of Organizational Factors
3.2.1. Analytics Capability–Business Strategy Alignment (ACBSA)
3.2.2. Innovation Capability (IC)
3.3. The Effects of Environmental Factors on Firm Performance
3.4. The Mediating Effects of Innovation Capabilities
4. Research Methodology
4.1. Data and Sample
4.2. Measurement
4.3. Structural Equation Modelling Approach
5. Results
5.1. Measurement Model
5.2. Structural Model
6. Discussion
6.1. The Effects of Technological Factors
6.2. The Effects of Organizational Factors
6.3. The Effects of Environmental Factors on Firm Performance
6.4. Innovation Capabilities and the Mediating Role
7. Conclusions and Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mikalef, P.; Pappas, I.; Krogstie, J.; Pavlou, P.A. (Eds.) Big Data and Business Analytics: A Research Agenda for Realizing Business Value; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Ashrafi, A.; Ravasan, A.Z.; Trkman, P.; Afshari, S. The role of business analytics capabilities in bolstering firms’ agility and performance. Int. J. Inf. Manag. 2019, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Almazmomi, N.; Ilmudeen, A.; Qaffas, A.A. The impact of business analytics capability on data-driven culture and exploration: Achieving a competitive advantage. Benchmarking Int. J. 2021, 29, 1264–1283. [Google Scholar] [CrossRef]
- Trkman, P.; McCormack, K.; de Oliveira, M.P.V.; Ladeira, M.B. The impact of business analytics on supply chain performance. Decis. Support Syst. 2010, 49, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Vassakis, K.; Petrakis, E.; Kopanakis, I. Big Data Analytics: Applications, Prospects and Challenges; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–20. [Google Scholar] [CrossRef]
- Alaskar, T.H.; Mezghani, K.; Alsadi, A.K. Examining the adoption of Big data analytics in supply chain management under competitive pressure: Evidence from Saudi Arabia. J. Decis. Syst. 2020, 30, 300–320. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, T.; Liu, F. Disciplined autonomy: How business analytics complements customer involvement for digital innovation. J. Strat. Inf. Syst. 2022, 31, 101706. [Google Scholar] [CrossRef]
- Rivera, D.S.; Shanks, G. A Dashboard to Support Management of Business Analytics Capabilities. J. Decis. Syst. 2015, 24, 73–86. [Google Scholar] [CrossRef]
- Işık, Ö.; Jones, M.C.; Sidorova, A. Business intelligence success: The roles of BI capabilities and decision environments. Inf. Manag. 2013, 50, 13–23. [Google Scholar] [CrossRef]
- Duan, Y.; Cao, G.; Edwards, J.S. Understanding the impact of business analytics on innovation. Eur. J. Oper. Res. 2018, 281, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Côrte-Real, N.; Ruivo, P.; Oliveira, T. The Diffusion Stages of Business Intelligence & Analytics (BI&A): A Systematic Mapping Study. Procedia Technol. 2014, 16, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Thamir, A.; Theodoulidis, B. Business Intelligence Maturity Models: Information Management Perspective; Springer: Berlin/Heidelberg, Germany, 2013; pp. 198–221. [Google Scholar] [CrossRef]
- Nam, D.; Lee, J.; Lee, H. Business analytics use in CRM: A nomological net from IT competence to CRM performance. Int. J. Inf. Manag. 2018, 45, 233–245. [Google Scholar] [CrossRef]
- Ylijoki, O.; Sirkiä, J.; Porras, J.; Harmaakorpi, V. Innovation capabilities as a mediator between big data and business model. J. Enterp. Transform. 2018, 8, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Tornatzky, L.G.; Fleischer, M. The Processes of Technological Innovation; Lexington Books: Lexington, KY, USA, 1990. [Google Scholar]
- Baker, J. The technology organization-environment framework. In Information Systems Theory: Explaining and Predicting Our Digital Society; Dwivedi, Y., Wade, M., Schneberger, S., Eds.; Springer: New York, NY, USA, 2011; pp. 231–246. [Google Scholar]
- Verma, S.; Chaurasia, S. Understanding the Determinants of Big Data Analytics Adoption. Inf. Resour. Manag. J. 2019, 32, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations; Free Press: New York, NY, USA, 1995. [Google Scholar]
- Nam, D.; Lee, J.; Lee, H. Business analytics adoption process: An innovation diffusion perspective. Int. J. Inf. Manag. 2019, 49, 411–423. [Google Scholar] [CrossRef]
- Chong, A.Y.-L.; Lin, B.; Ooi, K.-B.; Raman, M. Factors affecting the adoption. level of c-commerce: An empirical study. J. Comput. Inf. Syst. 2009, 50, 13–22. [Google Scholar]
- Wang, Y.-M.; Wang, Y.-S.; Yang, Y.-F. Understanding the determinants of rfid adoption in the manu-facturing industry. Technol. Forecast. Soc. Chang. 2010, 77, 803–815. [Google Scholar] [CrossRef]
- Maduku, D.K.; Mpinganjira, M.; Duh, H. Understanding mobile marketing adoption intention by South African SMEs: A multi-perspective framework. Int. J. Inf. Manag. 2016, 36, 711–723. [Google Scholar] [CrossRef]
- Feldman, G.; Shah, H.; Chapman, C.; Amini, A. Technological, organisational, and environmental drivers for enterprise systems upgrade. Ind. Manag. Data Syst. 2016, 116, 1636–1655. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Dong, S.; Xu, S.X.; Kraemer, K.L. Innovation diffusion in global contexts: Determinants of post-adoption digital transformation of European companies. Eur. J. Inf. Syst. 2006, 15, 601–616. [Google Scholar] [CrossRef] [Green Version]
- Lee, O.-K.D.; Wang, M.W.; Lim, K.H.; Peng, Z.J. Knowledge management systems diffusion in Chinese enterprises: A multistage approach using the technology organization- environment framework. J. Glob. Inf. Manag. 2009, 17, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-F. Contextual factors affecting knowledge management diffusion in SMEs. Ind. Manag. Data Syst. 2014, 114, 1415–1437. [Google Scholar] [CrossRef]
- Ramdani, B.; Kawalek, P. Exploring SMEs adoption of broadband in the northwest of England. In Handbook of Research on Global Diffusion of Broadband Data Transmission; IGI Global: Hershey, PA, USA, 2008; pp. 504–523. [Google Scholar]
- Alshamaila, Y.; Papagiannidis, S.; Li, F. Cloud computing adoption by SMEs in the northeast of England: A multi-perspective framework. J. Enterp. Inf. Manag. 2013, 26, 250–275. [Google Scholar] [CrossRef] [Green Version]
- Puklavec, B.; Oliveira, T.; Popovič, A. Understanding the determinants of business intelligence system adoption stages. Ind. Manag. Data Syst. 2018, 118, 236–261. [Google Scholar] [CrossRef]
- Lai, Y.; Sun, H.; Ren, J. Understanding the determinants of big data analytics (BDA) adoption in logistics and supply chain management. Int. J. Logist. Manag. 2018, 29, 676–703. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnamoorthy, B. Business Analytics Adoption in Firms: A Qualitative Study Elaborating TOE Framework in India. Int. J. Glob. Bus. Compet. 2020, 15, 80–93. [Google Scholar] [CrossRef]
- Hsu, P.F.; Ray, S.; Li-Hsieh, Y.Y. Examining cloud computing adoption intention, pricing mechanism, and deployment model. Int. J. Inf. Manag. 2014, 34, 474–488. [Google Scholar] [CrossRef]
- Sabherwal, R.; Becerra-Fernandez, I. Business Intelligence: Practices, Technologies, and Management; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Neill, M.; Brabazon, A. Business analytics capability, organisational value and competitive advantage. J. Bus. Anal. 2019, 2, 160–173. [Google Scholar]
- Mao, H.; Liu, S.; Zhang, J. How the effects of IT and knowledge capability on organizational agility are contingent on environmental uncertainty and information intensity. Inf. Dev. 2014, 31, 358–382. [Google Scholar] [CrossRef]
- Weill, P.; Subramani, M.; Broadbent, M. Building IT infrastructure for strategic agility. MIT Sloan Manag. Rev. 2002, 44, 57–65. [Google Scholar]
- Alharthi, A.; Krotov, V.; Bowman, M. Addressing barriers to big data. Bus. Horizons 2017, 60, 285–292. [Google Scholar] [CrossRef]
- Taylor, S.; Todd, P.A. Understanding Information Technology Usage: A Test of Competing Models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Kache, F.; Seuring, S. Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. Int. J. Oper. Prod. Manag. 2017, 37, 10–36. [Google Scholar] [CrossRef]
- Wang, L.; Yang, M.; Pathan, Z.H.; Salam, S.; Shahzad, K.; Zeng, J. Analysis of Influencing Factors of Big Data Adoption in Chinese Enterprises Using DANP Technique. Sustainability 2018, 10, 3956. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Kung, L.; Wang WY, C.; Cegielski, C.G. An integrated big data analytics-enabled transformation model: Application to health care. Inf. Manag. 2018, 55, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Delone, W.H.; McLean, E.R. The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. J. Manag. Inf. Syst. 2003, 19, 9–30. [Google Scholar] [CrossRef]
- Torres, R.; Sidorova, A. Reconceptualizing information quality as effective use in the context of business intelligence and analytics. Int. J. Inf. Manag. 2019, 49, 316–329. [Google Scholar] [CrossRef]
- Seddon, P.B.; Constantinidis, D.; Tamm, T.; Dod, H. How does business analytics contribute to business value? Inf. Syst. J. 2016, 27, 237–269. [Google Scholar] [CrossRef]
- Mckinney, E.H.; Yoos, C.J. Information about information: A taxonomy of views. MIS Q. 2010, 34, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Clarke, R. Big data, big risks. Inf. Syst. J. 2015, 26, 77–90. [Google Scholar] [CrossRef]
- Yeoh, W.; Popovič, A. Extending the understanding of critical success factors for implementing business intelligence systems. J. Assoc. Inf. Sci. Technol. 2016, 67, 134–147. [Google Scholar] [CrossRef]
- Susarla, A.; Barua, A.; Whinston, A.B. Multitask Agency, Modular Architecture, and Task Disaggregation in SaaS. J. Manag. Inf. Syst. 2010, 26, 87–118. [Google Scholar] [CrossRef]
- Davenport, T.H.; Harris, J.G.; Morison, R. Analytics at Work: Smarter Decisions, Better Results; Harvard Business School Publishing: Boston, MA, USA, 2010. [Google Scholar]
- Aydiner, A.S.; Tatoglu, E.; Bayraktar, E.; Zaim, S.; Delen, D. Business analytics and firm performance: The mediating role of business process performance. J. Bus. Res. 2018, 96, 228–237. [Google Scholar] [CrossRef]
- Kim, M.-K.; Park, J.-H. Identifying and prioritizing critical factors for promoting the implementation and usage of big data in healthcare. Inf. Dev. 2016, 33, 257–269. [Google Scholar] [CrossRef]
- Popovič, A.; Hackney, R.; Coelho, P.S.; Jaklič, J. Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decis. Support Syst. 2012, 54, 729–739. [Google Scholar] [CrossRef]
- Peters, T.; Popovič, A.; Isik, O.; Weigand, H. The Role of Mobile BI Capabilities in Mobile BI Success. In Proceedings of the European Conference on Information Systems (ECIS), Tel Aviv, Israel, 9–11 June 2014. [Google Scholar]
- Shen, C.-C.; Chang, R.-E.; Hsu, C.J.; Chang, I.-C. How business intelligence maturity enabling hospital agility. Telematics Informatics 2017, 34, 450–456. [Google Scholar] [CrossRef]
- Côrte-Real, N.; Oliveira, T.; Ruivo, P. Assessing business value of Big Data Analytics in European firms. J. Bus. Res. 2017, 70, 379–390. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Nevo, S.; Jin, J.; Tang, G.; Chow, W. IT capabilities and innovation performance: The mediating role of market orientation. Commun. Assoc. Inf. Syst. 2013, 33, 9. [Google Scholar] [CrossRef]
- Sun, S.; Hall, D.J.; Cegielski, C.G. Organizational intention to adopt big data in the B2B context: An integrated view. Ind. Mark. Manag. 2019, 86, 109–121. [Google Scholar] [CrossRef]
- McAfee, A.; Brynjolfsson, E. Big data: The management revolution. Harv. Bus. Rev. 2012, 90, 60–66. [Google Scholar]
- Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies; WW Norton & Company: New York, NY, USA, 2014. [Google Scholar]
- Davenport, T.H.; Harris, J.G. Competing on Analytics: The New Science of Winning; Harvard Business Press: Boston, MA, USA, 2007. [Google Scholar]
- Davenport, T.H.; Barth, P.; Bean, R. How’big data’is different. 2012. In MIT Sloan Management Review; MIT Sloan School of Management: Cambridge, MA, USA, 2012; Volume 54, pp. 43–46. [Google Scholar]
- Akter, S.; Wamba, S.F.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Peteraf, M.A. The cornerstones of competitive advantage: A resource-based view. Strat. Manag. J. 1993, 14, 179–191. [Google Scholar] [CrossRef]
- Constantiou, I.D.; Kallinikos, J. New Games, New Rules: Big Data and the Changing Context of Strategy. J. Inf. Technol. 2015, 30, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Shanks, G.; Bekmamedova, N.; Willcocks, L. Business Analytics: Enabling Strategic Alignment and Organisational Transformation; ECIS: London, UK, 2012; p. 18. [Google Scholar]
- Chan, Y.E.; Reich, B.H. IT alignment: What have we learned? J. Inf. Technol. 2007, 22, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Luftman, J.; Kempaiah, R. An Update on Business-IT Alignment: “A Line” Has Been Drawn. MIS Q. Exec. 2007, 6, 165–177. [Google Scholar]
- Bronzo, M.; de Resende PT, V.; de Oliveira MP, V.; McCormack, K.P.; de Sousa, P.R.; Ferreira, R.L. Improving performance aligning business analytics with process orientation. Int. J. Inf. Manag. 2013, 33, 300–307. [Google Scholar] [CrossRef]
- Song, Z.-h. Organizational learning, absorptive capacity, imitation and innovation: Empirical analyses of 115 firms across China. Chin. Manag. Stud. 2015, 9, 97–113. [Google Scholar] [CrossRef]
- Yang, C.-C. Assessing the moderating effect of innovation capability on the relationship between logistics service capability and firm performance for ocean freight forwarders. Int. J. Logist. Res. Appl. 2012, 15, 53–69. [Google Scholar] [CrossRef]
- Zain, M.; Rose, R.C.; Abdullah, I.; Masrom, M. The relationship between information technology acceptance and organizational agility in Malaysia. Inf. Manag. 2005, 42, 829–839. [Google Scholar] [CrossRef]
- March, S.T.; Hevner, A.R. Integrated decision support systems: A data warehousing perspective. Decis. Support Syst. 2007, 43, 1031–1043. [Google Scholar] [CrossRef]
- Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 2017, 70, 263–286. [Google Scholar] [CrossRef] [Green Version]
- Rud, O.P. Business Intelligence Success Factors: Tools for Aligning Your Business in the Global Economy; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Cavusgil, S.T.; Calantone, R.J.; Zhao, Y. Tacit knowledge transfer and firm innovation capability. J. Bus. Ind. Mark. 2003, 18, 6–21. [Google Scholar] [CrossRef]
- Bayo-Moriones, A.; Lera-Lopez, F. A firm-level analysis of determinants of ICT adoption in Spain. Technovation 2007, 27, 352–366. [Google Scholar] [CrossRef]
- Chen, D.Q.; Preston, D.S.; Swink, M. How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. J. Manag. Inf. Syst. 2015, 32, 4–39. [Google Scholar] [CrossRef]
- Gangwar, H. Understanding the determinants of big data adoption in india: An analysis of the manufacturing and services sectors. Inf. Resour. Manag. J. IRMJ 2018, 31, 1–22. [Google Scholar] [CrossRef]
- Wu, L.; Chuang, C.-H. Analyzing contextual antecedents for the stage-based diffusion of electronic supply chain management. Electron. Commer. Res. Appl. 2009, 8, 302–314. [Google Scholar] [CrossRef]
- Porter, M.E.; Millar, V.E. How information gives you competitive advantage. Harv. Bus. Rev. 1985, 63, 149–174. [Google Scholar]
- Petersen, T.; Nguyen, T. Technology Adoption in Norway: Organizational Assimilation of Big Data; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Lu, Y.; Ramamurthy, K. Understanding the link between information technology capability and organi-zational agility: An empirical examination. MIS Q. 2011, 35, 931–954. [Google Scholar] [CrossRef] [Green Version]
- Fichman, R.G. Real options and IT platform adoption: Implications for theory and practice. Inf. Syst. Res. 2004, 15, 132–154. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, Y.; Nevo, S.; Jin, J.; Wang, L.; Chow, W.S. IT capability and organizational performance: The roles of business process agility and environmental factors. Eur. J. Inf. Syst. 2014, 23, 326–342. [Google Scholar] [CrossRef]
- Tallon, P. Inside the adaptive enterprise: An information technology capabilities perspective on business process agility. Inf. Technol. Manag. 2008, 9, 21–36. [Google Scholar] [CrossRef]
- Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A.H. Big Data: The Next Frontier for Innovation, Competition and Productivity; McKinsey Global Institute: Atlanta, GA, USA, 2011; Available online: http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation (accessed on 23 December 2022).
- Mcit. 2020. Available online: https://www.mcit.gov.sa/en/media-center/news/301563 (accessed on 1 January 2021).
- Keil, M.; Tan, B.C.Y.; Wei, K.-K.; Saarinen, T.; Tuunainen, V.; Wassenaar, A. A Cross-Cultural Study on Escalation of Commitment Behavior in Software Projects. MIS Q. 2000, 24, 299. [Google Scholar] [CrossRef]
- Fornell, C. A Second Generation of Multivariate Analysis; Praeger: New York, NY, USA, 1982. [Google Scholar]
- Fornell, C.; Cha, J. Partial least squares. In Advanced Methods of Marketing Research; Bagozzi, R.P., Ed.; Blackwell: Cambridge, UK, 1994. [Google Scholar]
- Wang, S.; Yeoh, W.; Richards, G.; Wong, S.F.; Chang, Y. Harnessing business analytics value through organizational absorptive capacity. Inf. Manag. 2019, 56, 103152. [Google Scholar] [CrossRef]
- Alexandre, P.; Duarte, O.; Raposo, L.B. A PLS Model to Study Brand Preference: An Application to the Mobile Phone Market. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; pp. 449–485. [Google Scholar]
- Barroso, C.; Carrión, G.C.; Roldán, J.L. Applying maximum likelihood and PLS on different sample sizes: Studies on SERVQUAL model and employee behavior model. In Handbook Partial Least Squares; Vinzi, V.E., Chin, W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Garthwaite, P.H. An interpretation of partial least squares. J. Am. Stat. Assoc. 1994, 89, 122–127. [Google Scholar] [CrossRef]
- Barclay, D.W.; Higgins, C.A.; Thompson, R.L. The partial least squares (PLS) approach to causal mod-eling: Personal computer adaptation and use as an illustration. Technol. Stud. 1995, 2, 285–324. [Google Scholar]
- Diamantopoulos, A. Modelling with LISREL: A guide for the uninitiated. J. Mark. Manag. 1994, 10, 105–136. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M. Structural equation modeling and regression: Guidelines for re-search practice. Commun. Assoc. Inf. Syst. 2000, 7, 1–78. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair JFAnderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Van Griethuijsen, R.A.; van Eijck, M.W.; Haste, H.; den Brok, P.J.; Skinner, N.C.; Mansour, N.; Gencer, A.S.; BouJaoude, S. Global Patterns in Students’ Views of Science and Interest in Science. Res. Sci. Educ. 2015, 45, 581–603. [Google Scholar] [CrossRef]
- De Vellis, R.F. Scale Development; Sage: Newbury Park, NJ, USA, 1991. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivarite Data Analysis, 7th ed.; Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. In Modern Methods for Business Research; Marcoulides, G.A., Ed.; Lawrence Erlbaum: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Falk, R.F.; Miller, N.B. A Primer for Soft Modeling; University of Akron Press: Akron, OH, USA, 1992. [Google Scholar]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Esposito Vinzi, V.; Trinchera, L.; Amato, S. PLS Path Modeling: Recent Developments and Open Issues for Model Assessment and Improvement. In Handbook Partial Least Squares: Concepts, Methods and Applications, Computational Statistics Handbook Series; Vinzi, V.E., Chin, W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume II. [Google Scholar]
- Lane, M.; Lum, W.H. Examining client perception of partnership quality and its dimension in an IT outsourcing relationship. Australas. J. Inf. Syst. 2010, 17. [Google Scholar] [CrossRef] [Green Version]
- Barton, D.; Court, D. Making advanced analytics work for you. Harv. Bus. Rev. 2012, 90, 78–83. [Google Scholar] [PubMed]
- Robertson, T.S.; Gatignon, H. Competitive effects on technology diffusion. J. Mark. 1986, 50, 1–12. [Google Scholar] [CrossRef]
- Klatt, T.; Schlaefke, M.; Moeller, K. Integrating business analytics into strategic planning for better performance. J. Bus. Strategy 2011, 32, 30–39. [Google Scholar] [CrossRef]
- Denning, S. Haydn Shaughnessy: Understanding the shift to the new economy. Strategy Leadersh. 2015, 43, 37–43. [Google Scholar] [CrossRef]
- Zare Ravasan, A.; Mansouri, T. A dynamic ERP critical failure factors modelling with FCM throughout project lifecycle phases. Prod. Plan. Control 2016, 27, 65–82. [Google Scholar] [CrossRef]
Sector | No | % | Employees | No | % |
---|---|---|---|---|---|
Telecommunication and IT | 135 | 34.97% | <100 | 76 | 19.68% |
Financial services | 55 | 14.24% | 100–999 | 98 | 25.38% |
Retail | 35 | 9.06% | 1000–4999 | 94 | 24.35% |
Manufacturing and Utilities | 80 | 20.72% | >5000 | 118 | 30.56% |
Respondent’s position | |||||
Insurance and tourism | 27 | 6.99% | Executive level | 43 | 11.13% |
Middle management level | 152 | 39.37% | |||
Others | 54 | 13.98% | Operational level | 191 | 49.48% |
Total | 386 |
Variables | Items |
---|---|
Firm Performance Adapted: [2] | We have experienced higher market share during the last 2 or 3 years. |
We have experienced higher return on investment during the last 2 or 3 years. | |
We have experienced higher sales growth during the last 2 or 3 years. | |
We have experienced higher profitability during the last 2 or 3 years. | |
Innovation Capabilities Adapted: [2] | To innovate on business and managerial processes |
To make continuous improvement in product and service quality | |
To develop and adopt new technologies that enhance market offerings | |
To develop new products and services with cutting-edge technology | |
Information Quality Developed: [2,42] | The output information is timely. |
The output information is accurate | |
The output information is complete. | |
The output information is reliable. | |
IT Infrastructure Adapted: [13,35] | IT facilities’ operations/services (e.g., servers, large-scale processors, performance monitors, etc.) are superior. |
The network communication is sufficient with good connectivity, reliability, and availability in our organization | |
The quality of IT applications and services (e.g., ERP, ASP, software modules/components, emerging technologies, etc.) can meet our organization’s needs. | |
Analytics Capability Business Strategy Alignment (ACBSA) Developed: [62] | The business analytics plan aligns with the company’s mission, goals, objectives, and strategies. |
The business analytics plan contains quantified goals and objectives. | |
The business analytics plan contains detailed action plans/strategies that support company direction. | |
We prioritize major business analytics investments by the expected impact on business performance. | |
Competition Intensity (CI) Adapted: [13] | The rivalry among companies in the industry our company is operating in is very intense. |
There are many products/services in the market which are different from ours but perform the same function. | |
Price competition in our business is severe. |
Constructs | Items | Loadings | Cronbach’s Alpha | rho_A | Composite Reliability | Average Variance Extracted (AVE) |
---|---|---|---|---|---|---|
ACBSA | BAAC1 | 0.826 | 0.826 | 0.834 | 0.884 | 0.656 |
BAAC2 | 0.831 | |||||
BAAC3 | 0.814 | |||||
BAAC4 | 0.767 | |||||
Competition Intensity | BACI1 | 0.671 | 0.634 | 0.837 | 0.784 | 0.553 |
BACI2 | 0.631 | |||||
BACI3 | 0.901 | |||||
Firm Performance | BAF1 | 0.828 | 0.819 | 0.822 | 0.880 | 0.646 |
BAF2 | 0.789 | |||||
BAF3 | 0.803 | |||||
BAF4 | 0.796 | |||||
IT Infrastructure | BAIT1 | 0.870 | 0.828 | 0.831 | 0.897 | 0.744 |
BAIT2 | 0.860 | |||||
BAIT3 | 0.857 | |||||
Information Quality | BAIQ1 | 0.780 | 0.811 | 0.813 | 0.876 | 0.638 |
BAIQ2 | 0.772 | |||||
BAIQ3 | 0.822 | |||||
BAIQ4 | 0.820 | |||||
Innovation Capabilities | BAIC1 | 0.825 | 0.838 | 0.843 | 0.892 | 0.673 |
BAIC2 | 0.861 | |||||
BAIC3 | 0.831 | |||||
BAIC4 | 0.762 |
ACBSA | Competition Intensity | Firm Performance | IT Infrastructure | Information Quality | Innovation Capabilities | |
---|---|---|---|---|---|---|
ACBSA | 0.810 | |||||
Competition Intensity | 0.368 | 0.744 | ||||
Firm Performance | 0.416 | 0.147 | 0.804 | |||
IT infrastructure | 0.604 | 0.521 | 0.247 | 0.862 | ||
Information Quality | 0.455 | 0.540 | 0.231 | 0.513 | 0.799 | |
Innovation Capabilities | 0.538 | 0.551 | 0.331 | 0.668 | 0.614 | 0.821 |
Constructs | R2 | Average Variance Extracted (AVE) |
---|---|---|
ACBSA | -- | 0.656 |
Competition Intensity | -- | 0.553 |
Firm Performance | 0.199 | 0.646 |
IT infrastructure | -- | 0.744 |
Information Quality | -- | 0.638 |
Innovation Capabilities | 0.557 | 0.673 |
Average | 0.378 | 0.651 |
AVE × R2 | 0.246 | |
GoF | 0.495 |
Constructs | Hypothesis | Path Coefficients | Standard Deviation | t Statistics | p Values |
---|---|---|---|---|---|
IT infrastructure -> Firm Performance | H1 | −0.102 | 0.074 | 1.381 | 0.168 |
Information Quality -> Firm Performance | H2 | 0.009 | 0.062 | 0.138 | 0.890 |
ACBSA -> Firm Performance | H3 | 0.375 | 0.063 | 5.979 | 0.000 |
Competition Intensity -> Firm Performance | H4 | −0.070 | 0.068 | 1.022 | 0.307 |
Innovation Capabilities -> Firm Performance | H5 | 0.231 | 0.073 | 3.178 | 0.002 |
IT infrastructure -> IC -> Firm Performance | H6a | 0.095 | 0.034 | 2.802 | 0.005 |
Information Quality -> IC -> Firm Performance | H6b | 0.079 | 0.028 | 2.828 | 0.005 |
ACBSA -> IC -> Firm Performance | H6c | 0.031 | 0.015 | 2.127 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaskar, T.H. Innovation Capabilities as a Mediator between Business Analytics and Firm Performance. Sustainability 2023, 15, 5522. https://doi.org/10.3390/su15065522
Alaskar TH. Innovation Capabilities as a Mediator between Business Analytics and Firm Performance. Sustainability. 2023; 15(6):5522. https://doi.org/10.3390/su15065522
Chicago/Turabian StyleAlaskar, Thamir Hamad. 2023. "Innovation Capabilities as a Mediator between Business Analytics and Firm Performance" Sustainability 15, no. 6: 5522. https://doi.org/10.3390/su15065522
APA StyleAlaskar, T. H. (2023). Innovation Capabilities as a Mediator between Business Analytics and Firm Performance. Sustainability, 15(6), 5522. https://doi.org/10.3390/su15065522