Solid-State Shear Milling for Recycling Aluminum–Plastic Packaging Waste: A Sustainable Solution for Mixed Plastic Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Characterization
3. Results and Discussion
3.1. Characterization of Raw Material
3.2. Morphology of Treated PMW
3.3. Chemical Characterization of Treated PMW
3.4. Morphology of PMW Samples
3.5. Shear Viscosity of PMW Samples
3.6. Mechanical Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Siddiqui, M.Z.; Park, Y.K.; Kang, Y.; Watanabe, A.; Kim, S.; Kim, Y.M. Effective use of aluminum-plastic laminate as a feedstock for catalytic pyrolysis over micro and mesoporous catalysts. J. Clean. Prod. 2019, 229, 1093–1101. [Google Scholar] [CrossRef]
- Georgiopoulou, I.; Pappa, G.D.; Vouyiouka, S.N.; Magoulas, K. Recycling of post-consumer multilayer Tetra Pak® packaging with the Selective Dissolution-Precipitation process. Resourc. Conserv. Recycl. 2021, 165, 105268. [Google Scholar] [CrossRef]
- Diop, C.I.K.; Lavoie, J.-M.; Huneault, M.A. Separation and Reuse of Multilayer Food Packaging in Cellulose Reinforced Polyethylene Composites. Waste Biomass Valoriz. 2017, 8, 85–93. [Google Scholar] [CrossRef]
- Nieminen, J.; Palonen, J.; Itäpelto, M.; Karkki, P.; Makipaja, L. Liquid Carton Waste Material Recycling Process and Apparatus for Recycling Liquid Carton Waste Material. U.S. Patent 6,401,635, 11 November 2002. [Google Scholar]
- Johansson, H.; Ackermann, P.W. Method of Recovering Individual Component Parts from Packaging Material Waste. U.S. Patent 5,421,526, 6 June 1995. [Google Scholar]
- Zhang, S.; Zhang, L.; Luo, K.; Sun, Z.; Mei, X. Separation properties of aluminium–plastic laminates in post-consumer Tetra Pak with mixed organic solvent. Waste Manag. Res. 2014, 32, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Salazar, M.A.; Mina, J.H.; Herrera-Franco, P.J. The effect of interfacial adhesion on the creep behaviour of LDPE–Al–Fique composite materials. Compos. Part B Eng. 2013, 55, 345–351. [Google Scholar] [CrossRef]
- Korkmaz, A.; Yanik, J.; Brebu, M.; Vasile, C. Pyrolysis of the tetra pak. Waste Manag. 2009, 29, 2836–2841. [Google Scholar] [CrossRef]
- Yin, S.; Rajarao, R.; Sahajwalla, V. Thermal transformation of metallized plastic packaging waste into value-added Al/Al3C4/AlN resources. ACS Sustain. Chem. Eng. 2018, 7, 1723–1733. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, K.; Zhang, L.; Mei, X.; Cao, S.; Wang, B. Interfacial separation and characterization of Al–PE composites during delamination of post-consumer Tetra Pak materials. J. Chem. Technol. Biotechnol. 2015, 90, 1152–1159. [Google Scholar] [CrossRef]
- Yin, S.; Rajarao, R.; Gong, B.; Wang, Y.; Kong, C.; Sahajwalla, V. Thermo-delamination of metallised composite plastic: An innovative approach to generate Aluminium from packaging plastic waste. J. Clean. Prod. 2019, 211, 321–329. [Google Scholar] [CrossRef]
- Yang, S.; Li, W.; Bai, S.; Wang, Q. Fabrication of morphologically controlled composites with high thermal conductivity and dielectric performance from aluminum nanoflake and recycled plastic package. ACS Appl. Mater. Interfaces 2018, 11, 3388–3399. [Google Scholar] [CrossRef]
- Ribeiro, C.; Ferreira, J.V.; Partidário, P. Life cycle assessment of a multi-material car component. Int. J. Life Cycle Assess. 2007, 12, 336. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Mao, A.; Shmulsky, R.; Li, Q.; Wan, H. Recycling polyurethane materials: A comparison of polyol from glycolysis with micronized polyurethane powder in particleboard applications. BioResources 2014, 9, 4253–4265. [Google Scholar] [CrossRef]
- Jeong, K.M.; Hong, Y.J.; Saha, P.; Park, S.H.; Kim, J.K. Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology. Waste Manag. Res. 2014, 32, 1113–1122. [Google Scholar] [CrossRef]
- Ashton, E.G.; Kindlein, W., Jr.; Demori, R.; Cândido, L.H.A.; Mauler, R. Recycling polymeric multi-material products through micronization. J. Clean. Prod. 2016, 116, 268–278. [Google Scholar] [CrossRef]
- Qi, W.; Cao, J.; Huang, J.; Xi, X. A study on the pan-milling process and the pulverizing efficiency of pan-mill type equipment. Polym. Eng. Sci. 2004, 37, 1091–1101. [Google Scholar]
- Yang, S.; Bai, S.; Wang, Q. Preparation of fine fiberglass-resin powders from waste printed circuit boards by different milling methods for reinforcing polypropylene composites. J. Appl. Polym. Sci. 2015, 132, 42494. [Google Scholar] [CrossRef]
- Ayyer, R.; Rosenmayer, T.; Schreiber, W.; Colton, J. Effects of micronized rubber powders on structure and properties of polypropylene composites. Waste Biomass Valoriz. 2013, 4, 65–71. [Google Scholar] [CrossRef]
- Wei, P.; Bai, S. Fabrication of a high-density polyethylene/graphene composite with high exfoliation and high mechanical performance via solid-state shear milling. RSC Adv. 2015, 5, 93697–93705. [Google Scholar] [CrossRef]
- Pan, H.; Bai, S.; Qi, W. Structure and performance of Poly(vinyl alcohol)/wood powder composite prepared by thermal processing and solid state shear milling technology. Compos. Part B Eng. 2016, 99, 373–380. [Google Scholar]
- Yang, S.; Bai, S.; Duan, W.; Wang, Q. Preparation of composites based on recycled polypropylene and automotive shredder residue. Polym. Int. 2018, 67, 936–945. [Google Scholar] [CrossRef]
- Yang, S.; Zhong, F.; Wang, M.; Bai, S.; Wang, Q. Recycling of automotive shredder residue by solid state shear milling technology. J. Ind. Eng. Chem. 2018, 57, 143–153. [Google Scholar] [CrossRef]
- Griffith, A.A., VI. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. 1921, 221, 163–198. [Google Scholar]
Components | PE | PET | PVC | Sawdust | Sandstones | Impurities |
---|---|---|---|---|---|---|
wt % | 67% | 18% | 7.5% | 1.5% | 1% | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, B.; Li, L.; Ding, S.; Chen, N.; Bai, S.; Yang, S. Solid-State Shear Milling for Recycling Aluminum–Plastic Packaging Waste: A Sustainable Solution for Mixed Plastic Waste. Sustainability 2023, 15, 6144. https://doi.org/10.3390/su15076144
Wei B, Li L, Ding S, Chen N, Bai S, Yang S. Solid-State Shear Milling for Recycling Aluminum–Plastic Packaging Waste: A Sustainable Solution for Mixed Plastic Waste. Sustainability. 2023; 15(7):6144. https://doi.org/10.3390/su15076144
Chicago/Turabian StyleWei, Baojie, Liang Li, Shiyu Ding, Ning Chen, Shibing Bai, and Shuangqiao Yang. 2023. "Solid-State Shear Milling for Recycling Aluminum–Plastic Packaging Waste: A Sustainable Solution for Mixed Plastic Waste" Sustainability 15, no. 7: 6144. https://doi.org/10.3390/su15076144
APA StyleWei, B., Li, L., Ding, S., Chen, N., Bai, S., & Yang, S. (2023). Solid-State Shear Milling for Recycling Aluminum–Plastic Packaging Waste: A Sustainable Solution for Mixed Plastic Waste. Sustainability, 15(7), 6144. https://doi.org/10.3390/su15076144