Effect of a Material Based on Date Palm Fibers on the Thermal Behavior of a Residential Building in the Atlantic Climate of Morocco
Abstract
:1. Introduction
Research Significance
2. Materials and Methods
- Scenario 1: reference house building built using regular Moroccan materials;
- Scenario 2: reference house building modified by using DPF materials for insulation.
2.1. Reference Residential Building
2.2. Context Climatic
2.3. Studied Configurations
2.4. Simulation Models
3. Results
3.1. Heating and Cooling Loads
3.2. Thermal Behavior Analysis
3.2.1. Thermal Behavior in the Winter
3.2.2. Thermal Behavior in the Summer
3.3. Analysis of Greenhouse Gas (GHG) Emissions
4. Discussion
5. Conclusions
6. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | |
A | Frontal surface area [m2] |
C | Correlation parameter for the internal convection heat transfer coefficient [Wm−2·K−n−1] |
Ci | Thermal capacity of the zone [J·K−1] |
Ccover | Cloudiness factor of the sky |
cp | Specific heat [J·kg−1·K −1] |
Depth | Depth below the surface [m] |
Edif, h | Diffused radiation on the horizontal [W·m−2] |
Eglob, h | Total radiation on the horizontal [W·m−2] |
hinside | Heat transfer coefficient of internal surfaces [W m−2 K−1] |
hc,outside | Heat transfer coefficient of external surfaces [W m−2 K−1] |
Pi | Heat load of zone i (negative for heating, positive for cooling) [W] |
P0 | Atmospheric pressure at the reference height [Pa] |
Patm | Atmospheric pressure [Pa] |
Tw | Surface temperature of a wall [K] |
Ta | Temperature of the ambient air [K] |
Text | Outside temperature [K] |
Tvent | Air temperature from ventilation equipment [K] |
Tzone | Temperature of zone [K] |
Ti | Temperature of i zone node [K] |
Tsky | Temperature sky [K] |
Tsat | Saturation temperature [K] |
Tmean | Mean surface temperature [K] |
tnow | Current day of the year [Day] |
tshift | Day of the year corresponding to the minimum surface temperature [Day] |
U | Thermal transmittance [W/m−2 K−1] |
Vwind | Wind speed [m·s−1] |
Volume flow rate [m3/s] | |
Greek symbols | |
α | Thermal diffusivity [m2/s·K] |
ε | Thermal emissivity of a surface |
ρ | Density [kg/m3] |
References
- Shafigh, P.; Asadi, I.; Mahyuddin, N.B. Concrete as a thermal mass material for building applications-A review. J. Build. Eng. 2018, 19, 14–25. [Google Scholar] [CrossRef]
- Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings (EPBD recast). Off. J. Eur. Union 2010, 53. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:FULL:EN:PDF (accessed on 28 January 2023).
- Moroccan Agency for Energy Efficiency (AMEE). Available online: http://www.amee.ma (accessed on 2 May 2022).
- International Energy Agency (IEA). Energy Policies beyond IEA Countries: Morocco. Available online: https://webstore.iea.org/energy-policies-beyond-iea-countries-morocco-2019 (accessed on 19 May 2022).
- Ministère de l’Energie, des Mines, de l’Eau et de l’Environnement. Loi n°47-09 Relative à L’efficacité Energétique. Rabat, Maroc. 2014. Available online: https://www.mem.gov.ma/ (accessed on 28 January 2023).
- Kousksou, T.; Allouhi, A.; Belattar, M.; Jamil, A.; El Rhafiki, T.; Arid, A.; Zeraouli, Y. Renewable energy potential and national policy directions for sustainable development in Morocco. Renew. Sustain. Energy Rev. 2015, 47, 46–57. [Google Scholar] [CrossRef]
- RTCM, Moroccan Thermal Regulation for Constructions. 2015. Available online: www.aderee.ma/index.php/fr/expertise/efficacite-energetique (accessed on 25 April 2022).
- Alotaibi, M.D.; Alshammari, B.A.; Saba, N.; Alothman, O.Y.; Sanjay, M.R.; Almutairi, Z.; Jawaid, M. Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). Int. J. Biol. Macromol. 2019, 135, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Asim, M.; Jawaid, M.; Fouad, H.; Alothman, O.Y. Effect of surface modified date palm fibre loading on mechanical, thermal properties of date palm reinforced phenolic composites. Compos. Struct. 2021, 267, 113913. [Google Scholar] [CrossRef]
- (FAOSTAT) Food and Agriculture Organization of the United Nations Statistics Division. “Données Statistiques de Production Végétale”, FAOSTAT Database (2015). Available online: faostat3.fao.org (accessed on 20 May 2022).
- Abu-Jdayil, B.; Hittini, W.; Mourad, A.H. Development of date pit–polystyrene thermoplastic heat insulator material: Physical and thermal properties. Int. J. Polym. Sci. 2019, 2019, 1697627. [Google Scholar] [CrossRef] [Green Version]
- Mlhem, A.; Abu-Jdayil, B.; Tong-Earn, T.; Iqbal, M. Sustainable heat insulation composites from date palm fibre reinforced poly (β-hydroxybutyrate). J. Build. Eng. 2022, 54, 104617. [Google Scholar] [CrossRef]
- Boumhaout, M.; Boukhattem, L.; Hamdi, H.; Benhamou, B.; Ait Nouh, F. Thermomechanical characterization of a biocomposite building material: Mortar reinforced with date palm fibers mesh. Constr. Build. Mater. 2017, 135, 241–250. [Google Scholar] [CrossRef]
- Benmansour, N.; Agoudjil, B.; Gherabli, A.; Kareche, A.; Boudenne, A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014, 81, 98–104. [Google Scholar] [CrossRef]
- Chikhi, M.; Agoudjil, B.; Boudenne, A.; Gherabli, A. Experimental investigation of new biocomposite with low cost for thermal insulation. Energy Build. 2013, 66, 267–273. [Google Scholar] [CrossRef]
- Oushabi, A.; Sair, S.; Abboud, Y.; Tanane, O.; Bouari, A.E.L. Natural thermal-insulation materials composed of renewable resources: Characterization of local date palm fibers (LDPF). J. Mater. Environ. Sci. 2015, 6, 3395–3402. [Google Scholar]
- Djoudi, A.; Khenfer, M.M.; Bali, A.; Bouziani, T. Effect of the addition of date palm fibers on thermal properties of plaster concrete: Experimental study and modeling. J. Adhes. Sci. Technol. 2014, 28, 2100–2111. [Google Scholar] [CrossRef]
- Drissi Lamrhari, E.H.; Benhamou, B. Thermal behavior and energy saving analysis of a flat with different energy efficiency measures in six climates. In Building Simulation; Tsinghua University Press: Beijing, China, 2018; Volume 11, pp. 1123–1144. [Google Scholar]
- Mastouri, H.; Benhamou, B.; Hamdi, H.; Mouyal, E. Thermal performance assessment of passive techniques integrated into a residential building in semi-arid climate. Energy Build. 2017, 143, 1–16. [Google Scholar] [CrossRef]
- López-Escamilla, Á.; Herrera-Limones, R.; León-Rodríguez, Á.L. Evaluation of Environmental Comfort in a Social Housing Prototype with Bioclimatic Double-Skin in a Tropical Climate. Build. Environ. 2022, 218, 109119. [Google Scholar] [CrossRef]
- Santy, S.; Matsumoto, H.; Tsuzuki, K.; Susanti, L. Bioclimatic Analysis in Pre-Design Stage of Passive House in Indonesia. Buildings 2017, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Calama-González, C.M.; Symonds, P.; León-Rodríguez, Á.L.; Suárez, R. Optimal Retrofit Solutions Considering Thermal Comfort and Intervention Costs for the Mediterranean Social Housing Stock. Energy Build. 2022, 259, 111915. [Google Scholar] [CrossRef]
- Hakeem, I.; Hosen, M.A.; Alyami, M.; Qaidi, S.; Özkılıc, Y. Influence of Heat–Cool Cyclic Exposure on the Performance of Fiber-Reinforced High-Strength Concrete. Sustainability 2023, 15, 1433. [Google Scholar] [CrossRef]
- Dlimi, M.; Iken, O.; Agounoun, R.; Zoubir, A.; Kadiri, I.; Sbai, K. Energy performance and thickness optimization of hemp wool insulation and air cavity layers integrated in Moroccan building walls. Sustain. Prod. Consum. 2019, 20, 273–288. [Google Scholar] [CrossRef]
- Dlimi, M.; Iken, O.; Agounoun, R.; Kadiri, I.; Sbai, K. Dynamic assessment of the thermal performance of hemp wool insulated external building walls according to the Moroccan climatic zoning. J. Energy Storage 2019, 26, 101007. [Google Scholar] [CrossRef]
- Van Hooff, T.; Blocken, B.; Hensen, J.L.M.; Timmermans, H.J. On the predicted effectiveness of climate adaptation measures for residential buildings. Build Environ. 2014, 82, 300–316. [Google Scholar] [CrossRef]
- Meteonorm V7.0.22.8. 2017. Available online: www.meteonorm.com (accessed on 20 April 2022).
- NM ISO 7730; Ergonomics of the Thermal-Analytical: Determination of the Ambiance and Interpretation of Thermal Comfort Using of the PMV and PPD Indices Calculation and Local Thermal Comfort Criteria. Moroccan Institute for Standardization IMANOR: Rabat, Morocco, 2010.
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrif 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Chegari, B.; Tabaa, M.; Moutaouakkil, F.; Simeu, E.; Medromi, H. Energy Savings and Thermal Comfort Benefits of Shading Devices: Case Study of a Typical Moroccan Building. In Proceedings of the 4th International Conference on Smart City Applications, Casablanca, Morocco, 2–4 October 2019. [Google Scholar]
- Merini, I.; Molina-García, A.; García-Cascales, M.S.; Mahdaoui, M.; Ahachad, M. Analysis and comparison of energy efficiency code requirements for buildings: A Morocco–Spain case study. Energies 2020, 13, 5979. [Google Scholar] [CrossRef]
- Boukhattem, L.; Boumhaout, M.; Hamdi, H.; Benhamou, B.; Ait Nouh, F. Moisture content influence on the thermal conductivity of insulating building materials made from date palm fibers mesh. Constr. Build. Mater. 2017, 148, 811–823. [Google Scholar] [CrossRef]
- TRNSYS 17. Multizone Building Modeling with Type56 and TRNBuild; TRNSYS17: Madison, WI, USA, 2010; Volume 5, pp. 85–88. [Google Scholar]
- Mourid, A.; El Alami, M. Experimental analysis of the thermal behavior of two cavities kind of living space with and without PCM on envelopes. Int. J. Embed. Syst. 2017, 5, 2005–2320. [Google Scholar]
- Mourid, A.; El Alami, M. Comparative experimental and numerical studies of usual insulation materials and PCMs in buildings at Casablanca. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 353, p. 012002. [Google Scholar]
- Stazi, F.; Vegliò, A.; Di Perna, C.; Munafò, P. Experimental comparison between 3 different traditional wall constructions and dynamic simulations to identify optimal thermal insulation strategies. Energy Build. 2013, 60, 429–441. [Google Scholar] [CrossRef]
- Martín, S.; Mazarrón, F.R.; Cañas, I. Study of thermal environment inside rural houses of Navapalos (Spain): The advantages of reuse buildings of high thermal inertia. Constr. Build. Mater. 2010, 24, 666–676. [Google Scholar] [CrossRef]
- Byrne, A.; Byrne, G.; Davies, A.; Robinson, A.J. Transient and quasi-steady thermal behaviour of a building envelope due to retrofitted cavity wall and ceiling insulation. Energy Build. 2013, 61, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Toguyeni, D.Y.; Coulibaly, O.; Ouedraogo, A.; Koulidiati, J.; Dutil, Y.; Rousse, D. Study of the influence of roof insulation involving local materials on cooling loads of houses built of clay and straw. Energy Build. 2012, 50, 74–80. [Google Scholar] [CrossRef]
- Belhous, M.; Mastouri, H.; Radoine, H.; Kaitouni, S.I.; Benhamou, B. Multi-objective Optimization of the Thickness of the Thermal Insulation and the Windows Area of a House in Benguerir, Morocco. In Proceedings of the 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), Tetouan, Morocco, 23–27 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Lachheb, A.; Allouhi, A.; El Marhoune, M.; Saadani, R.; Kousksou, T.; Jamil, A.; Oussouaddi, O. Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study. J. Clean. Prod. 2019, 209, 1411–1419. [Google Scholar] [CrossRef]
- Dlimi, M.; Agounoun, R.; Kadiri, I.; Saadani, R.; Rahmoune, M. Thermal performance assessment of double hollow brick walls filled with hemp concrete insulation material through computational fluid dynamics analysis and dynamic thermal simulations. J. Electr. Electron. Eng. 2023, 3, 100124. [Google Scholar] [CrossRef]
- Ouhaibi, S.; Gounni, A.; Belouaggadia, N.; Ezzine, M.; Lbibb, R. Thermal performance of new ecological material integrated into residential building in semi-arid and cold climates. Appl. Therm. Eng. 2020, 181, 115933. [Google Scholar] [CrossRef]
- Pragati, S.; Shanthi Priya, R.; Pradeepa, C.; Senthil, R. Simulation of the Energy Performance of a Building with Green Roofs and Green Walls in a Tropical Climate. Sustainability 2023, 15, 2006. [Google Scholar] [CrossRef]
Country | City | Latitude | Longitude | Elevation (m) | Tmin (°C) | Tmoy (°C) | Tmax (°C) |
---|---|---|---|---|---|---|---|
Morocco | Casablanca | 33°34′ | 7°35′ | 60 | 5 °C | 18.31 °C | 33 °C |
Material | Thickness (cm) | Transmission Coefficient (W/(m2·K)) | |
---|---|---|---|
Eternal Walls | Cement plaster | 2 | 2.42 |
Brick wall | 20 | ||
Cement plaster | 2 | ||
Roof | Tile | 1 | 2.48 |
Mortar layer | 10 | ||
Concert slab | 16 | ||
Plaster | 2 |
Materiel | Thickness (cm) | Thermal Conductivity (W/m·K) | Density (kg/m3) |
---|---|---|---|
M-DPF | 2 | 0.243 | 1217 |
P-DPF | 3 | 0.033 | 121 |
Surface Type | C (kJ·h−1·m−2·K·n−1) | N |
---|---|---|
Floor | 7.20 | 0.31 |
Ceiling | 3.88 | 0.31 |
Wall (vertical surface) | 5.76 | 0.30 |
Annual Cooling/Heating Energy Demand (kWh/year) | Averaged Cooling/Heating Energy Demand (kWh/m2·year) | |
---|---|---|
Heating demand | 3172 | 24.4 |
Cooling demand | 3081 | 23.7 |
Heating and cooling demand | 6253 | 48.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhous, M.; Boumhaout, M.; Oukach, S.; Hamdi, H. Effect of a Material Based on Date Palm Fibers on the Thermal Behavior of a Residential Building in the Atlantic Climate of Morocco. Sustainability 2023, 15, 6314. https://doi.org/10.3390/su15076314
Belhous M, Boumhaout M, Oukach S, Hamdi H. Effect of a Material Based on Date Palm Fibers on the Thermal Behavior of a Residential Building in the Atlantic Climate of Morocco. Sustainability. 2023; 15(7):6314. https://doi.org/10.3390/su15076314
Chicago/Turabian StyleBelhous, Mhaijiba, Mustapha Boumhaout, Soufiane Oukach, and Hassan Hamdi. 2023. "Effect of a Material Based on Date Palm Fibers on the Thermal Behavior of a Residential Building in the Atlantic Climate of Morocco" Sustainability 15, no. 7: 6314. https://doi.org/10.3390/su15076314
APA StyleBelhous, M., Boumhaout, M., Oukach, S., & Hamdi, H. (2023). Effect of a Material Based on Date Palm Fibers on the Thermal Behavior of a Residential Building in the Atlantic Climate of Morocco. Sustainability, 15(7), 6314. https://doi.org/10.3390/su15076314