The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of High-Quality Agricultural Development
2.1.1. Measurement Method
2.1.2. Input–Output Index
- (1)
- Expected output index
- (2)
- Input index
- (3)
- Undesired output index
2.2. Measuring the Development Level of the Digital Economy
2.2.1. Construction of Evaluation Index System
2.2.2. Measurement Method
2.3. Model Construction and Index Selection
3. Model Testing and Estimation Results
3.1. Analysis of Main Effects Test
3.2. Consideration and Resolution of Endogeneity
3.2.1. Instrumental Variable Analysis
3.2.2. System GMM
3.3. Robustness Check
3.3.1. Replace the Explained Variable (Model 1)
3.3.2. Change the Sample Size (Model 2)
3.3.3. Robust Standard Errors Obtained Using the Bootstrap Method (Model 3)
3.4. Spatial Heterogeneity Analysis
3.5. Test of the Mediation Effect of Green Agricultural Production
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China’s 2022 Grain Production New Record High, Exceeding 650b kg Mark for Eight Consecutive Years. Global Times. 2022. Available online: https://www.globaltimes.cn/page/202212/1281648.shtml (accessed on 25 December 2022).
- West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Agriculture and Rural Affairs of China Import and Export of Agricultural Products in China from January to December 2022. Available online: http://www.moa.gov.cn/ztzl/nybrl/rlxx/202301/t20230128_6419275.htm (accessed on 8 December 2022).
- Batishcheva, E.; Bezgina, Y.A.; Zinisha, O.S.; Goncharova, N.A.; Ryndina, I.V. Digital agriculture: Current state, problems and development prospects. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 1556–1561. [Google Scholar] [CrossRef]
- Tian, T.; Li, L.; Wang, J. The Effect and Mechanism of Agricultural Informatization on Economic Development: Based on a Spatial Heterogeneity Perspective. Sustainability 2022, 14, 3165. [Google Scholar] [CrossRef]
- Xi, J.P. Holding High the Great Banner of Socialism with Chinese Characteristics and Uniting for the Comprehensive Construction of a Socialist Modernized Country—Report at the 20th National Congress of the CPC. Available online: http://www.gov.cn/xinwen/2022-10/25/content_5721685.htm (accessed on 20 November 2022).
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Litvinenko, V. Digital economy as a factor in the technological development of the mineral sector. Nat. Resour. Res. 2020, 29, 1521–1541. [Google Scholar] [CrossRef]
- Teece, D.J. Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Res. Policy 2018, 47, 1367–1387. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will digital technologies transform agriculture in developing countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Carolan, M. Publicising food: Big data, precision agriculture, and co-experimental techniques of addition. Sociol. Rural. 2017, 57, 135–154. [Google Scholar] [CrossRef]
- Barnes, A.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sanchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Influencing incentives for precision agricultural technologies within European arable farming systems. Environ. Sci. Policy 2019, 93, 66–74. [Google Scholar] [CrossRef]
- Kernecker, M.; Knierim, A.; Wurbs, A.; Kraus, T.; Borges, F. Experience versus expectation: Farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 2020, 21, 34–50. [Google Scholar] [CrossRef]
- Higgins, V.; Bryant, M.; Howell, A.; Battersby, J. Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. J. Rural Stud. 2017, 55, 193–202. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry–a systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Vasconez, J.P.; Kantor, G.A.; Cheein, F.A.A. Human–robot interaction in agriculture: A survey and current challenges. Biosyst. Eng. 2019, 179, 35–48. [Google Scholar] [CrossRef]
- Vaněk, J.; Červenková, E.; Jarolímek, J.; Šimek, P. State and evaluation of information and communication technologies development in agricultural enterprises in the Czech Republic. Plant Soil Environ. 2010, 56, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Štůsek, J.; Kubata, K.; Očenášek, V. Strategic importance of the quality of information technology for improved competitiveness of agricultural companies and its evaluation. AGRIS Line Pap. Econ. Inform. 2017, 9, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [Google Scholar] [CrossRef] [Green Version]
- Kupriyanova, M.; Dronov, V.; Gordova, T. Digital divide of rural territories in Russia. AGRIS Line Pap. Econ. Inform. 2019, 11, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Bai, W.; Li, Q.; Zhang, X.; Zhang, L. Dynamic Mechanisms and Institutional Frameworks of China’s Green Development: An Analysis from the Perspective of Collaboration. Sustainability 2022, 14, 6491. [Google Scholar] [CrossRef]
- Jensen, R. The digital provide: Information (technology), market performance, and welfare in the South Indian fisheries sector. Q. J. Econ. 2007, 122, 879–924. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Aker, J.C.; Ksoll, C. Can mobile phones improve agricultural outcomes? Evidence from a randomized experiment in Niger. Food Policy 2016, 60, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Berti, G.; Mulligan, C. Competitiveness of small farms and innovative food supply chains: The role of food hubs in creating sustainable regional and local food systems. Sustainability 2016, 8, 616. [Google Scholar] [CrossRef] [Green Version]
- Press, M.; Arnould, E.J.; Murray, J.B.; Strand, K. Ideological challenges to changing strategic orientation in commodity agriculture. J. Mark. 2014, 78, 103–119. [Google Scholar] [CrossRef]
- Shiferaw, B.; Hellin, J.; Muricho, G. Improving market access and agricultural productivity growth in Africa: What role for producer organizations and collective action institutions? Food Secur. 2011, 3, 475–489. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Ju, X.; Xue, Y.; Xi, B.; Jin, T.; Xu, Z.; Gao, S. Establishing an agro-ecological compensation mechanism to promote agricultural green development in China. J. Resour. Ecol. 2018, 9, 426–433. [Google Scholar]
- Krugman, P. The Myth of Asia’s Miracle. Foreign Affairs, 1994, pp. 62–78. Available online: https://www.gsid.nagoya-u.ac.jp/sotsubo/Krugman.pdf (accessed on 2 August 2022).
- Johnson, D.G. Agriculture and the Wealth of Nations. Am. Econ. Rev. 1997, 87, 1–12. [Google Scholar]
- Feng, Y.; Zhong, S.; Li, Q.; Zhao, X.; Dong, X. Ecological well-being performance growth in China (1994–2014): From perspectives of industrial structure green adjustment and green total factor productivity. J. Clean. Prod. 2019, 236, 117556. [Google Scholar] [CrossRef]
- Qin, C.; Su, J.; Wang, Q.; Wan, J.; Wang, J. Practice mechanism analysis of the theory of ‘lucid waters and lush mountains are invaluable assets’. Res. Environ. Sci. 2018, 31, 985–990. [Google Scholar]
- Xia, F.; Xu, J. Green total factor productivity: A re-examination of quality of growth for provinces in China. China Econ. Rev. 2020, 62, 101454. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econ. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Lin, B.; Wang, X. Exploring energy efficiency in China’s iron and steel industry: A stochastic frontier approach. Energy Policy 2014, 72, 87–96. [Google Scholar] [CrossRef]
- Liu, N. Research on Promoting the High-Quality Development of Tibetan Economy with Digital Economy. Financ. Eng. Risk Manag. 2022, 5, 31–37. [Google Scholar]
- Qin, T.; Wang, L.; Zhou, Y.; Guo, L.; Jiang, G.; Zhang, L. Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU. Agriculture 2022, 12, 297. [Google Scholar] [CrossRef]
- Shuang, L.; Ximing, C.; Jie, S. Research on the degree of coupling of the Internet development level and agricultural—Ecological efficiency based on 2009–2018 data from 13 major grain-producing areas in China. PLoS ONE 2021, 16, e0254078. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wen, S.; Wang, Z. Agricultural production agglomeration and total factor carbon productivity: Based on NDDF–MML index analysis. China Agric. Econ. Rev. 2022, 14, 709–740. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Zhang, Y.; Wang, C.; Yu, K. Does FDI promote or inhibit the high-quality development of agriculture in China? An agricultural GTFP perspective. Sustainability 2019, 11, 4620. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zhang, J.; Li, B. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects. Resour. Sci. 2012, 34, 2097–2105. [Google Scholar]
- Wu, F.L.; Li, L.; Zhang, H.L.; Chen, F. Effects of conservation tillage on net carbon flux from farmland ecosystems. Chin. J. Ecol. 2007, 26, 2035–2039. [Google Scholar]
- Maheswarappa, H.P.; Srinivasan, V.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in India. J. Crop Improv. 2011, 25, 303–322. [Google Scholar] [CrossRef]
- Ahmed, I. Application of Principal Component Analysis and Analytical Hierarchical Process in Surface Water Quality Assessment in Hatta Catchment, Emirate of Dubai, UAE. In Computational Modelling in Industry 4.0; Ali, I., Chatterjee, P., Shaikh, A.A., Gupta, N., Al Arjani, A., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Wu, R.M.; Zhang, Z.; Yan, W.; Fan, J.; Gou, J.; Liu, B.; Gide, E.; Soar, J.; Shen, B.; Fazal-E-Hasan, S.; et al. A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement. PLoS ONE 2022, 17, e0262261. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, J.; Si, H.; Su, Y. The Impact of the Digital Economy on Agricultural Green Development: Evidence from China. Agriculture 2022, 12, 1107. [Google Scholar] [CrossRef]
- Zhang, R. Strategic Thinking on High-Quality Development of Digital Economy in Yangtze River Delta Region of China in the Era of Big Data. In The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy, Shanghai, China, 6–8 November 2020; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Burgess, S.; Small, D.S.; Thompson, S.G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 2017, 26, 2333–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boffa, M.; Jansen, M.; Solleder, O. Participating to compete: Do small firms in developing countries benefit from global value chains? Economies 2021, 9, 12. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA—A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
Carbon Emission Sources | Carbon Emission Coefficients | Data Sources |
---|---|---|
Consumption of fertilizers (purified amount) | 0.8956 kg/km2 | Oak Ridge National Laboratory in the U.S.A. (Wang et al. [40]) |
Pesticides | 4.9341 kg/km2 | Oak Ridge National Laboratory in the U.S.A. (Wang et al. [40]) |
Agricultural diesel oil | 0.5927 kg/km2 | IPCC (Tian et al. [41]) |
Soil tillage | 312.6 kg/km2 | Wu et al. [42] |
Agricultural irrigation | 25 kg/km2 | Maheswarappa et al. [43] |
Agricultural film | 5.18 kg/km2 | Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University (Tian et al. [41]) |
Core Indexes | First-Class | Second-Class | Measurement Index | Attribute |
---|---|---|---|---|
Digital Economy Develop-ment Index | Information development | Information infra-structure | Cable line density (km/sq km) | Positive |
Mobile phone exchange capacity per capita (household/person) | Positive | |||
Employment in information transmission, software, and information technology services in urban units (%) | Positive | |||
Telephone penetration (including mobile phones) (per 100 people) | Positive | |||
Influence of informati-zation | Proportion of total telecom business in regional GDP (%) | Positive | ||
Proportion of software business revenue in regional GDP (%) | Positive | |||
Internet development | Internet infra-structure | Internet broadband access port density (per person) | Positive | |
Number of domain names (unit: 10,000) | Positive | |||
Broadband access per person (per person) | Positive | |||
Influence of Internet | Number of web pages (unit: 10,000) | Positive | ||
Digital transaction development | Infra-structure of digital trading | Number of websites per 100 enterprises | Positive | |
Proportion of enterprises with e-commerce transactions (%) | Positive | |||
Influence of digital trading | Proportion of e-commerce sales in regional GDP (%) | Positive | ||
Proportion of e-commerce purchases in regional GDP (%) | Positive | |||
Express delivery per capita | Positive | |||
Online payment quantity and scale | Positive |
Variables | FE | RE | G2SLS | 2SLS | SYS-GMM |
---|---|---|---|---|---|
L.AGTFP | 0.7284 ** (0.2857) | ||||
DIG | 1.9844 *** (0.4992) | 2.1900 *** (0.4420) | 4.3181 *** (0.5829) | 4.1032 *** (0.9679) | 1.0381 * (0.5819) |
IR | −0.0274 ** (0.0103) | 0.0224 *** (0.0075) | 0.0079 (0.0098) | 0.0056 (0.0047) | −0.0141 (0.0092) |
lnFAI | 0.2043 *** (0.0727) | 0. 2107 *** (0.0680) | 0.1408 ** (0.0736) | −0.2826 ** (0.0577) | 0.2311 * (0.1255) |
Constant | −1.5358 ** (0.6909) | −1.8071 *** (0.6639) | −3.2744 ** (0.5173) | −1.58911 (1.0052) | |
AR (1) | 0.1090 | ||||
AR (2) | 0.2783 | ||||
Sargan–Hansen statistic | 3.53 * | 2.633 | |||
Sargan | 2.34 | 28.4120 | |||
Cragg–Donald Wald F statistic | 70.98 | ||||
F test | 39.58 *** | ||||
Score chi2 (1) | 0.16 | ||||
Wald chi2 (3) | 51.17 *** | ||||
Wald chi2 (4) | 176.10 *** | ||||
LM test | 263.82 *** | 87.06 *** | 245.30 *** | ||
Hausman test | 2.70 | ||||
N | 240 | 240 | 210 | 180 | 210 |
R2 | 0.6114 | 0.5680 | 0.5125 | 0.4966 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
DIG | 1.3523 *** (0.2382) | 2.1378 *** (0.4982) | 2.1901 *** (0.4465) |
IR | −0.0142 *** (0.0036) | −0.0218 ** (0.0088) | 0.0224 *** (0.0071) |
lnFAI | 0.0684 (0.0452) | 0.3037 *** (0.0801) | 0.2107 ** (0.0687) |
Constant | −0.5149 (0.4355) | −2.6272 *** (0.7026) | −1.8072 ** (0.6682) |
LM test | 632.71 *** | 462.19 *** | 560.87 *** |
N | 240 | 208 | 240 |
R2 | 0.6311 | 0.5839 | 0.5573 |
Variables | East | Midwest |
---|---|---|
DIG | 2.8013 *** (0.5409) | 2.0115 *** (0.5927) |
IR | −0.0165 *** (0.0052) | −0.0229 ** (0.0106) |
lnFAI | 0.1255 ** (0.0576) | 0.2760 ** (0.1224) |
Constant | −1.1782 ** (0.4281) | −2.4188 ** (1.1088) |
LM test | 125.01 *** | 333.43 *** |
N | 88 | 152 |
R2 | 0.5825 | 0.5461 |
Variables | lnAGTPF | GEEN | lnAGTPF |
---|---|---|---|
DIG | 2.1901 *** (0.4421) | 3.7368 *** (0.6727) | 1.6449 *** (0.5086) |
GEEN | 0.1363 *** (0.0434) | ||
Constant | −1.8072 *** (0.6638) | 5.3668 ** (2.1107) | −2.5035 *** (0.7012) |
Control variables | Control | Control | Control |
LM test | 560.87 *** | 573.83 *** | 567.12 *** |
R2 | 0.5573 | 0.4617 | 0.5955 |
N | 240 | 240 | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, W.; Sun, Z. The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study. Sustainability 2023, 15, 5745. https://doi.org/10.3390/su15075745
Yao W, Sun Z. The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study. Sustainability. 2023; 15(7):5745. https://doi.org/10.3390/su15075745
Chicago/Turabian StyleYao, Wen, and Zhuo Sun. 2023. "The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study" Sustainability 15, no. 7: 5745. https://doi.org/10.3390/su15075745
APA StyleYao, W., & Sun, Z. (2023). The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study. Sustainability, 15(7), 5745. https://doi.org/10.3390/su15075745