Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth
Abstract
:1. Introduction
2. Experimental Design of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth
2.1. Preparation Method of Modified Biochar
2.1.1. Experimental Instruments
2.1.2. Experimental Materials and Reagents
2.1.3. Preparation of Biochar
2.1.4. Performance and Characterization Test
2.2. Experimental Design of the Influence of Modified Biochar on Saline–Alkali Soil Leaching and Remediation
2.2.1. Experimental Instruments
2.2.2. Experimental Materials and Reagents
2.2.3. Design of Leaching Experiment
2.2.4. Performance Test Design
2.3. Experimental Design of Effects of Saline–Alkali Soil Leaching and Modified Biochar on Crop Growth
2.3.1. Experimental Instruments
2.3.2. Experimental Materials and Reagents
2.3.3. Pot experiment Design
2.3.4. Index Test Design
3. Results and Analysis of the Effect of Modified Biochar on the Remediation of Saline–Alkali Soil and Crop Growth
3.1. Characterization Results and Analysis of Modified Biochar
3.2. Results and Analysis of Soil Remediation by Modified Biochar
3.3. Results and Analysis of the Impact of Modified Biochar on Crop Growth and Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hailu, B.; Mehari, H. Impacts of soil salinity/sodicity on soil-water relations plant growth in dry land areas: A review. J. Nat. Sci. Res. 2021, 12, 1–10. [Google Scholar]
- Meena, M.D.; Narjary, B.; Sheoran, P.; Jat, H.S.; Joshi, P.K.; Chinchmalatpure, A.R. Changes in physical and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard–pearl millet cropping system. Land Degrad. Dev. 2022, 33, 1677–1688. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Yao, R.; Wang, X.; Xie, W. Short-term effects of biochar and gypsum on soil hydraulic properties and sodicity in a saline-alkali soil. Pedosphere 2020, 30, 694–702. [Google Scholar] [CrossRef]
- Selim, A.; Bari, E.; Rahaman, M.H.; Rahman, M.M. Phytosociology and biodiversity of roadside herbs in a salinity-affected coastal area of bangladesh. Heliyon 2021, 7, e07813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Wang, W.; Fang, W.T.; Ju, H. Vegetation successions of coastal wetlands in southern Laizhou Bay, Bohai Sea, northern China, influenced by the changes in relative surface elevation and soil salinity. J. Environ. Manag. 2021, 293, 112964. [Google Scholar] [CrossRef]
- Fouladidorhani, M.; Shayannejad, M.; Shariatmadari, H.; Mosaddeghi, M.R.; Arthur, E. Biochar, manure, and super absorbent increased wheat yields and salt redistribution in a saline-sodic soil. Agron. J. 2020, 112, 5193–5205. [Google Scholar] [CrossRef]
- Zhu, Y.; Shao, T.; Zhou, Y.; Zhang, X.; Rengel, Z. Periphyton improves soil conditions and offers a suitable environment for rice growth in coastal saline alkali soil. Land Degrad. Dev. 2021, 32, 2775–2788. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, D.; Wang, H.; Zhao, C.; Li, Z. Effects of biochar on waterlogging and the associated change in micro-ecological environment of maize rhizosphere soil in saline-alkali land. Bioresources 2020, 15, 9303–9323. [Google Scholar] [CrossRef]
- Tao, Q.; Li, B.; Chen, Y.; Zhao, J.; Wang, V. An integrated method to produce fermented liquid feed and biologically modified biochar as cadmium adsorbents using corn stalks. Waste Manag. 2021, 127, 112–120. [Google Scholar] [CrossRef]
- Duan, M.; Liu, G.; Zhou, B.; Chen, X.; Wang, Q.; Zhu, H.; Li, Z. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil. J. Soil Sediment. 2021, 21, 2192–2202. [Google Scholar] [CrossRef]
- Sun, J.; Fan, Q.; Ma, J.; Cui, L.; Quan, G.; Yan, J. Effects of biochar on cadmium (Cd) uptake in vegetables and its natural downward movement in saline-alkali soil. Env. Pollut. Bioavail. 2020, 32, 36–46. [Google Scholar] [CrossRef]
- Choudhary, P.; Pramitha, L.; Rana, S.; Verma, S.; Aggarwal, P.R.; Muthamilarasan, M. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. Physiol. Plant. 2021, 173, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Dourado, P.R.M.; Souza, E.R.D.; Santos, M.A.D.; Lins, C.M.T.; Monteiro, D.R.; Paulino, M.K.S.S.; Schaffer, B. Stomatal regulation and osmotic adjustment in sorghum in response to salinity. Agric 2022, 12, 658. [Google Scholar] [CrossRef]
- Lew, S.; Glińska-Lewczuk, K.; Burandt, P.; Kulesza, K.; Kobus, S.; Obolewski, K. Salinity as a determinant structuring microbial communities in coastal lakes. Int. J. Environ. Res. Public Health 2022, 19, 4592. [Google Scholar] [CrossRef]
- Qados, A. Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (vicia faba l.) plants. Am. J. Exp. Agric 2015, 7, 78–95. [Google Scholar] [CrossRef]
- Wu, N.; Li, Z.; Tang, M. Impact of salt and exogenous AM inoculation on indigenous microbial community structure in the rhizosphere of dioecious plant, Populus cathayana. Sci. Rep. 2021, 11, 18403. [Google Scholar] [CrossRef]
- Wang, S.; Ai, S.; Nzediegwu, C.; Kwak, J.H.; Chang, S.X. Carboxyl and hydroxyl groups enhance ammonium adsorption capacity of iron (III) chloride and hydrochloric acid modified biochars. Bioresour. Technol. 2020, 309, 123390. [Google Scholar] [CrossRef]
- Roy, H.; Prantika, T.R.; Riyad, M.H.; Paul, S.; Islam, M.S. Synthesis, characterizations, and RSM analysis of Citrus macroptera peel derived biochar for textile dye treatment. S. Afr. J. Chem. Eng. 2022, 41, 129–139. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, X.; Zhang, Q.; Gao, P.; Ren, J. Biochar and organic fertilizer changed the ammonia-oxidizing bacteria and archaea community structure of saline–alkali soil in the North China Plain. J. Soil. Sediment. 2020, 20, 12–23. [Google Scholar] [CrossRef]
- Wang, S.; Gao, P.; Zhang, Q.; Shi, Y.; Guo, Y.; Lv, Q.; Wu, W.; Zhang, X.; Li, M.; Meng, Q. Application of biochar and organic fertilizer to saline-alkali soil in the Yellow River Delta: Effects on soil water, salinity, nutrients, and maize yield. Soil. Use Manag. 2022, 38, 1679–1692. [Google Scholar] [CrossRef]
- Haider, F.U.; Coulter, J.A.; Liqun, C.A.I.; Hussain, S.; Cheema, S.A.; Wu, J.; Zhang, R. An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere 2022, 32, 107–130. [Google Scholar] [CrossRef]
- Li, K.; Kong, W.; Xu, W.; Liu, C. Impacts of application patterns and incorporation rates of dredged Yellow River sediment on structure and infiltration of saline-alkali soil. Int. J. Agric. Biol. Eng. 2022, 15, 139–146. [Google Scholar] [CrossRef]
- Li, K.; Li, Q.; Geng, Y.; Liu, C. An evaluation of the effects of microstructural characteristics and frost heave on the remediation of saline-alkali soils in the Yellow River Delta, China. Land Deg. Dev. 2021, 32, 1325–1337. [Google Scholar] [CrossRef]
- Guo, M.; Ma, X.L.; Han, X.; Zhang, S.; Yuan, M.; Wang, B. Effects of corn stalks biochar amendment and freezing-thawing on the cd adsorption of saline-alkali soil. Soil. Sediment Contam. 2022, 31, 925–940. [Google Scholar] [CrossRef]
- Hall, A.G.; King, J.C.; McDonald, C.M. Comparison of serum, plasma, and liver zinc measurements by AAS, ICP-OES, and ICP-MS in diverse laboratory settings. Biol. Trace Elem. Res. 2022, 200, 2606–2613. [Google Scholar] [CrossRef]
- Zeiri, O.; Fruchter, N.; Elish, E.; Gizbar, H.; Shamir, D.; Sedgi, I. Determination of Uranium Isotopic Ratio by ICP-OES Using Optimal Sensitivity Position Analysis. Anal. Chem. 2021, 93, 5123–5128. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Ambade, B. A scheme for sequential separation of thorium, lanthanides, uranium in geo-materials and their ICP-OES determination. J. Radioanal. Nucl. Chem. 2021, 329, 115–125. [Google Scholar] [CrossRef]
- Feng, L.; Xu, W.; Sun, N.; Mandal, S.; Wang, H.; Geng, Z. Efficient improvement of soil salinization through phytoremediation induced by chemical remediation in extreme arid land northwest China. Int. J. Phytoremediat. 2020, 22, 334–341. [Google Scholar] [CrossRef]
- Kudakwashe, M.; Qiang, L.I.U.; Shuai, W.U.; Yuan, Y. Plant-and microbe-assisted biochar amendment technology for petroleum hydrocarbon remediation in saline-sodic soils: A review. Pedosphere 2022, 32, 211–221. [Google Scholar]
- Yin, F.; Zhang, F. Reclamation of abandoned saline-alkali soil increased soil microbial diversity and degradation potential. Plant Soil. 2022, 477, 521–538. [Google Scholar] [CrossRef]
- Li, K.; Li, Q.; Liu, C. Effect of freezing temperature and water content on pore structure characteristics of coastal saline-alkali soil under frost heave. J. Soil Sediment. 2022, 22, 1819–1827. [Google Scholar] [CrossRef]
- Murtaza, G.; Ditta, A.; Ullah, N.; Usman, M.; Ahmed, Z. Biochar for the management of nutrient impoverished and metal contaminated soils: Preparation, applications, and prospects. J. Soil Sci. Plant. Nut. 2021, 21, 2191–2213. [Google Scholar] [CrossRef]
- Wang, L.; O’Connor, D.; Rinklebe, J.O.Y.; Tsang, D.; Shen, Z.; Hou, D. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications. Environ. Sci. Technol. 2020, 54, 14797–14814. [Google Scholar] [CrossRef] [PubMed]
- Huang, R. The effect of humic acid on the desalinization of coastal clayey saline soil. Water Supply. 2022, 22, 7242–7255. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, C.; Feng, Z.; Yuan, S.; Guo, Y.; Xue, S. Effect of phosphogypsum on saline-alkalinity and aggregate stability of bauxite residue. Trans. Nonferrous Met. Soc. China 2021, 31, 1484–1495. [Google Scholar] [CrossRef]
- Sales, B.K.; Bryla, D.R.; Trippe, K.M. Biochar as an Alternative Soil Amendment for Establishment of Northern Highbush Blueberry. HortScience 2022, 57, 277–285. [Google Scholar] [CrossRef]
- Gao, N.; Du, W.; Zhang, M.; Ling, G.; Zhang, P. Chitosan-modified biochar: Preparation, modifications, mechanisms and applications. Int. J. Biol. Macromol. 2022, 209, 31–49. [Google Scholar] [CrossRef]
- Hung, C.; Chen, C.; Huang, C.; Lam, S.S.; Dong, C. Peroxymonosulfate activation by a metal-free biochar for sulfonamide antibiotic removal in water and associated bacterial community composition. Bioresour. Technol. 2022, 343, 126082.1–126082.9. [Google Scholar] [CrossRef]
Type | Merit | Shortcoming | Innovation |
---|---|---|---|
RICE SHELL CHARCOAL | Lightweight, non-toxic, strong water absorption | Alkaline and easily accumulates in water | / |
CHARCOAL | Effective removal of CO2 | Interdiction of the substance’s transmission and diffusion | / |
BAMBOO CHARCOAL | Adsorption of harmful air and sterilization | Air pollution | / |
STRAW STRAW MODIFICATION | Improvement of soil | Low strength | (1) Physical and chemical remediation are combined; (2) the migration law of soluble salt ions is explored. |
Index | Data |
---|---|
pH | 8.41 |
Total carbon | 18.34 g/kg |
Total nitrogen | 1.23 g/kg |
Organic matter | 28.52 g/kg |
Available phosphorus | 8.53 mg/kg |
Quick-acting potassium | 16.86 mg/kg |
Cation exchange capacity | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, Z.; Xu, Y.; Sun, J.; Ruan, X.; Mao, X.; Hu, X.; Liu, P. Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth. Sustainability 2023, 15, 5593. https://doi.org/10.3390/su15065593
Li C, Wang Z, Xu Y, Sun J, Ruan X, Mao X, Hu X, Liu P. Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth. Sustainability. 2023; 15(6):5593. https://doi.org/10.3390/su15065593
Chicago/Turabian StyleLi, Chunyu, Zhichao Wang, Yutao Xu, Jingfei Sun, Xinyi Ruan, Xuanwen Mao, Xiangyun Hu, and Peng Liu. 2023. "Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth" Sustainability 15, no. 6: 5593. https://doi.org/10.3390/su15065593
APA StyleLi, C., Wang, Z., Xu, Y., Sun, J., Ruan, X., Mao, X., Hu, X., & Liu, P. (2023). Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth. Sustainability, 15(6), 5593. https://doi.org/10.3390/su15065593