Exploring Gender Differences in the Role of Trait Preferences among Stakeholders in the Rice Value Chain in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data, Sampling, and Sample Size
2.3. Theoretical Framework and Empirical Specification
2.4. Tobit Model for Estimating the Intensity of Rice Purchasing by Consumers
2.5. Multivariate Probit for Estimating the Adoption of Improved Rice Varieties by Farmers
3. Results and Discussion
3.1. Socioeconomics Characteristics of Rice Producers
3.2. Socioeconomic Characteristics of Rice Consumers
3.3. Distribution of Main Source of Rice Seed among Men and Women Farmers
3.4. Distribution of Rice Varieties among Men and Women Farmers
3.5. Gendered Value Chain for Rice in Ghana
3.6. Trait Preferences for Rice Farmers by Gender
3.7. Factors Influencing the Intensity of Rice Purchasing among Women and Men Consumers
3.8. Factor Influencing the Adoption of Rice Varieties among Women and Men Rice Farmers
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qaim, M. Role of new plant breeding technologies for food security and sustainable agricultural development. Appl. Econ. Perspect. Policy 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anth. 2018, 6, 52. [Google Scholar] [CrossRef]
- Onyango, A.O. Exploring options for improving rice production to reduce hunger and poverty in Kenya. World Environ. 2014, 4, 172–179. [Google Scholar]
- Schut, M.; van Asten, P.; Okafor, C.; Hicintuka, C.; Mapatano, S.; Nabahungu, N.L.; Kagabo, D.; Muchunguzi, P.; Njukwe, E.; Dontsop-Nguezet, P.M.; et al. Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation. Agric. Syst. 2016, 145, 165–176. [Google Scholar] [CrossRef]
- Valin, H.; Sands, R.D.; Van der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky, B.; Fujimori, S.; Hasegawa, T.; Havlik, P.; et al. The future of food demand: Understanding differences in global economic models. Agric. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- Coulibaly, Y.M.; Havard, M. The rice processing units at the Niger Office in Mali. CIGR J. 2015, 17, 176–184. Available online: http://www.cigrjournal.org (accessed on 10 October 2022).
- FAOSTAT. New Food Balances. 2021. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 1 February 2021).
- Mgumia, A.H. Transformation of Agricultural Technology Development Approaches in Tanzania. Doctoral Dissertation, Sokoine University of Agriculture, Morogoro, Tanzania, 2015. [Google Scholar]
- Loko, Y.L.E.; Gbemavo, C.D.; Djedatin, G.; Ewedje, E.E.; Orobiyi, A.; Toffa, J.; Tchakpa, C.; Sedah, P.; Sabot, F. Characterization of rice farming systems, production constraints and determinants of adoption of improved varieties by smallholder farmers of the Republic of Benin. Sci. Rep. 2022, 12, 3959. [Google Scholar] [CrossRef]
- Soullier, G.; Demont, M.; Arouna, A.; Lançon, F.; Del Villar, P.M. The state of rice value chain upgrading in West Africa. Glob. Food Secur. 2020, 25, 100365. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Crop Prospects and Food Situation–Quarterly Global Report No. 3 September 2022. Rome. Available online: https://www.fao.org/documents/card/en/c/cc2300en (accessed on 1 November 2022).
- Dury, S.; Bocoum, I. The Sikasso paradox: Why does higher production fail to feed farmers’ children? Cah. Agric. 2012, 21, 324–336. [Google Scholar]
- Dabalen, A.L.; Paul, S. Effect of conflict on dietary diversity: Evidence from Cˆote d’Ivoire. World Dev. 2014, 58, 143–158. [Google Scholar] [CrossRef]
- Macauley, H.; Ramadjita, T. Les Cultures Céréalières: Riz, Maïs, Millet, Sorgho et Blé; Africa Rice: Bouaké, Ivory Coast, 2015. [Google Scholar]
- Fabien, T.; D’Alessandro, C.; Ibrahima, H.; Clarisse, B. Commerce du riz et Développement de la Filière riz en Afrique de l’Ouest: Une Approche Pour des Politiques Publiques Plus Cohérentes (Ecdpm/Ipar); ECDPM: Maastricht, The Netherlands, 2020. [Google Scholar]
- Le Mouël, C.; de Lattre-gasquet, M.; Mora, O. The GlobAgri-Agrimonde-Terra Database and Model Land Use and Food Security in 2050: A Narrow Road; Quae: Versailles, France, 2018; Volume 9. [Google Scholar]
- Statista. Production Volume of Rice in Africa 2017–2022. 2022. Available online: https://www.statista.com/statistics/1294234/production-volume-of-rice-in-africa/ (accessed on 1 November 2022).
- Ministry of Food and Agriculture (MoFA). Rice Production: A Priority to Ghana. 2022. Available online: https://mofa.gov.gh/site/media-centre/agricultural-articles/393-rice-production-a-priority-to-ghana (accessed on 1 November 2022).
- Donkoh, S.A.; Awuni, J.A. Adoption of farm management practices in lowland rice production in Northern Ghana. J. Agric. Biol. Sci. 2011, 2, 84–93. [Google Scholar]
- Oladele, O.I.; Kolawole, A.; Wakatsuki, T. Land tenure, investment and adoption of Sawah rice production technology in Nigeria and Ghana: A qualitative approach. Afr. J. Agric. Res. 2011, 6, 1519–1524. [Google Scholar]
- Weltzien, E.; Rattunde, F.; Christinck, A.; Isaaca, K.; Ashby, J. Gender and Farmer Preferences for Varietal Traits: Evidence and Issues for Crop Improvement. In Plant Breeding Reviews, 1st ed.; Goldman, I., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; Volume 43, pp. 243–278. [Google Scholar]
- Niang, A.; Becker, M.; Ewert, F.; Dieng, I.; Gaiser, T.; Tanaka, A.; Senthilkumar, K.; Rodenburg, J.; Johnson, J.-M.; Akakpo, C.; et al. Variability and determinants of yields in rice production systems of West Africa. Field Crop. Res. 2017, 207, 1–12. [Google Scholar] [CrossRef]
- Wossen, T.; Berger, T.; Haile, M.G.; Troost, C. Impacts of climate variability and food price volatility on household income and food security of farm households in East and West Africa. Agric. Syst. 2018, 163, 7–15. [Google Scholar] [CrossRef]
- Sewell, A.M.; Hartnett, M.K.; Gray, D.I.; Blair, H.T.; Kemp, P.D.; Kenyon, P.R. Using educational theory and research to refine agricultural extension: Affordances and barriers for farmers’ learning and practice change. J. Agric. Educ. Ext. 2017, 23, 313–333. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. In Toward Climate Resilient Food Systems and Europe’s Roles; Center for Development Research (ZEF), University of Bonn: Bonn, Germany, 2016. [Google Scholar]
- Laborte, A.G.; Paguirigan, N.C.; Moya, P.F.; Nelson, A.; Sparks, A.H.; Gregorio, G.B. Farmers’ preference for rice traits: Insights from farm surveys in Central Luzon, Philipines, 1966–2012. PLoS ONE 2015, 10, e0136562. [Google Scholar] [CrossRef]
- Slagboom, M.; Kargo, M.; Edwards, D.; Sørensen, A.C.; Thomasen, J.R.; Hjortø, L. Organic dairy farmers put more emphasis on production traits than conventional farmers. J. Dairy. Sci. 2016, 99, 9845–9856. [Google Scholar] [CrossRef]
- Anja, C.; Weltzien, E.; Rattunde, F.; Ashby, J.A. Gender differentiation of farmer preferences for varietal traits in crop improvement: Evidence and issues. In Plant Breeding Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Asante, M.D.; Asante, B.O.; Acheampong, G.K.; Offei, S.K.; Gracen, V.; Adu-Dapaah, H.; Danquah, E.Y. Farmer and consumer preferences for rice in the Ashanti region of Ghana: Implications for rice breeding in West Africa. J. Plant Breed. Crop Sci. 2013, 5, 229–238. [Google Scholar] [CrossRef]
- Sedem Ehiakpor, D.; Apumbora, J.; Danso-Abbeam, G.; Adzawla, W. Households’ preference for local rice in the upper east region, Ghana. Adv. Agric. 2017, 2017, 1812975. Available online: https://www.hindawi.com/journals/aag/2017/1812975/ (accessed on 15 November 2022). [CrossRef]
- Hagan, M.A.S.; Acheampong, A.G.; Awunyo-Vitor, D. Factors Driving Farm Gate Price of Tomatoes in Ghana: An Application of Hedonic Model. South Asian J. Soc. Stud. Econ. 2020, 6, 51–61. [Google Scholar] [CrossRef]
- Danso-Abbeam, G.; Bosiako, J.A.; Ehiakpor, D.S.; Mabe, F.N. Adoption of improved maize variety among farm households in the northern region of Ghana. Cogent Econ. Financ. 2017, 5, 1416896. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.U.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Anang, B.T.; Adjetey, S.N.A.; Abiriwe, S.A. Consumer preferences for rice quality characteristics and the effects on price in the Tamale Metropolis, Northern Region, Ghana. Int. J. AgriScience 2011, 1, 67–74. [Google Scholar]
- Abubakar, H.N.; Kolo, I.N.; Yabagi, A.A.; Garba, Y. Adoption of production technologies by lowland rice farmers in Lavun local government areas of Niger State, Nigeria. Int. J. Agric. Ext. 2016, 4, 49–56. [Google Scholar]
- Danquah, I.B.; Egyir, I.S. Factors that influence household demand for locally produced brown rice in Ghana. J. Econ. Sustain. Dev. 2014, 5, 14–24. [Google Scholar]
- Ayeduvor, S. Assessing Quality Attributes That Drive Preference and Consumption of Local Rice in Ghana; International Food Policy Research Institute: Washington, DC, USA, 2018; Volume 48. [Google Scholar]
- Bairagi, S.; Mohanty, S.; Custodio, M.C. Consumers’ preferences for rice attributes in Cambodia: A choice modeling approach. J. Agribus. Dev. Emerg. Econ. 2019, 9, 94–108. [Google Scholar] [CrossRef]
- Addison, M.; Edusah, S.E.; Sarfo-Mensah, P. Gender constraints and rice varietal characteristics preferences in lowland rice ecosystem in Ghana. Dev. Ctry. Stud. 2014, 4, 92–98. [Google Scholar]
- Mattson, D. E Statistics-Difficult Concept of Understanding Explanations; Bolchanzy Carducci Publishers Inc.: Wauconda, IL, USA, 1986; pp. 281–423. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics Using Stata (5:706); Stata Press: College Station, TX, USA, 2010. [Google Scholar]
- Asante, B.O.; Adabah, R.; Agyeman, K.; Ayeh, S.J.; Aidoo, R.; Afona, D. Preference for improved varietal attributes of Bambara groundnut among smallholder farmers in Ghana. Afr. J. Agric. Resour. Econ. Vol. 2021, 16, 155–168. [Google Scholar] [CrossRef]
- Doss, C.R.; Morris, M.L. How does gender affect the adoption of agricultural innovations? The case of improved maize technology in Ghana. Agric. Econ. 2001, 25, 27–39. [Google Scholar] [CrossRef]
- Doss, C.R. Analyzing technology adoption using microstudies: Limitations, challenges, and opportunities for improvement. Agric. Econ. 2006, 34, 207–219. [Google Scholar] [CrossRef]
- Morris, M.L.; Doss, C.R. How does gender affect the adoption of agricultural innovations? The case of improved maize technology in Ghana (No. 371-2016-19355). In Proceedings of the Agricultural and Applied Economics Association (AAEA) Conferences 1999 Annual Meeting, Nashville, TN, USA, 8–11 August 1999. [Google Scholar]
- Morris, W.; Henley, A.; Dowell, D. Farm diversification, entrepreneurship and technology adoption: Analysis of upland farmers in Wales. J. Rural. Stud. 2017, 53, 132–143. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Mulwa, C.; Marenya, P.; Kassie, M. Response to climate risks among smallholder farmers in Malawi: A multivariate probit assessment of the role of information, household demographics, and farm characteristics. Clim. Risk Manag. 2017, 16, 208–221. [Google Scholar] [CrossRef]
- Tasila Konja, D.; Mabe, F.N.; Alhassan, H. Technical and resource-use-efficiency among smallholder rice farmers in Northern Ghana. Cogent Food Agric. 2019, 5, 1651473. [Google Scholar] [CrossRef]
- Danso-Abbeam, G.; Armed, M.; Baidoo, F. Determinants of consumer preference for local rice in Tamale Metropolis, Ghana. Int. J. Educ. Soc. Sci. 2014, 1, 13–34. [Google Scholar]
- Diako, C.; Sakyi-Dawson, E.; Bediako-Amoa, B.; Saalia, F.K.; Manful, J.T. Consumer perceptions, knowledge and preferences for aromatic rice types in Ghana. Nat. Sci. 2010, 8, 12–19. [Google Scholar]
- Alhassan, H.; Frimpong, T.; Mohammed, A.S. Do Ghanaian rural consumers prefer imported rice to local rice? Appl. Res. J. 2016, 1, 3. [Google Scholar]
- Ogundele, O. Factors influencing consumers’ preference for local rice in Nigeria. Afr. J. Mark. Manag. 2014, 6, 49–55. [Google Scholar]
- Mponela, P.; Tamene, L.; Ndengu, G.; Magreta, R.; Kihara, J.; Mango, N. Determinants of integrated soil fertility management technologies adoption by smallholder farmers in the Chinyanja Triangle of Southern Africa. Land Use Policy 2016, 59, 38–48. [Google Scholar] [CrossRef]
- Akudugu, M.A.; Guo, E.; Dadzie, S.K. Adoption of modern agricultural production technologies by farm households in Ghana: What factors influence their decisions. J. Biol. Agric. Healthc. 2012, 2, 1–14. [Google Scholar]
- Nguezet, P.M.D.; Diagne, A.; Okoruwa, O.V.; Ojehomon, V.; Manyong, V. Estimating the actual and potential adoption rates and determinants of NERICA rice varieties in Nigeria. J. Crop Improv. 2013, 27, 561–585. [Google Scholar] [CrossRef]
- Mignouna, D.B.; Manyong, V.M.; Mutabazi, K.D.; Senkondo, E.M. Determinants of adopting imazapyr-resistant maize for Striga control in Western Kenya: A double-hurdle approach. J. Dev. Agric. Econ. 2011, 3, 572–580. [Google Scholar]
- Timu, A.G.; Mulwa, R.; Okello, J.; Kamau, M. The role of varietal attributes on adoption of improved seed varieties: The case of sorghum in Kenya. Agric. Food Secur. 2014, 3, 9. [Google Scholar] [CrossRef]
- Asante, B.O.; Osei-Adu, J.; Bonsu, K.O.; Osei, M.K.; Adabah, R.; Ayeh, S.J.; Okyere, J.; Gyoungrae, C.; Hakyung, J.; Soonsung, H. Farmers’ Perceptions and Preferences for Improved Varietal Traits in the Wenchi and Offinso North Municipalities of Ghana. J. Korean Soc. Int. Agric. 2020, 32, 81–91. [Google Scholar] [CrossRef]
Variable | Women (n = 134) | Men (n = 266) | Pooled (n = 400) | t-Stat |
---|---|---|---|---|
Age | 46.52 (12.2) | 45.29 (12.3) | 45.70 (12.4) | 0.94 |
Education years | 5.55 (5.2) | 8.6 (4.8) | 7.59 (5.1) | −5.80 *** |
Residential status (indigene) a | 0.485 (0.5) | 0.624 (0.48) | 0.577 (0.4) | −2.67 *** |
Marital status (married) a | 0.731 (0.44) | 0.88 (0.25) | 0.832 (0.37) | −3.90 *** |
Household size | 5.97 (2.76) | 6.57 (3.53) | 6.37 (3.30) | −1.73 * |
Off-farm activity (Yes = 1) a | 0.343 (0.47) | 0.413 (0.49) | 0.39 (0.48) | −1.35 |
Off-farm income (GHS) | 2582.93 (325.0) | 5928.18 (597.6) | 4941.76 (694.8) | −3.57 *** |
Rice-farming experience (year) | 11.58 (9.0) | 14.87 (10.8) | 13.77 (10.3) | −3.02 *** |
Farm size (acre) | 4.12 (3.85) | 5.11 (5.25) | 4.79 (4.8) | −1.88 * |
Extension contacts (Yes = 1) a | 0.582 (0.49) | 0.616 (0.48) | 0.605 (0.48) | −0.66 |
Times of visit by extension agent | 15.78 (10.3) | 9.67 (7.27) | 11.67 (3.8) | 0.57 |
FBO membership (Yes = 1) a | 0.402 (0.49) | 0.492 (0.50) | 46.25 (49.7) | −1.69 * |
Credit access (Yes = 1) a | 0.343 (0.47) | 0.338 (0.47) | 0.34 (0.47) | 0.09 |
Frequency of rice cultivation | 1.51 (0.50) | 1.52 (0.54) | 1.52 (0.5) | −0.06 *** |
Distance to market (km) | 18.48 (8.77) | 12.79 (6.23) | 14.69 (7.1) | 0.73 |
Amount of cash received (GHS) | 2653.98 (706.6) | 2489.15 (345.6) | 2546.79 (500.1) | 0.20 |
Coastal savanna | 0.41 (0.49) | 0.493 (0.50) | 0.497 (0.50) | −2.48 ** |
Transition | 0.589 (0.49) | 0.458 (0.49) | 0.502 (0.50) | 2.48 *** |
Variable | Women (n = 188) | Men (n = 73) | Pooled (n = 261) | t-Stat |
---|---|---|---|---|
Age | 34.78 (11.4) | 35.23 (10.6) | 34.90 (11.1) | −0.29 |
Education years | 9.73 (7.1) | 10.89 (5.3) | 10.05 (6.6) | −1.26 |
Residential status (indigene) a | 0.521 (0.5) | 0.644 (0.48) | 0.555 (0.4) | −1.79 * |
Marital status (married) a | 0.590 (0.49) | 0.616 (0.48) | 0.597 (0.49) | −0.38 |
Household head (Yes = 1) a | 0.175 (0.38) | 0.849 (0.36) | 0.364 (0.48) | −13.0 *** |
Household size | 4.65 (2.8) | 4.32 (2.7) | 4.56 (2.8) | 0.85 |
Number of economic active member | 1.03 (0.2) | 1.39 (0.87) | 1.13 (0.21) | −1.27 |
Monthly income (GHS) | 1229.73 (698.8) | 1590.25 (260.6) | 1329.56 (609.5) | −0.42 |
Frequency of consumption (within one week) | 5.04 (2.1) | 5.12 (2.5) | 5.06 (2.2) | −0.25 |
Number of men customers you buy rice from for home consumption | 3.68 (1.9) | 3.11 (1.05) | 3.52 (1.13) | 0.35 |
Number of women customers you buy rice from for home consumption | 38.78 (26.8) | 21.34 (11.7) | 35.41 (22.6) | 3.15 *** |
Agroecological zones | ||||
Coastal savanna | 0.308 (0.46) | 0.236 (0.42) | 0.288 (0.45) | 1.15 |
Transition | 0.463 (0.49) | 0.611 (0.49) | 0.503 (0.50) | −2.15 ** |
Forest | 0.228 (0.42) | 0.152 (0.36) | 0.207 (0.40) | 1.35 |
Varietal Attribute | Women (n = 134) | Men (n = 266) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Required (1) | Important (2) | Nice to Have (3) | Neutral (4) | Mean | Rank | Required (1) | Important (2) | Nice to Have (3) | Neutral (4) | Mean | Rank | |
High yielding | 131 (97.7%) | 1 (0.8%) | 1 (0.8%) | 1 (0.8%) | 1.04 | 1st | 250 (93.9%) | 9 (3.4%) | 5 (1.8%) | 2 (0.5%) | 1.09 | 1st |
Biotic stress | ||||||||||||
Tolerance to pests | 92 (68.7%) | 29 (21.6%) | 10 (7.5%) | 3 (2.2%) | 1.34 | 1st | 190 (71.4%) | 52 (19.6%) | 19 (7.2%) | 5 (1.9%) | 1.38 | 1st |
Tolerance to diseases | 87 (64.9%) | 39 (29.1%) | 5 (3.7%) | 3 (2.2%) | 1.43 | 2nd | 182 (68.4%) | 65 (24.4%) | 16 (6%) | 3 (1.1%) | 1.40 | 2nd |
Kendall’s W | 0.663 | 0.681 | ||||||||||
Chi-square | 121.88 | 157.80 | ||||||||||
df | 1 | 1 | ||||||||||
Asymptotic significance | 0.000 | 0.000 | ||||||||||
Abiotic stress | ||||||||||||
Tolerance to lodging | 90 (67.2%) | 35 (26.1%) | 6 (4.5%) | 3 (2.2%) | 1.41 | 1st | 179 (67.3%) | 65 (24.4%) | 19 (7.1%) | 3 (1.1%) | 1.39 | 1st |
Tolerance to drought stress | 87 (64.9%) | 35 (26.1%) | 7 (5.2%) | 5 (3.7%) | 1.47 | 2nd | 184 (69.2%) | 59 (22.2%) | 20 (7.5%) | 3 (1.1%) | 1.40 | 2nd |
Tolerant to poor soil condition | 82 (61.2%) | 33 (24.6%) | 16 (11.9%) | 3 (2.2%) | 1.55 | 3rd | 166 (62.4%) | 68 (25.6%) | 24 (9%) | 8 (3%) | 1.52 | 3rd |
Tolerance to shattering | 62 (46.3%) | 41 (30.6%) | 16 (11.9%) | 15 (11.2%) | 1.88 | 4th | 154 (57.8%) | 71 (26.7%) | 22 (8.3%) | 19 (7.1%) | 1.64 | 4th |
Ease of threshing | 49 (36.6%) | 41 (30.6%) | 20 (14.9%) | 24 (17.9%) | 2.14 | 5th | 104 (39.1%) | 79 (29.7%) | 53 (19.9%) | 30 (11%) | 2.03 | 5th |
Kendall’s W | 0.602 | 0.698 | ||||||||||
Chi-square | 166.75 | 206.53 | ||||||||||
df | 4 | 4 | ||||||||||
Asymptotic significance | 0.000 | 0.000 | ||||||||||
Agronomic traits | ||||||||||||
Early maturity | 112 (83.5%) | 17 (12.7%) | 4 (2.9%) | 1 (0.8%) | 1.20 | 1st | 217 (81.6%) | 35 (13.2%) | 9 (3.4%) | 5 (1.9%) | 1.25 | 1st |
Long grain | 87 (64.9%) | 29 (21.6%) | 13 (9.7%) | 5 (3.7%) | 1.52 | 3rd | 176 (66.1%) | 55 (20.7%) | 31 (11.7%) | 4 (1.5%) | 1.48 | 2nd |
Short and medium growth cycle (108–120 days) | 85 (63.4%) | 35 (26.1%) | 8 (5.9%) | 6 (4.5%) | 1.51 | 2nd | 166 (62.4%) | 64 (24.1%) | 23 (8.7%) | 13 (4.9%) | 1.56 | 3rd |
Heavy panicles | 79 (58.9%) | 36 (26.9%) | 8 (5.9%) | 11 (8.2%) | 1.63 | 5th | 154 (57.8%) | 78 (29.3%) | 19 (7.1%) | 15 (5.6%) | 1.61 | 4th |
Medium height | 83 (61.9%) | 32 (23.9%) | 12 (8.9%) | 7 (5.2%) | 1.57 | 4th | 154 (57.8%) | 65 (24.4%) | 29 (10.9%) | 18 (6.8%) | 1.66 | 5th |
Profuse tillering | 76 (56.7%) | 39 (29.1%) | 8 (5.9%) | 11 (8.2%) | 1.65 | 6th | 141 (53%) | 81 (30.5%) | 28 (10.5%) | 16 (6%) | 1.69 | 6th |
Thick tillers | 65 (48.5%) | 39 (29.1%) | 16 (11.9%) | 14 (10.5%) | 1.84 | 7th | 136 (51.1%) | 87 (32.7%) | 32 (12%) | 11 (4.1%) | 1.71 | 7th |
Green leaves | 41 (30.6%) | 38 (28.4%) | 22 (16.4%) | 33 (24.6%) | 2.35 | 8th | 104 (39.1%) | 79 (29.7%) | 43 (16.2%) | 40 (15%) | 2.07 | 8th |
Tall height | 11 (8.2%) | 26 (19.4%) | 33 (24.6%) | 64 (47.8%) | 3.11 | 9th | 34 (12.7%) | 33 (12.4%) | 44 (16.5%) | 155 (58.3%) | 3.20 | 9th |
Kendall’s W | 0.702 | 0.741 | ||||||||||
Chi-square | 339.91 | 391.01 | ||||||||||
df | 8 | 8 | ||||||||||
Asymptotic significance | 0.000 | 0.000 | ||||||||||
Cooking qualities | 220 (55%) | 85 (21.3%) | 62 (15.5%) | 33 (8.3%) | 1.77 | 6th | ||||||
Taste | 122 (91%) | 10 (7.5%) | 1 (0.8%) | 1 (0.8%) | 1.11 | 1st | 233 (87.5%) | 26 (9.8%) | 3 (1.1%) | 4 (1.5%) | 1.16 | 1st |
Aromatic | 121 (90.3%) | 10 (7.5%) | 2 (1.5%) | 1 (0.8%) | 1.12 | 2nd | 229 (86%) | 26 (9.8%) | 6 (2.3%) | 5 (1.9%) | 1.19 | 2nd |
Nutrient content | 92 (68.7%) | 25 (18.7%) | 7 (5.2%) | 10 (7.5%) | 1.51 | 3rd | 139 (52.2%) | 70 (26.3%) | 32 (12%) | 25 (9.4%) | 1.79 | 7th |
White grain color | 88 (65.7%) | 22 (16.4%) | 7 (5.2%) | 17 (12.7%) | 1.64 | 4th | 176 (66.1%) | 60 (22.6%) | 18 (6.8%) | 12 (4.5%) | 1.49 | 4th |
Good grain-swelling capacity | 68 (50.7%) | 37 (27.6%) | 13 (9.7%) | 16 (11.9%) | 1.82 | 6th | 193 (72.5%) | 34 (12.8%) | 22 (8.3%) | 17 (6.4%) | 1.48 | 3rd |
Translucence | 75 (55.9%) | 32 (23.9%) | 10 (7.5%) | 17 (12.7%) | 1.76 | 5th | 145 (54.5%) | 53 (19.9%) | 52 (19.5%) | 16 (6%) | 1.77 | 6th |
Short cooking time | 72 (53.7%) | 31 (23.1%) | 12 (8.9%) | 19 (14.2%) | 1.85 | 8th | 143 (53.7%) | 72 (27.1%) | 31 (11.7%) | 20 (7.5%) | 1.72 | 5th |
Texture | 66 (49.3%) | 42 (31.3%) | 8 (5.7%) | 18 (13.4%) | 1.83 | 7th | 127 (47.7%) | 84 (31.6%) | 30 (11.3%) | 25 (9.4%) | 1.82 | 8th |
Brown grain color | 19 (14.2%) | 24 (17.9%) | 38 (28.4%) | 53 (39.6%) | 2.93 | 9th | 28 (10.5%) | 40 (15%) | 93 (34.9%) | 105 (39%) | 3.03 | 9th |
Kendall’s W | 0.699 | 0.719 | ||||||||||
Chi-square | 403.01 | 493.94 | ||||||||||
df | 8 | 8 | ||||||||||
Asymptotic significance | 0.000 | 0.000 | ||||||||||
Postharvest | ||||||||||||
Less % brokenness | 81 (60.5%) | 41 (30.6%) | 9 (6.7%) | 3 (2.2%) | 1.50 | 1st | 175 (65.7%) | 61 (22.9%) | 25 (9.4%) | 5 (1%) | 1.47 | 1st |
Ease of dehulling | 44 (32.8%) | 45 (33.6%) | 18 (13.4%) | 27 (20.2%) | 2.20 | 3rd | 123 (46.2%) | 49 (18.4%) | 56 (21.1%) | 38 (14%) | 2.03 | 2nd |
Mill without parboiling | 57 (42.5%) | 35 (26.1%) | 14 (10.5%) | 28 (20.9%) | 2.09 | 2nd | 84 (31.6%) | 76 (28.6%) | 62 (23.3%) | 44 (16.5%) | 2.24 | 3rd |
Kendall’s W | 0.571 | 0.599 | ||||||||||
Chi-square | 211.2 | 282.98 | ||||||||||
df | 2 | 2 | ||||||||||
Asymptotic significance | 0.000 | 0.000 |
Variables | Women (n = 188) | Men (n = 73) | ||
---|---|---|---|---|
Marginal Effects | Std. Error | Marginal Effects | Std. Error | |
Age (years) | −0.006 * | 0.003 | 0.004 | 0.005 |
Residence status (indigene = 1) | 0.004 | 0.071 | 0.510 | 0.401 |
Years of schooling | 0.007 | 0.005 | 0.013 | 0.008 |
Household size | −0.003 | 0.013 | −0.052 * | 0.027 |
Monthly income (GHS) | −0.045 | 0.085 | 0.379 *** | 0.115 |
Marital status (married) | 0.048 | 0.074 | 0.217 * | 0.112 |
Purchase price per 5kg bag (GHS) | −0.165 * | 0.087 | −0.035 | 0.095 |
Brand of rice (foreign = 1) | −0.028 | 0.090 | 0.167 | 0.102 |
Aromatic (yes = 1) | 0.321 * | 0.165 | 0.313 | 0.250 |
Less % brokenness (yes = 1) | 0.007 | 0.107 | −0.920 *** | 0.271 |
White grain color (yes = 1) | −0.075 | 0.145 | −0.608 ** | 0.290 |
Texture (yes = 1) | 0.182 * | 0.099 | 0.113 | 0.148 |
Medium-sized grain (yes = 1) | −0.170 * | 0.086 | −0.085 | 0.103 |
Short grain (yes = 1) | −0.084 | 0.073 | 0.192 * | 0.099 |
Translucent shining (yes = 1) | 0.173 * | 0.088 | −0.255 | 0.152 |
Short cooking time (yes) | 0.172 | 0.144 | 0.602 ** | 0.230 |
LR χ2 | 39.47 | 46.40 | ||
Prob > χ2 | 0.000 | 0.000 | ||
Pseudo R2 | 0.566 | 0.771 |
Variables | Women (n = 134) | Men (n = 266) | ||||||
---|---|---|---|---|---|---|---|---|
AGRA Rice | Jasmine | Togo Marshall | Amankwatia | AGRA Rice | Jasmine | Togo Marshall | Amankwatia | |
Age (years) | −0.011 | −0.026 *** | 0.005 | 0.018 ** | −0.015 ** | 0.002 | −0.006 | 0.014 |
(0.009) | (0.008) | (0.009) | (0.009) | (0.007) | (0.008) | (0.008) | (0.009) | |
Married | 0.236 | −0.437 ** | −0.113 | 0.058 | −0.177 | −0.537 ** | 0.249 | 0.311 |
(0.184) | (0.1947) | (0.174) | (0.179) | (0.227) | (0.249) | (0.219) | (0.261) | |
Indigene | −0.197 | −0.167 | −0.725 *** | 0.615 *** | 0.530 *** | 0.118 | −0.167 | 0.159 |
(0.180) | (0.185) | (0.179) | (0.180) | (0.146) | (0.155) | (0.145) | (0.163) | |
Years of schooling | 0.075 *** | 0.012 | −0.021 | 0.005 | 0.035 ** | 0.047 *** | −0.045 *** | 0.014 |
(0.018) | (0.018) | (0.016) | (0.019) | (0.015) | (0.015) | (0.015) | (0.017) | |
Off-farm activity | −0.279 | 0.452 ** | −0.162 | 0.628 *** | −0.158 | 0.190 | −0.092 | −0.076 |
(0.178) | (0.192) | (0.166) | (0.176) | (0.148) | (0.152) | (0.142) | (0.159) | |
Farming experience (years) | 0.015 | 0.002 | 0.005 | −0.003 | 0.020 ** | 0.006 | −0.002 | −0.029 *** |
(0.011) | (0.010) | (0.011) | (0.018) | (0.008) | (0.008) | (0.008) | (0.009) | |
Household size | 0.040 | −0.023 | −0.023 | −0.017 | −0.044 * | −0.024 | −0.009 | 0.013 |
(0.032) | (0.027) | (0.028) | (0.030) | (0.024) | (0.026) | (0.026) | (0.033) | |
Frequency of cultivation | 0.003 | −0.219 | −0.134 | 0.353 ** | 0.040 | 0.131 | −0.217 * | 0.639 *** |
(0.166) | (0.176) | (0.161) | (0.165) | (0.135) | (0.146) | (0.125) | (0.167) | |
Farm size (acre) | −0.018 | −0.005 | −0.045 ** | 0.066 ** | 0.058 *** | 0.020 * | 0.009 | 0.036 |
(0.019) | (0.021) | (0.020) | (0.028) | (0.014) | (0.011) | (0.011) | (0.015) | |
FBO participants | 0.292 * | 0.219 | −0.713 *** | −0.133 | −0.082 | 0.159 | 0.120 | 0.074 |
(0.177) | (0.188) | (0.158) | (0.183) | (0.147) | (0.156) | (0.146) | (0.175) | |
Extension contacts | −0.023 *** | −0.021 * | 0.054 *** | 0.055 *** | −0.011 | 0.025 * | 0.011 | 0.063 *** |
(0.009) | (0.011) | (0.008) | (0.012) | (0.007) | (0.015) | (0.010) | (0.016) | |
Market proximity (km) | 0.025 *** | −0.012 | −0.051 *** | −0.003 | 0.013 * | 0.009 | −0.021 | −0.027 |
(0.008) | (0.009) | (0.008) | (0.014) | (0.007) | (0.008) | (0.025) | (0.076) | |
Access to credit | −0.305 * | −0.011 | −0.068 | 0.345 * | −0.017 | 0.240 | 0.276 * | 0.165 |
(0.176) | (0.188) | (0.178) | (0.202) | (0.158) | (0.155) | (0.148) | (0.167) | |
Coastal savanna | 0.214 | 0.397 * | 0.252 | 0.393 * | −0.374 ** | 0.243 | 0.009 | 0.111 *** |
(0.215) | (0.210) | (0.212) | (0.226) | (0.163) | (0.157) | (0.159) | (0.019) | |
Tolerance to pests | −0.712 * | 0.418 | −0.109 *** | 0.196 *** | 0.417 | 0.439 | −0.107 *** | −0.101 *** |
(0.372) | (0.326) | (0.038) | (0.041) | (0.337) | (0.323) | (0.317) | (0.036) | |
High yielding | 0.478 | 0.135 *** | −0.116 *** | −0.634 *** | 0.060 | −0.131 | −0.119 ** | −0.608 *** |
(0.574) | (0.047) | (0.036) | (0.0733) | (0.313) | (0.395) | (0.055) | (0.058) | |
Early maturity | −0.280 | 0.311 | 0.087 | −0.864 ** | −0.101 | −0.349 | −0.286 | 0.753 *** |
(0.351) | (0.329) | (0.358) | (0.439) | (0.244) | (0.254) | (0.245) | (0.272) | |
Aromatic | 0.959 * | 0.448 *** | −0.108 ** | −0.256 | 1.199 ** | 0.334 | 0.609 | −0.811 |
(0.576) | (0.027) | (0.053) | (0.620) | (0.518) | (0.472) | (0.499) | (0.511) | |
Tolerance to shattering | 0.154 | −0.204 | 0.700 *** | 0.237 | 0.595 *** | −0.078 | −0.105 | 0.128 *** |
(0.213) | (0.240) | (0.219) | (0.250) | (0.200) | (0.210) | (0.197) | (0.019) | |
Wald χ2 | 440.17 | 198.02 | ||||||
Prob > χ2 | 0.000 | 0.000 | ||||||
rho21 | 0.372 | 0.133 | ||||||
(0.092) | (0.081) | |||||||
rho31 | 0.175 | 0.188 | ||||||
(0.093) | (0.084) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asante, B.O.; Frimpong, B.N.; Asante, M.D.; Prah, S.; Ayeh, S.J.; Sakyiamah, B.; Zenna, N.; Mujawamariya, G.; Tufan, H.A. Exploring Gender Differences in the Role of Trait Preferences among Stakeholders in the Rice Value Chain in Ghana. Sustainability 2023, 15, 6026. https://doi.org/10.3390/su15076026
Asante BO, Frimpong BN, Asante MD, Prah S, Ayeh SJ, Sakyiamah B, Zenna N, Mujawamariya G, Tufan HA. Exploring Gender Differences in the Role of Trait Preferences among Stakeholders in the Rice Value Chain in Ghana. Sustainability. 2023; 15(7):6026. https://doi.org/10.3390/su15076026
Chicago/Turabian StyleAsante, Bright Owusu, Benedicta Nsiah Frimpong, Maxwell Darko Asante, Stephen Prah, Stephen John Ayeh, Bernard Sakyiamah, Negussie Zenna, Gaudiose Mujawamariya, and Hale Ann Tufan. 2023. "Exploring Gender Differences in the Role of Trait Preferences among Stakeholders in the Rice Value Chain in Ghana" Sustainability 15, no. 7: 6026. https://doi.org/10.3390/su15076026
APA StyleAsante, B. O., Frimpong, B. N., Asante, M. D., Prah, S., Ayeh, S. J., Sakyiamah, B., Zenna, N., Mujawamariya, G., & Tufan, H. A. (2023). Exploring Gender Differences in the Role of Trait Preferences among Stakeholders in the Rice Value Chain in Ghana. Sustainability, 15(7), 6026. https://doi.org/10.3390/su15076026