Multidimensional Evaluation of Urban Land-Use Efficiency and Innovation Capability Analysis: A Case Study in the Pearl River Delta Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Framework
2.2. Study Area
2.3. Indicator System
2.3.1. Multidimensional Evaluation Index System
2.3.2. Innovation Capability Evaluation System
2.4. Research Methods
2.4.1. Regional Development Level Index
2.4.2. Multidimensional Evaluation Model
2.4.3. Innovation Capability Evaluation Model
2.4.4. Coupling Coordination Model
2.5. Data Sources
3. Results
3.1. Characteristics of Urban-Land Changes
3.2. Multidimensional Evaluation of Urban Land-Use Efficiency
3.2.1. Urban Development Level Index and Modeling Results
3.2.2. Multidimensional Evaluation
- Economic development
- 2.
- Livelihood protection
- 3.
- Ecological protection
- 4.
- Social Equity
- 5.
- Innovation Capability
3.3. Coupling Coordination Analysis
3.3.1. Evaluation of Innovation Capability
3.3.2. Analysis of the Coupling Coordination of Innovation Capability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Wu, Y.; Dang, H. Urban land use efficiency and coordination in China. Sustainability 2017, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Zhang, Y. Evaluation and optimization of urban land-use efficiency: A case study in Sichuan Province of China. Sustainability 2021, 13, 1771. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, W.; Li, L.; Ye, Y.; Song, X. Urban land use efficiency and improvement potential in China: A stochastic frontier analysis. Land Use Policy 2020, 99, 105046. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, L.; Sun, Z.; Wang, X. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. J. Environ. Manag. 2019, 243, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Choi, Y.; Wang, N. The economic efficiency of urban land use with a sequential slack-based model in Korea. Sustainability 2017, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.; Legara, E.F.; Lee, K.K.; Hung, G.G.; Monterola, C. Impacts of land use and amenities on public transport use, urban planning and design. Land Use Policy 2016, 57, 356–367. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, G.; Tian, Z. Built-up land efficiency in urban China: Insights from the general land use plan (2006–2020). Habitat Int. 2016, 51, 31–38. [Google Scholar] [CrossRef]
- Bai, Y.; Jiang, B.; Wang, M.; Li, H.; Alatalo, J.M.; Huang, S. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy 2016, 55, 348–351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Otsuka, K.; Fu, X.; Yan, S. Introduction to symposium: Structural change, industrial upgrading and China’s economic transformation. China Econ. Rev. 2017, 46, S1–S2. [Google Scholar] [CrossRef]
- Liu, X.; Yan, J.; Wang, Q. Practical Dilemma and Rational Choice of Underused Urban Land Readjustment in China. China Land Sci. 2015, 29, 48–54. [Google Scholar]
- Yan, S.; Peng, J.; Wu, Q. Exploring the non-linear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China. Land Use Policy 2020, 99, 104944. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, D.; Cheng, J.; Jiang, X.; Lun, F.; Zhang, Q. Does regional economic integration promote urban land use efficiency? Evidence from the Yangtze River Delta, China. Habitat Int. 2021, 116, 102404. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W. Exploring the spatial-temporal disparities of urban land use economic efficiency in China and its influencing factors under environmental constraints based on a sequential slacks-based model. Sustainability 2015, 7, 10171–10190. [Google Scholar] [CrossRef] [Green Version]
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef]
- Sun, Y.F.; Ma, A.B.; Su, H.R.; Su, S.L.; Chen, F.; Wang, W.; Weng, M. Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy 2020, 90, 104265. [Google Scholar] [CrossRef]
- Shuai, L.; Xiao, Y.X.; Kai, Z.; Li, M.X.; Qi, L. Understanding the Complexity of Regional Innovation Capacity Dynamics in China: From the Perspective of Hidden Markov Model. Sustainability 2021, 13, 1658. [Google Scholar]
- Jessica, I. From squatter to settler: Applying the lessons of nineteenth century U.S. public land policy to twenty-first century land struggles in Brazil. Ecol. Law Quart. 2011, 38, 179–232. [Google Scholar]
- Eric, F.L.; Patrick, M.F. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar]
- Giuseppina, S. Urbanization strategies, rural development and land use changes in China: A multiple-level integrated assessment. Land Use Policy 2012, 29, 165–178. [Google Scholar]
- Babenko, V.; Zomchak, L.; Nehrey, M. Ecological and economic aspects of sustainable development of Ukrainian regions. E3S Web Conf. 2021, 280, 02003. [Google Scholar] [CrossRef]
- Farafonova, N.V. Essence and Components of Economic Efficiency of Business Activities within Agrarian Sector. Actual Probl. Econ. 2011, 124, 176–185. [Google Scholar]
- Herzig, A.; Nguyen, T.T.; Ausseil, A.G.; Maharjan, G.R.; Dymond, J.R.; Arnhold, S.; Koellner, T.; Rutledge, D.; Tenhunen, J. Assessing resource-use efficiency of land use. Environ. Model. Softw. 2018, 107, 34–49. [Google Scholar] [CrossRef]
- Mirzaei, M.; Solgi, E.; Salmanmahiny, A. Assessment of impacts of land use changes on surface water using L-THIA model (case study: Zayandehrud river basin). Environ. Monit. Assess. 2016, 188, 690. [Google Scholar] [CrossRef]
- Auzins, A.; Geipele, I.; Stamure, I. Measuring land-use efficiency in land management. Adv. Mater. Res. 2013, 804, 205–210. [Google Scholar] [CrossRef]
- Storch, H.; Schmidt, M. Spatial planning: Indicators to assess the efficiency of Land consumption and Land-use. In Standards and Thresholds for Impact Assessment; Springer: Berlin/Heidelberg, Germany, 2008; pp. 217–228. [Google Scholar]
- Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L.; Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L. Long-term urban growth and land use efficiency in Southern Europe: Implications for sustainable land management. Sustainability 2015, 7, 3359–3385. [Google Scholar] [CrossRef] [Green Version]
- Azam, H.; Bahman, J.A.; Jan, A.; Nicola, F.; Kaneyuki, N. Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resour. Manag. 2013, 27, 2217–2229. [Google Scholar]
- Byungil, K.; Hyounkyu, L.; Hyungbae, P.; Hyoungkwan, K. Estimation of greenhouse gas emissions from land-use changes due to road construction in the Republic of Korea. J. Constr. Eng. Manag. 2013, 139, 339–346. [Google Scholar]
- Irwin, E.G.; Bockstael, N.E. Land use externalities, open space preservation, and urban sprawl. Reg. Sci. Urban Econ. 2004, 34, 705–725. [Google Scholar] [CrossRef]
- Nesru, H.K.; Jaap, A.Z.; Monica, L. Urban land use efficiency in Ethiopia: An assessment of urban land use sustainability in Addis Ababa. Land Use Policy 2020, 99, 105–117. [Google Scholar]
- Herold, M.; Couclelis, H.; Clarke, K.C. The role of spatial metrics in the analysis and modeling of urban land use change. Comput. Environ. Urban 2005, 29, 369–399. [Google Scholar] [CrossRef]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land usepatterns: A case study in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- Pouriyeh, A.; Khorasani, N.; Lotfi, F.H. Efficiency evaluation of urban development in Yazd City, Central Iran using data envelopment analysis. Environ. Monit. Assess. 2016, 188, 618. [Google Scholar] [CrossRef]
- Masini, E.; Tomao, A.; Barbati, A.; Corona, P.; Serra, P.; Salvati, L. Urban growth, land-use efficiency and local socioeconomic context: A comparative analysis of 417 metropolitan regions in Europe. Environ. Manag. 2019, 63, 322–337. [Google Scholar] [CrossRef]
- Liu, P.; Ravenscroft, N. Collective action in implementing top-down land policy: The case of Chengdu, China. Land Use Policy 2017, 65, 45–52. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Zhu, S. Do China’s economic development zones improve land use efficiency? The effects of selection, factor accumulation and agglomeration. Landsc. Urban Plan. 2017, 162, 145–156. [Google Scholar] [CrossRef]
- Liang, L.T.; Zhai, B.; Fan, P. Impacts of economic agglomeration and industrial structure on urban land use efficiency. Areal Res. Dev. 2017, 36, 113–117. [Google Scholar]
- Lang, W.; Long, Y.; Chen, T. Rediscovering Chinese cities through the lens of land use patterns. Land Use Policy 2018, 79, 362–374. [Google Scholar] [CrossRef]
- Zhou, Y.; Tan, G.G. Impact of local government competition on the efficiency of urban land use. Areal Res. Dev. 2017, 36, 118–122. [Google Scholar]
- Liu, Y.; Fan, P.; Yue, W.; Song, Y. Impacts of land finance on urban sprawl in China: The case of Chongqing. Land Use Policy 2018, 72, 420–432. [Google Scholar] [CrossRef]
- Yan, S.; Zhao, S. Spatiotemporal dynamics of urban expansion in 13 cities across the Jing-Jin-Ji Urban Agglomeration from 1978 to 2015. Ecol. Indic. 2018, 87, 302–313. [Google Scholar]
- Zhu, X.; Li, Y.; Zhang, P.; Wei, Y.; Zheng, X.; Xie, L. Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy 2019, 88, 104083. [Google Scholar] [CrossRef]
- Shen, X.; Wang, X.; Zhang, Z.; Lu, Z.; Lv, T. Evaluating the effectiveness of land use plans in containing urban expansion: An integrated view. Land Use Policy 2019, 80, 205–213. [Google Scholar] [CrossRef]
- Lu, X.H.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- He, S.; Yu, S.; Li, G.; Zhang, J. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 2020, 95, 104576. [Google Scholar] [CrossRef]
- Louw, E.; Van der Krabben, E.; Amsterdam, H. The Spatial Productivity of Industrial Land. Reg. Stud. 2012, 46, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; He, C.; Wei, Y.H.D. A comparative study of land efficiency of electronics firms located within and outside development zones in Shanghai. Habitat Int. 2016, 56, 63–73. [Google Scholar] [CrossRef]
- Tan, S.K.; Hu, B.X.; Kuang, B.; Zhou, M. Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China. Land Use Policy 2021, 106, 105449. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA: A slacks-based measure approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Fang, X. The index system and method study of land use efficiency measurement. Syst. Eng. 2004, 22, 22–26. [Google Scholar]
- Smyth, A.J.; Dumanski, J. An International Framework for Evaluating Sustainable Land Management; World Soil Resources Report, No. 73; FAO: Rome, Italy, 1993; pp. 10–15. [Google Scholar]
- He, C.C.; Han, Q.; De Vries, B. Evaluation of sustainable land management in urban area: A case study of Shanghai, China. Ecol. Indic. 2017, 80, 106–113. [Google Scholar] [CrossRef]
- Alessia, I.; Isidoro, F. Land-Use Mix and Urban Sustainability: Benefits and Indicators Analysis. Sustainability 2021, 13, 23. [Google Scholar]
- Qian, Q.; Liu, H.; Zheng, X. A Regional Sustainable Intensive Land Use Evaluation Based on Ecological Constraints: A Case Study in Jinan City. Sustainability 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sun, K.; Ni, J.; Xie, D. Evaluation and Factor Analysis of the Intensive Use of Urban Land Based on Technical EfficiencyMeasurement—A Case Study of 38 Districts and Counties in Chongqing, China. Sustainability 2020, 12, 8623. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, Y.; Cao, X. Evaluation of Land Intensive Use in Shanghai Pilot Free Trade Zone. Land 2019, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Wey, W.-M.; Hsu, J. New Urbanism and Smart Growth: Toward achieving a smart National Taipei University District. Habitat Int. 2014, 42, 164–174. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhang, L.; Huang, X.J.; Zhao, Y.T.; Zhang, Y.P. Evolution of the Spatiotemporal Pattern of Urban Industrial Land Use Efficiency in China. Sustainability 2018, 10, 2174. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wei, C.F.; Yin, K. Recent 10-year land use change and evaluation of their performance, in Chongqing, China. Energy Procedia 2011, 5, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Chao, P.L.; Guo, Y.C.; Zhong, C.S. Urban Land-Use Efficiency Analysis by Integrating LCRPGR and Additional Indicators. Sustainability 2021, 13, 13518. [Google Scholar]
- Xu, W.T.; Yang, L.C. Evaluating the urban land use plan with transit accessibility. Sustain. Cities Soc. 2019, 45, 474–485. [Google Scholar] [CrossRef]
- Beames, A.; Broekx, S.; Heijungs, R.; Lookman, R.; Boonen, K.; Van Geert, Y.; Dendoncker, K.; Seuntjens, P. Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment. J. Clean. Prod. 2015, 101, 109–117. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, J.; Xu, Q.; Luo, X. Urban-rural spatial transformation process and influences from the perspective of land use: A case study of the Pearl River Delta Region. Habitat Int. 2020, 104, 102234. [Google Scholar] [CrossRef]
- Yan, Y.C.; He, M.X.; Song, L.F. Evaluation of regional industrial cluster innovation capability based on particle swarm clustering algorithm and multi-objective optimization. Complex Intell. Syst. 2021, 9, 40747. [Google Scholar] [CrossRef]
- Xiao, Z.; Du, X.; Wu, C. Regional Difference and Evolution and Convergence of Innovation Capability in China: Research on Space and Factorial Levels. Sustainability 2017, 9, 1644. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Li, S.H. Study on the measurement of economic high-quality development level in China in the new era. J. Quant. Tech. Econ. 2018, 11, 3–20. (In Chinese) [Google Scholar]
- Ma, R.; Luo, H.; Wang, H.W.; Wang, T.C. Study of evaluating high-quality economic development in Chinese regions. China Soft Sci. 2019, 7, 60–67. (In Chinese) [Google Scholar]
- Wang, F.; Tang, P.L. Multi-functional performance evaluation of urban construction land considering regional development stage differences—Taking the Pearl River Delta city cluster as an example. China Land Sci. 2020, 34, 87–95. (In Chinese) [Google Scholar]
- Ding, S. Comprehensive Study on Urban Land Use Efficiency and Coordination. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2011. [Google Scholar]
Classification | Specific Indicators | Indicator Interpretation | Nature of Indicator | Indicator Weights |
---|---|---|---|---|
Economic Development (M1) (0.221) | Average fixed asset investment per land area | Sum of fixed asset investment in secondary and tertiary sectors/construction land area | + | 0.276 |
Total social retail sales of consumer goods per land | Total social retail consumer goods/construction land area | + | 0.227 | |
Proportion of commercial land | Land area for commercial service facilities/construction land area | + * | 0.189 | |
Secondary and tertiary industry output per land | Sum of output value of secondary and tertiary industries/construction land area | + | 0.308 | |
Livelihood Protection (M2)(0.190) | Proportion of residential land area | Residential land area/construction land area | + * | 0.223 |
Proportion of transport infrastructure area | Transport infrastructure land area/construction land area | + | 0.205 | |
Secondary and tertiary employees per land | Sum of employees in secondary and tertiary sectors/construction land area | + | 0.363 | |
Financial expenditure per land | Financial expenditure/construction land area | + | 0.209 | |
Ecological Protection (M3) (0.101) | Energy consumption per land | Sum of the value of energy consumed by the secondary and tertiary sectors/construction land area | − | 0.251 |
Proportion of ecological land | Ecological land area/construction land area | − | 0.412 | |
Sewage discharge per land | Industrial pollutants emissions/construction land area | − | 0.337 | |
Social Equity (M4) (0.174) | Proportion of Administrative land | Administrative office and service land area/construction land area | − * | 0.424 |
Construction maintenance expenses per land | Utility construction and maintenance expenses/construction land area | + | 0.397 | |
Urban–rural gap | Per-capita disposable income of urban residents/per-capita disposable income of rural residents | − | 0.179 | |
Innovation Capability (M5) (0.314) | Innovation input per land | R&D expenses/construction land area | + | 0.190 |
Innovation Foundationsper land | Number of students in colleges and universities/construction land area | + | 0.251 | |
Innovative outputs per land | Number of patents granted/construction land area | + | 0.316 | |
Innovative environmentper land | Number of provincial-level new R&D institutions/construction land area | + | 0.243 |
Classification | Indicator | Nature of Indicator | Indicator Weights (Mean Value) | |
---|---|---|---|---|
Innovation Capability | Innovation Input | R&D expenses | + | 0.213 |
Number of R&D staff | + | 0.132 | ||
Innovation Basis | Number of students in colleges and universities | + | 0.151 | |
Number of full-time teachers in colleges and universities | + | 0.113 | ||
Innovative Outputs | Number of patents granted | + | 0.167 | |
Number of patent applications | + | 0.132 | ||
Innovative Environment | Number of provincial-level new R&D institutions | + | 0.092 |
Performance Areas | Score |
---|---|
Level 1 areas | 0.6 ≤ Performance values ≤ 1 |
Level 2 areas | 0.5 ≤ Performance values < 0.6 |
Level 3 areas | 0.4 ≤ Performance values < 0.5 |
Level 4 areas | 0 ≤ Performance values < 0.4 |
Development Stage | Dysfunctional Decline | Transition Reconciliation | Integration Coordination | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | [0, 0.1) | [0.1, 0.2) | [0.2, 0.3) | [0.3, 0.4) | [0.4, 0.5) | [0.5, 0.6) | [0.6, 0.7) | [0.7, 0.8) | [0.8, 0.9) | [0.9, 1] |
Coupling Coordination level | Extreme disorder | Serious disorder | Moderate disorder | Mild disorder | Borderline disorder | Reluctant disorder | Primary coordination | Intermediate coordination | Good coordination | Best coordination |
Symbols | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 |
Year | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 |
---|---|---|---|---|
Growth Rate (km2/h) | 189.14 | 274.78 | 168.79 | 153.67 |
City | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | ||||
---|---|---|---|---|---|---|---|---|
Area Percentage (%) | Growth Rate (km2/h) | Area Percentage (%) | Growth Rate (km2/h) | Area Percentage (%) | Growth Rate (km2/h) | Area Percentage (%) | Growth Rate (km2/h) | |
Guangzhou | 17.61 | 39.89 | 21.20 | 45.05 | 22.01 | 33.63 | 26.01 | 30.02 |
Shenzhen | 35.84 | 10.92 | 43.18 | 28.38 | 41.28 | 23.96 | 51.52 | 7.64 |
Zhuhai | 17.49 | 18.07 | 24.41 | 23.97 | 25.67 | 1.27 | 25.13 | 0.81 |
Foshan | 29.80 | 32.90 | 33.68 | 29.47 | 34.98 | 29.21 | 39.86 | 14.77 |
Jiangmen | 6.71 | 36.26 | 9.06 | 33.97 | 10.02 | 23.14 | 11.11 | 14.93 |
Zhaoqing | 3.87 | 12.85 | 5.12 | 22.08 | 5.73 | 12.44 | 6.52 | 24.49 |
Huizhou | 5.81 | 8.94 | 6.75 | 42.19 | 7.90 | 28.38 | 10.69 | 34.21 |
Dongguan | 40.17 | 8.24 | 41.60 | 31.02 | 48.27 | 8.37 | 53.52 | 25.21 |
Zhongshan | 28.31 | 21.07 | 34.10 | 18.64 | 36.29 | 8.38 | 38.12 | 1.59 |
Division | City | Urban Development Level Index | Ideal Value |
---|---|---|---|
Class A | Guangzhou | 0.893 | 0.893 |
Shenzhen | 0.872 | ||
Zhuhai | 0.722 | ||
Class B | Foshan | 0.711 | 0.711 |
Dongguan | 0.612 | ||
Zhongshan | 0.607 | ||
Class C | Huizhou | 0.589 | 0.589 |
Zhaoqing | 0.571 | ||
Jiangmen | 0.554 |
Cities | Economic Development | Livelihood Protection | Ecological Protection | Social Equity | Innovation Capability | Comprehensive Performance | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | Rank | Level | Value | Rank | Level | Value | Rank | Level | Value | Rank | Level | Value | Rank | Level | Value | Rank | Level | |
Guangzhou | 0.793 | 2 | L1 | 0.497 | 5 | L3 | 0.382 | 9 | L4 | 0.483 | 7 | L3 | 0.727 | 1 | L1 | 0.601 | 3 | L1 |
Shenzhen | 0.819 | 1 | L1 | 0.533 | 4 | L2 | 0.513 | 5 | L2 | 0.546 | 5 | L2 | 0.693 | 2 | L1 | 0.742 | 1 | L1 |
Zhuhai | 0.472 | 5 | L3 | 0.377 | 9 | L2 | 0.394 | 8 | L4 | 0.372 | 9 | L4 | 0.524 | 4 | L2 | 0.499 | 7 | L3 |
Foshan | 0.501 | 4 | L2 | 0.698 | 1 | L1 | 0.487 | 7 | L3 | 0.549 | 6 | L2 | 0.571 | 3 | L2 | 0.702 | 2 | L1 |
Jiangmen | 0.378 | 7 | L4 | 0.487 | 7 | L3 | 0.601 | 2 | L1 | 0.562 | 4 | L2 | 0.397 | 7 | L4 | 0.467 | 8 | L3 |
Zhaoqing | 0.309 | 9 | L4 | 0.546 | 3 | L2 | 0.577 | 3 | L2 | 0.692 | 1 | L1 | 0.397 | 9 | L4 | 0.562 | 6 | L2 |
Huizhou | 0.456 | 6 | L3 | 0.593 | 2 | L4 | 0.491 | 6 | L3 | 0.667 | 2 | L1 | 0.481 | 6 | L3 | 0.573 | 5 | L2 |
Dongguan | 0.537 | 3 | L2 | 0.492 | 6 | L3 | 0.621 | 1 | L1 | 0.399 | 8 | L4 | 0.483 | 5 | L3 | 0.581 | 4 | L2 |
Zhongshan | 0.315 | 8 | L4 | 0.391 | 8 | L4 | 0.515 | 4 | L2 | 0.583 | 3 | L2 | 0.399 | 8 | L4 | 0.464 | 9 | L3 |
City | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Guangzhou | 0.541 | 0.538 | 0.545 | 0.572 | 0.574 | 0.609 | 0.582 | 0.612 | 0.663 | 0.624 | 0.656 |
Shenzhen | 0.556 | 0.579 | 0.597 | 0.587 | 0.591 | 0.614 | 0.662 | 0.674 | 0.683 | 0.679 | 0.671 |
Zhuhai | 0.364 | 0.373 | 0.392 | 0.369 | 0.402 | 0.338 | 0.334 | 0.387 | 0.392 | 0.401 | 0.432 |
Foshan | 0.299 | 0.305 | 0.313 | 0.319 | 0.321 | 0.325 | 0.366 | 0.378 | 0.381 | 0.401 | 0.414 |
Jiangmen | 0.254 | 0.248 | 0.266 | 0.268 | 0.263 | 0.268 | 0.268 | 0.271 | 0.274 | 0.271 | 0.269 |
Zhaoqing | 0.212 | 0.223 | 0.227 | 0.228 | 0.235 | 0.257 | 0.306 | 0.312 | 0.314 | 0.320 | 0.323 |
Huizhou | 0.360 | 0.363 | 0.364 | 0.361 | 0.422 | 0.347 | 0.338 | 0.341 | 0.344 | 0.362 | 0.384 |
Dongguan | 0.230 | 0.238 | 0.242 | 0.249 | 0.302 | 0.307 | 0.316 | 0.321 | 0.332 | 0.368 | 0.377 |
Zhongshan | 0.291 | 0.230 | 0.293 | 0.284 | 0.301 | 0.279 | 0.283 | 0.285 | 0.287 | 0.291 | 0.299 |
Coefficient | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
R | 0.344 | 0.356 | 0.370 | 0.356 | 0.357 | 0.394 | 0.403 | 0.409 | 0.408 | 0.402 | 0.401 |
G | 0.345 | 0.367 | 0.345 | 0.350 | 0.323 | 0.354 | 0.343 | 0.343 | 0.359 | 0.327 | 0.322 |
CV | 0.186 | 0.196 | 0.186 | 0.126 | 0.192 | 0.137 | 0.140 | 0.157 | 0.157 | 0.143 | 0.170 |
City | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|
Guangzhou | 0.782 | 0.785 | 0.784 | 0.810 | 0.807 | 0.815 | 0.809 | 0.838 | 0.866 | 0.848 | 0.864 |
D8 | D9 | ||||||||||
Shenzhen | 0.838 | 0.853 | 0.869 | 0.867 | 0.877 | 0.892 | 0.924 | 0.933 | 0.940 | 0.938 | 0.937 |
D9 | D10 | ||||||||||
Zhuhai | 0.540 | 0.558 | 0.574 | 0.395 | 0.416 | 0.375 | 0.466 | 0.522 | 0.553 | 0.591 | 0.619 |
D6 | D4 | D5 | D4 | D5 | D6 | D7 | |||||
Foshan | 0.378 | 0.360 | 0.373 | 0.410 | 0.397 | 0.409 | 0.475 | 0.441 | 0.427 | 0.438 | 0.455 |
D4 | D5 | D4 | D5 | ||||||||
Jiangmen | 0.305 | 0.254 | 0.331 | 0.325 | 0.342 | 0.019 | 0.107 | 0.335 | 0.342 | 0.338 | 0.335 |
D4 | D2 | D4 | |||||||||
Zhaoqing | 0.144 | 0.150 | 0.197 | 0.193 | 0.213 | 0.277 | 0.338 | 0.344 | 0.349 | 0.357 | 0.365 |
D2 | D3 | D4 | |||||||||
Huizhou | 0.460 | 0.506 | 0.472 | 0.478 | 0.521 | 0.457 | 0.473 | 0.480 | 0.487 | 0.507 | 0.533 |
D5 | D6 | D5 | D6 | D5 | D6 | ||||||
Dongguan | 0.417 | 0.462 | 0.480 | 0.508 | 0.637 | 0.647 | 0.665 | 0.677 | 0.697 | 0.759 | 0.769 |
D5 | D6 | D7 | D8 | ||||||||
Zhongshan | 0.291 | 0.253 | 0.311 | 0.305 | 0.330 | 0.312 | 0.318 | 0.333 | 0.346 | 0.349 | 0.351 |
D3 | D4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Dong, Z.; Dong, J.; Dong, Z. Multidimensional Evaluation of Urban Land-Use Efficiency and Innovation Capability Analysis: A Case Study in the Pearl River Delta Region, China. Sustainability 2023, 15, 6387. https://doi.org/10.3390/su15086387
Lei Y, Dong Z, Dong J, Dong Z. Multidimensional Evaluation of Urban Land-Use Efficiency and Innovation Capability Analysis: A Case Study in the Pearl River Delta Region, China. Sustainability. 2023; 15(8):6387. https://doi.org/10.3390/su15086387
Chicago/Turabian StyleLei, Yanxi, Zuoji Dong, Jichang Dong, and Zhi Dong. 2023. "Multidimensional Evaluation of Urban Land-Use Efficiency and Innovation Capability Analysis: A Case Study in the Pearl River Delta Region, China" Sustainability 15, no. 8: 6387. https://doi.org/10.3390/su15086387
APA StyleLei, Y., Dong, Z., Dong, J., & Dong, Z. (2023). Multidimensional Evaluation of Urban Land-Use Efficiency and Innovation Capability Analysis: A Case Study in the Pearl River Delta Region, China. Sustainability, 15(8), 6387. https://doi.org/10.3390/su15086387