The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Sampling
2.4. 13C-CPMAS NMR Characterization
2.5. Statistical Analysis
3. Results
3.1. Effect of Different Soil Inputs and Tillage on Soil Organic Carbon
3.2. Effect of Different Soil Inputs and Tillage on Soil Organic Matter Structure
3.3. Effect of Different Soil Inputs and Tillage on Carbon Group Ratios
4. Discussion
4.1. Effect of Integrated Soil Inputs and Tillage on SOM Structure
4.2. Effect of Different Soil Inputs and Tillage on Carbon Group Ratios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Githongo, M.; Kiboi, M.; Ngetich, F.; Musafiri, C.; Muriuki, A.; Fliessbach, A. The effect of minimum tillage and animal manure on maize yields and soil organic carbon in sub-Saharan Africa: A meta-analysis. Environ. Challenges 2021, 5, 100340. [Google Scholar] [CrossRef]
- Oduor, N.; Kiboi, M.N.; Muriuki, A.; Adamtey, N.; Musafiri, C.M.; Ngetich, F.K. Soil management strategies enhanced crop yield, soil moisture, and water productivity in Nitisols of the Upper Eastern Kenya. Environ. Challenges 2021, 5, 100375. [Google Scholar] [CrossRef]
- Githongo, M.W.; Musafiri, C.M.; Macharia, J.M.; Kiboi, M.N.; Fliessbach, A.; Muriuki, A.; Ngetich, F.K. Greenhouse Gas Fluxes from Selected Soil Fertility Management Practices in Humic Nitisols of Upper Eastern Kenya. Sustainability 2022, 14, 1938. [Google Scholar] [CrossRef]
- Kintché, K.; Guibert, H.; Sogbedji, J.; Levêque, J.; Bonfoh, B.; Tittonell, P. Long-term mineral fertilizer use and maize residue incorporation do not compensate for carbon and nutrient losses from a Ferralsol under continuous maize–cotton cropping. Field Crops Res. 2015, 184, 192–200. [Google Scholar] [CrossRef]
- Mucheru-Muna, M.; Mugendi, D.; Pypers, P.; Mugwe, J.; Kung’U, J.; Vanlauwe, B.; Merckx, R. Enhancing maize productivity and profitability using organic inputs and mineral fertilizer in central kenya small-hold farms. Exp. Agric. 2013, 50, 250–269. [Google Scholar] [CrossRef] [Green Version]
- Ngetich, F.K.; Mairura, F.S.; Musafiri, C.M.; Kiboi, M.N.; Shisanya, C.A. Smallholders’ coping strategies in response to climate variability in semi-arid agro-ecozones of Upper Eastern Kenya. Soc. Sci. Humanit. Open 2022, 6, 100319. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Omenda, J.A.; Ngetich, K.F.; Kiboi, M.N.; Mucheru-Muna, M.W.; Mugendi, D.N. Soil Organic Carbon and Acid Phosphatase Enzyme Activity Response to Phosphate Rock and Organic Inputs in Acidic Soils of Central Highlands of Kenya in Maize. Int. J. Plant Soil Sci. 2019, 30, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Stone, M.M.; Plante, A.F. Relating the biological stability of soil organic matter to energy availability in deep tropical soil profiles. Soil Biol. Biochem. 2015, 89, 162–171. [Google Scholar] [CrossRef]
- Mao, J.; Cao, X.; Olk, D.C.; Chu, W.; Schmidt-Rohr, K. Advanced solid-state NMR spectroscopy of natural organic matter. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 17–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccolo, A.; Spaccini, R.; Drosos, M.; Vinci, G.; Cozzolino, V. The Molecular Composition of Humus Carbon: Recalcitrance and Reactivity in Soils. In The Future of Soil Carbon: Its Conservation and Formation; Academic Press: Cambridge, MA, USA, 2018; pp. 87–124. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- FAO. Soil Organic Carbon: The Hidden Potential; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- FAO and ITPS. Status of the World’s Soil Resources, Rome (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; p. 650. [Google Scholar]
- Luan, H.; Gao, W.; Huang, S.; Tang, J.; Li, M.; Zhang, H.; Chen, X. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system. Soil Tillage Res. 2019, 191, 185–196. [Google Scholar] [CrossRef]
- Yu, G.; Xiao, J.; Hu, S.; Polizzotto, M.L.; Zhao, F.; McGrath, S.P.; Li, H.; Ran, W.; Shen, Q. Mineral Availability as a Key Regulator of Soil Carbon Storage. Environ. Sci. Technol. 2017, 51, 4960–4969. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Ng’Etich, O.K.; Kiboi, M.N.; Okeyo, J.; Shisanya, C.A.; Okwuosa, E.A.; Mugendi, D.N.; Ngetich, F.K. Farming systems’ typologies analysis to inform agricultural greenhouse gas emissions potential from smallholder rain-fed farms in Kenya. Sci. Afr. 2020, 8, e00458. [Google Scholar] [CrossRef]
- Otieno, E.; Kiboi, M.; Gian, N.; Muriuki, A.; Musafiri, C.; Ngetich, F. Uptake of integrated soil fertility management technologies in heterogeneous smallholder farms in sub-humid tropics. Environ. Challenges 2021, 5, 100394. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, Q.; Zhang, L.; Zhang, J.; Shen, Q.; Ran, W. The effects of compost in a rice–wheat cropping system on aggregate size, carbon and nitrogen content of the size–density fraction and chemical composition of soil organic matter, as shown by 13C CP NMR spectroscopy. Soil Use Manag. 2012, 28, 337–346. [Google Scholar] [CrossRef]
- Panettieri, M.; Berns, A.; Knicker, H.; Murillo, J.; Madejón, E. Evaluation of seasonal variability of soil biogeochemical properties in aggregate-size fractioned soil under different tillages. Soil Tillage Res. 2015, 151, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Srivastva, A.K.; Gupta, H.S.; Mitra, S. Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas. Nutr. Cycl. Agroecosystems 2009, 86, 1–16. [Google Scholar] [CrossRef]
- He, Y.; He, X.; Xu, M.; Zhang, W.; Yang, X.; Huang, S. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across central and south China. Soil Tillage Res. 2018, 177, 79–87. [Google Scholar] [CrossRef]
- Blanco-Moure, N.; Gracia, R.; Bielsa, A.C.; López, M.V. Soil organic matter fractions as affected by tillage and soil texture under semiarid Mediterranean conditions. Soil. Tillage. Res. 2016, 155, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Prietzel, J.; Müller, S.; Kögel-Knabner, I.; Thieme, J.; Jaye, C.; Fischer, D. Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy. Sci. Total. Environ. 2018, 628, 906–918. [Google Scholar] [CrossRef] [PubMed]
- Pisani, O.; Hills, K.M.; Courtier-Murias, D.; Haddix, M.L.; Paul, E.A.; Conant, R.T.; Simpson, A.J.; Arhonditsis, G.B.; Simpson, M.J. Accumulation of aliphatic compounds in soil with increasing mean annual temperature. Org. Geochem. 2014, 76, 118–127. [Google Scholar] [CrossRef]
- Kiboi, M.; Ngetich, K.; Mugendi, D.; Muriuki, A.; Adamtey, N.; Fliessbach, A. Microbial biomass and acid phosphomonoesterase activity in soils of the Central Highlands of Kenya. Geoderma Reg. 2018, 15, e00193. [Google Scholar] [CrossRef]
- Jaetzold, R.; Schmidt, H.; Hornte, Z.B.; Shisanya, C.A. Farm Management Handbook of Kenya. In Natural Conditions and Farm Information, 2nd ed.; Vol.11/C. Eastern Province; Ministry of Agriculture/GTZ: Nairobi, Kenya, 2007. [Google Scholar]
- Kiboi, M.; Ngetich, K.; Fliessbach, A.; Muriuki, A.; Mugendi, D. Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya. Agric. Water Manag. 2019, 217, 316–331. [Google Scholar] [CrossRef]
- Ryan, J.G.; Estefan, G.; Rashid, A. Soil-Plant-Analysis Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agricultural Research in the Dry Lands (ICARDA): Beirut, Lebanon; National Agricultural Research Center (NARC): Islamabad, Pakistan, 2001; pp. 46–48.
- Mucheru-Muna, M.; Mugendi, D.; Kung’U, J.; Mugwe, J.; Bationo, A. Effects of organic and mineral fertilizer inputs on maize yield and soil chemical properties in a maize cropping system in Meru South District, Kenya. Agrofor. Syst. 2007, 69, 189–197. [Google Scholar] [CrossRef]
- Fertiliser Use Recommendation Project (FURP). Fertiliser Use Recommendation Project (FURP) Description of First Priority Trial Site in the Various Districts Final Report; National Agricultural Research Laboratories: Nairobi, Kenya, 1987; Volume 24.
- Knicker, H. Solid state CPMAS 13C and 15N NMR spectroscopy in organic geochemistry and how spin dynamics can either aggravate or improve spectra interpretation. Org. Geochem. 2011, 42, 867–890. [Google Scholar] [CrossRef]
- Arb, C.; von Bünemanna, E.; Schmalz, H.; Portmann, M.; Adamtey, N.; Musyoka, M.; Frossard, E.; Fliessbach, A. Soil quality and phosphorus status after nine years of organic and conventional farming at two input levels in the Central Highlands of Kenya. Geoderma 2020, 362, e114112. [Google Scholar] [CrossRef]
- Nyawade, S.O.; Karanja, N.N.; Gachene, C.K.; Gitari, H.I.; Schulte-Geldermann, E.; Parker, M.L. Short-term dynamics of soil organic matter fractions and microbial activity in smallholder potato-legume intercropping systems. Appl. Soil Ecol. 2019, 142, 123–135. [Google Scholar] [CrossRef]
- Margenot, A.J.; Paul, B.K.; Sommer, R.R.; Pulleman, M.M.; Parikh, S.J.; Jackson, L.E.; Fonte, S.J. Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol. Soil Tillage Res. 2017, 166, 157–166. [Google Scholar] [CrossRef]
- Bharali, A.; Baruah, K.K.; Bhattacharyya, P.; Gorh, D. Integrated nutrient management in wheat grown in a northeast India soil: Impacts on soil organic carbon fractions in relation to grain yield. Soil Tillage Res. 2017, 168, 81–91. [Google Scholar] [CrossRef]
- Shryock, B.; Littke, K.; Ciol, M.; Briggs, D.; Harrison, R. Effects of urea fertilization on carbon sequestration in Douglas fir plantations of the coastal Pacific Northwest. For. Ecol. Manag. 2014, 318, 341–348. [Google Scholar] [CrossRef]
- Guo, L.; Wu, G.; Li, Y.; Li, C.; Liu, W.; Meng, J.; Liu, H.; Yu, X.; Jiang, G. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat–maize rotation system in Eastern China. Soil Tillage Res. 2015, 156, 140–147. [Google Scholar] [CrossRef]
- Adekiya, A.O. Green manures and poultry feather effects on soil characteristics, growth, yield, and mineral contents of tomato. Sci. Hortic. 2019, 257, 108721. [Google Scholar] [CrossRef] [Green Version]
- Autret, B.; Mary, B.; Chenu, C.; Balabane, M.; Girardin, C.; Bertrand, M.; Grandeau, G.; Beaudoin, N. Alternative arable cropping systems: A key to increase soil organic carbon storage? Results from a 16 year field experiment. Agric. Ecosyst. Environ. 2016, 232, 150–164. [Google Scholar] [CrossRef]
- Dimassi, B.; Mary, B.; Wylleman, R.; Labreuche, J.; Couture, D.; Piraux, F.; Cohan, J.-P. Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric. Ecosyst. Environ. 2014, 188, 134–146. [Google Scholar] [CrossRef]
- Cheesman, S.; Thierfelder, C.; Eash, N.S.; Kassie, G.T.; Frossard, E. Soil carbon stocks in conservation agriculture systems of Southern Africa. Soil Tillage Res. 2016, 156, 99–109. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Assunção, S.A.; Pereira, M.G.; Rosset, J.S.; Berbara, R.L.L.; García, A.C. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Sci. Total. Environ. 2019, 658, 901–911. [Google Scholar] [CrossRef]
- Ferreira, C.D.R.; Neto, E.C.D.S.; Pereira, M.G.; Guedes, J.D.N.; Rosset, J.S.; dos Anjos, L.H.C. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil Tillage Res. 2020, 198, 104533. [Google Scholar] [CrossRef]
- Schweizer, S.; Bucka, F.; Markus Graf-Rosenfellner, M.; Kögel-Knabner, I. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma 2019, 355, e113901. [Google Scholar] [CrossRef]
- Wang, H.; Nie, Y.; Butterly, C.R.; Lei Wang, L.; Chen, Q.; Tian, W.; Song, B.; Xi, Y.; Wang, Y. Fertilization alters mi-crobial community composition and functional patterns by changing the chemical nature of soil organic carbon: A field study in a Halosol. Geoderma 2017, 292, 17–24. [Google Scholar] [CrossRef]
- Kolattukudy, P.; Walton, T. The biochemistry of plant cuticular lipids. In Progress in the Chemistry of Fats and Other Lipids; Holman, R.T., Ed.; Pergamon Press: Oxford, UK, 1972; Volume 13, pp. 121–167. [Google Scholar]
- Heredia, A. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim. Biophys. Acta Gen. Subj. 2002, 1620, 1–7. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Torn, M.S.; Jahn, R. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry 2006, 77, 25–56. [Google Scholar] [CrossRef]
- Schöning, I.; Morgenroth, G.; Kögel-Knabner, I. O/N-alkyl and alkyl C are stabilised in fine particle size fractions of forest soils. Biogeochemistry 2005, 73, 475–497. [Google Scholar] [CrossRef]
- Piccolo, A.; Spaccini, R.; Cozzolino, V.; Nuzzo, A.; Drosos, M.; Zavattaro, L.; Grignani, G.; Puglisi, E.; Trevisan, M. Effective carbon sequestration in Italian agricultural soils by in situ polymerization of soil organic matter under biomimetic photo-catalysis. Land Degrad. Develop. 2018, 29, 485–494. [Google Scholar] [CrossRef]
- Gerke, J. Carbon Accumulation in Arable Soils: Mechanisms and the Effect of Cultivation Practices and Organic Fertilizers. Agronomy 2021, 11, 1079. [Google Scholar] [CrossRef]
- Cotrufo, M.; Wallenstein, M.; Boot, C.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.C.; Zhang, L.; Wang, P.; Huang, Q.W.; Yu, G.; Li, D.C.; Shen, Q.R.; Ran, W. The role of non-crystalline Fe in the increase of SOC after long-term organic manure application to the red soil of southern China. Eur. J. Soil Sci. 2013, 64, 797–804. [Google Scholar] [CrossRef]
- Wang, X.; Toner, B.M.; Yoo, K. Mineral vs. organic matter supply as a limiting factor for the formation of mineral-associated organic matter in forest and agricultural soils. Sci. Total. Environ. 2019, 692, 344–353. [Google Scholar] [CrossRef]
- Ussiri, D.; Johnson, C. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma 2003, 111, 123–149. [Google Scholar] [CrossRef]
- Zhao, N.; Lu, Y.Z. Effects of different fertilization treatments on soil humic acid structure characteristics. Spectrosc. Spectr. Anal. 2012, 32, 1856–1859. [Google Scholar]
- Li, Z.; Zhao, B.; Wang, Q.; Cao, X.; Zhang, J. Differences in Chemical Composition of Soil Organic Carbon Resulting From Long-Term Fertilization Strategies. PLoS ONE 2015, 10, e0124359. [Google Scholar] [CrossRef] [PubMed]
- Cusack, D.F.; Torn, M.S.; McDOWELL, W.H.; Silver, W.L. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob. Chang. Biol. 2010, 16, 2555–2572. [Google Scholar] [CrossRef]
- Chen, L.; Li, F.; Li, W.; Ning, Q.; Li, J.; Zhang, J.; Ma, D.; Zhang, C. Organic amendment mitigates the negative impacts of mineral fertilization on bacterial communities in Shajiang black soil. Appl. Soil Ecol. 2019, 150, 103457. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Z.; Feng, G.; Li, M.; Li, C.; Gao, Q.; Wang, L. Effects of Integrated Soil-Crop System Management on Soil Organic Carbon Characteristics in a Primosol in Northeast China. Pedosphere 2017, 27, 957–967. [Google Scholar] [CrossRef]
- Mi, W.; Wu, L.; Brookes, P.C.; Liu, Y.; Zhang, X.; Yang, X. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers. Soil Tillage Res. 2016, 163, 64–70. [Google Scholar] [CrossRef]
- Djurdjević, L.; Dinić, A.; Mitrović, M.; Pavlović, P.; Tešević, V. Phenolic acids distribution in a peat of the relict community with Serbian spruce in the Tara Mt. Forest reserve (Serbia). Eur. J. Soil Biol. 2003, 39, 97–103. [Google Scholar] [CrossRef]
- Chavez-Vergara, B.; Merino, A.; Vázquez-Marrufo, G.; García-Oliva, F. Organic matter dynamics and microbial activity during decomposition of forest floor under two native neo-tropical oak species in a temperate deciduous forest in Mexico. Geoderma 2014, 235, 133–145. [Google Scholar] [CrossRef]
- Schoebitz, M.; Vidal, G. Microbial consortium and pig slurry to improve chemical properties of degraded soil and nutrient plant uptake. J. Soil Sci. Plant Nutri. 2016, 16, 226–236. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, X.; Zhu, A.; Zhang, J.; Yang, W. Effects of tillage and residue managements on organic C accumula-tion and soil aggregation in a sandy loam soil of the North China Plain. Catena 2017, 156, 176–183. [Google Scholar] [CrossRef]
- Shen, D.; Ye, C.; Hu, Z.; Chen, X.; Guo, H.; Li, J.; Du, G.; Adl, S.; Liu, M. Increased chemical stability but decreased physical protection of soil organic carbon in response to nutrient amendment in a Tibetan alpine meadow. Soil Biol. Biochem. 2018, 126, 11–21. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, J.; Zhang, J.; Xin, X.; Hao, X. How different long-term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain. J. Plant Nutr. Soil Sci. 2013, 176, 99–109. [Google Scholar] [CrossRef]
- Chang, J.; Zhu, J.; Xu, L.; Su, H.; Gao, Y.; Cai, X.; Peng, T.; Wen, X.; Zhang, J.; He, N. Rational land-use types in the karst regions of China: Insights from soil organic matter composition and stability. Catena 2018, 160, 345–353. [Google Scholar] [CrossRef]
- de Blas, E.; Rodríguez-Alleres, M.; Almendros, G. Speciation of lipid and humic fractions in soils under pine and eucalyptus forest in northwest Spain and its effect on water repellency. Geoderma 2010, 155, 242–248. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol. Biochem. 2018, 117, 175–184. [Google Scholar] [CrossRef]
- Liu, M.; Hu, F.; Chen, X. A review on mechanisms of soil organic carbon stabilization. Acta Ecol. Sin. 2007, 27, 2642–2650. [Google Scholar]
Treatment 1 | 2 pH | Total N (g kg−1) | TOC (g kg−1) | P (mg kg−1) | K (g kg−1) | Ca (g kg−1) | Mg (g kg−1) | Mn (g kg−1) | Cu (mg kg−1) | Fe (mg kg−1) | Zn (mg kg−1) | Na (g kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CtC | 4.5 | 1.3 | 15.2 | 38 | 2.9 | 9.5 | 20.1 | 13.9 | 4.2 | 27 | 61 | 2.6 |
CtMf | 4.4 | 1.4 | 15.4 | 82 | 3.4 | 12 | 17.8 | 20.4 | 4.3 | 32 | 63 | 2.6 |
CtRMf | 4.5 | 1.6 | 17.3 | 77 | 3.3 | 14 | 24 | 17.2 | 3.6 | 28 | 58 | 2.5 |
CtRMfM | 5.2 | 1.7 | 19.0 | 71 | 7.4 | 31 | 30.7 | 15.4 | 4.3 | 23 | 66 | 2.8 |
CtRML | 5.1 | 1.7 | 18.2 | 51 | 8.9 | 21.5 | 34 | 13 | 3.5 | 20 | 59 | 2.6 |
CtRTiM | 5.1 | 1.7 | 18.0 | 50 | 9.8 | 26.5 | 28.6 | 12.5 | 3.7 | 21 | 61 | 3 |
CtRTiP | 4.9 | 1.6 | 17.9 | 74 | 6.5 | 19 | 28.4 | 18.9 | 3.5 | 24 | 61 | 4.1 |
MtC | 4.6 | 1.4 | 15.8 | 51 | 3.9 | 14 | 21.8 | 17.7 | 4.5 | 26 | 63 | 2.9 |
MtMf | 4.2 | 1.4 | 15.0 | 147 | 2.7 | 8 | 17.4 | 13.8 | 4.3 | 39 | 64 | 3 |
MtRMf | 4.4 | 1.5 | 16.9 | 73 | 4.1 | 14.5 | 21.5 | 15.2 | 3.9 | 31 | 61 | 2.8 |
MtRMfM | 5.3 | 1.7 | 18.8 | 47 | 9.1 | 52.5 | 32.7 | 17.5 | 3.5 | 19 | 58 | 3.4 |
MtRML | 5.2 | 1.6 | 18.0 | 45 | 9 | 21.5 | 35.8 | 18.7 | 3.8 | 17 | 63 | 3 |
MtRTiM | 5.0 | 1.7 | 17.8 | 67 | 6.4 | 21.5 | 30.7 | 15.9 | 4.4 | 26 | 60 | 3.6 |
MtRTiP | 5.0 | 1.7 | 18.4 | 75 | 7.8 | 28 | 26 | 13.5 | 4 | 24 | 66 | 3.1 |
Treatments | Abbreviations |
---|---|
Minimum tillage Control | MtC |
Minimum tillage + Sole Mineral fertilizer | MtMf |
Minimum tillage + Crop residues + Animal manure + Legume intercrop (Dolichos Lablab) | MtRML |
Minimum tillage + Crop residues + Tithonia diversifolia + Phosphate rock (Minjingu) | MtRTiP |
Minimum tillage + Crop residues + Mineral fertilizer + Animal manure | MtRMfM |
Minimum tillage + Crop residues + Tithonia diversifolia + Animal manure | MtRTiM |
Minimum tillage + Crop residues + Mineral fertilizer | MtRMf |
Conventional tillage Control | CtC |
Conventional tillage + Sole Mineral fertilizer | CtMf |
Conventional tillage + Crop residues + Animal manure + Legume intercrop (Dolichos Lablab) | CtRML |
Conventional tillage + Crop residues + Tithonia diversifolia + Phosphate rock (Minjingu) | CtRTiP |
Conventional tillage + Crop residues + Mineral fertilizer + Animal manure | CtRMfM |
Conventional tillage + Crop residues + Tithonia diversifolia + Animal manure | CtRTiM |
Conventional tillage + Crop residues + Mineral fertilizer | CtRMf |
Organic Input | Nutrient Amount (%) | |||||||
---|---|---|---|---|---|---|---|---|
N | P | C | C/N | ADF 1 | Cellulose | Lignin | Polyphenols | |
Animal manure | 1.70 b2 | 0.53 a | 42.06 a | 16.30 a | 37.31 b | 21.75 a | 27.94 a | 0.18 a |
Tithonia. diversifolia | 3.32 a | 0.14 a | 41.30 a | 11.41 b | 49.59 a | 18.08 a | 12.88 b | 0.14 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Githongo, M.; Ngatia, L.; Kiboi, M.; Muriuki, A.; Fliessbach, A.; Musafiri, C.; Fu, R.; Ngetich, F. The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya. Sustainability 2023, 15, 6500. https://doi.org/10.3390/su15086500
Githongo M, Ngatia L, Kiboi M, Muriuki A, Fliessbach A, Musafiri C, Fu R, Ngetich F. The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya. Sustainability. 2023; 15(8):6500. https://doi.org/10.3390/su15086500
Chicago/Turabian StyleGithongo, Miriam, Lucy Ngatia, Milka Kiboi, Anne Muriuki, Andreas Fliessbach, Collins Musafiri, Riqiang Fu, and Felix Ngetich. 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya" Sustainability 15, no. 8: 6500. https://doi.org/10.3390/su15086500
APA StyleGithongo, M., Ngatia, L., Kiboi, M., Muriuki, A., Fliessbach, A., Musafiri, C., Fu, R., & Ngetich, F. (2023). The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya. Sustainability, 15(8), 6500. https://doi.org/10.3390/su15086500