Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Calculation of Net Primary Production (NPP)
2.2.2. Calculation of Agricultural Drought Index
2.2.3. Trend Analysis
2.2.4. Correlation Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bejagam, V.; Sharma, A. Impact of climatic changes and anthropogenic activities on ecosystem net primary productivity in India during 2001–2019. Ecological 2022, 70, 101732. [Google Scholar] [CrossRef]
- Ussiri, D.A.; Lal, R. Introduction to Global Carbon Cycling: An Overview of the Global Carbon Cycle Carbon Sequestration for Climate Change Mitigation and Adaptation; Springer: Berlin/Heidelberg, Germany, 2017; pp. 65–66. ISBN 978-3-319-53845-7. [Google Scholar] [CrossRef]
- Tanriverdi, T.; Baskonus, H.M.; Mahmud, A.A.; Muhamad, K.A. Explicit solution of fractional order atmosphere-soil-land plant carbon cycle system. Ecol. Complex. 2021, 48, 100966. [Google Scholar] [CrossRef]
- Nisbet, E.G. Encyclopedia of Atmospheric Sciences, 2nd ed.; North, G., John Pyle, J., Zhang, F., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2015; Volume 1, pp. 196–201. ISBN 9780122270901. [Google Scholar] [CrossRef]
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; et al. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 2000, 290, 5490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, Y.; Yoshimura, K.; Pokhrel, Y.; Kim, H.; Shiogama, H.; Yokohata, T.; Hanasaki, N.; Wada, Y.; Burek, P.; Byers, E.; et al. The timing of unprecedented hydrological drought under climate change. Nat. Commun. 2022, 13, 3287. [Google Scholar] [CrossRef]
- Carrao, H.; Naumann, G.; Barbosa, P. Global projections of drought hazard in a warming climate: A prime for disaster risk management. Clim. Dyn. 2018, 50, 2137. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xiao, M.; Singh, V.P.; Li, J. Regionalization and spatial changing properties of droughts across the Pearl River basin China. Hydrology 2012, 472, 355–366. [Google Scholar] [CrossRef]
- Sun, Y.; Liao, J.; Zou, Y.; Xu, X.; Yang, J.; Chen, H.; Ruan, H. Coherent responses of terrestrial C: N stoichiometry to drought across plants.; soil.; and microorganisms in forests and grasslands. Agric. For. Meteorol. 2020, 292–293, 108104. [Google Scholar] [CrossRef]
- Kogan, F.; Guo, W.; Yang, W. Drought and food security prediction from NOAA new generation of operational satellites. Nat. Hazards Risk 2019, 10, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, C.J.; Ayres, R. Encyclopedia of Energy, 1st ed.; Elsevier Science: Amsterdam, the Netherlands, 2009; pp. 37–38. ISBN 9780123751171. [Google Scholar]
- Quere, C.L.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Guohua, L.; Zhongshan, L.; Xin, Y.; Meng, W.; Li, G. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chin. Geogr. Sci. 2017, 26, 35–47. [Google Scholar] [CrossRef]
- Yang, Q.; Li, M.; Zheng, Z.; Ma, Z. Regional applicability of seven meteorological drought indices in China. Sci. China Earth Sci. 2017, 60, 745–760. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, Q.; Xu, Y. Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model. Sustainability 2022, 14, 7399. [Google Scholar] [CrossRef]
- Zeng, J.; Matsunaga, T.; Tan, Z.H.; Saigusa, N.; Shirai, T.; Tang, Y.; Peng, S.; Fukuda, Y. Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Sci. Data 2020, 7, 313. [Google Scholar] [CrossRef]
- Otieno, D.O.; Wartinger, M.; Nishiwaki, A.; Hussain, M.Z.; Muhr, J.; Borken, W.; Lischeid, G. Responses of CO2 Exchange and Primary Production of the Ecosystem Components to Environmental Changes in a Mountain Peatland. Ecosystems 2009, 12, 590–603. [Google Scholar] [CrossRef]
- Lindner, S.; Xue, W.; Nay-Htoon, B.; Choi, J.; Ege, Y.; Lichtenwald, N.; Fischer, F.; Ko, J.; Tenhunen, J.; Otieno, D. Canopy scale CO2 exchange and productivity of transplanted paddy and direct seeded rainfed rice production systems in S. Korea. Agric. For. Meteorol. 2016, 228, 229–238. [Google Scholar] [CrossRef]
- Järveoja, J.; Nilsson, M.B.; Gažovič, M.; Crill, P.M.; Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Chang. 2018, 24, 34363451. [Google Scholar] [CrossRef]
- Widmoser, P.; Wohlfahrt, G. Attributing the energy imbalance by concurrent lysimeter and eddy covariance evapotranspiration measurements. Agric. For. Meteorol. 2018, 263, 287–291. [Google Scholar] [CrossRef]
- Li, C.; Han, W.; Peng, M. Improving the spatial and temporal estimating of daytime variation in maize net primary production using unmanned aerial vehicle-based remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102467. [Google Scholar] [CrossRef]
- Peng, J.; Manevski, K.; Kørup, K.; Larsen, R.; Zhou, Z.; Andersen, M.N. Environmental constraints to net primary productivity at northern latitudes: A study across scales of radiation interception and biomass production of potato. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102232. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, Q.; Deng, X.; Lv, K.; Zhang, Z. Spatio-Temporal Evolution Future Trend and Phenology Regularity of Net Primary Productivity of Forests in Northeast China. Remote Sens. 2020, 12, 3670. [Google Scholar] [CrossRef]
- Cao, D.; Feng, J.Z.; Bai, L.Y.; Xun, L.; Jing, H.T.; Sun, J.K.; Zhang, J.H. Delineating the rice crop activities in Northeast China through regional parametric synthesis using satellite remote sensing time-series data from 2000 to 2015. J. Integr. Agric. 2021, 20, 424–437. [Google Scholar] [CrossRef]
- Xi, M.; Zhang, X.; Kong, F.; Li, Y.; Sui, X.; Wang, X. CO2 exchange under different vegetation covers in a coastal wetland of Jiaozhou Bay China. Ecol. Eng. 2019, 137, 26–33. [Google Scholar] [CrossRef]
- Lieth, H.; Whittaker, R.H. Primary Productivity of the Biosphere. Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1975; Volume 14. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.S.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Friedlingstein, P.; Noblet-Ducoudr, N.; Cadule, P.; Viovy, N.; Wang, T. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Glob. Biogeochem. Cycles 2009, 23, GB4026. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.F. Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China. J. Geophys. Res. Biogeosci. 2014, 119, 2261–2275. [Google Scholar] [CrossRef] [Green Version]
- Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W. Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m. Remote Sens. Ecol. Conserv. 2018, 4, 264–280. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 5625. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.K.; Reed, S.C.; Cleveland, C.C.; Ballantyne, A.P.; Anderegg, W.L.; Wieder, W.R.; Liu, Y.Y.; Running, S.W. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Chang. 2016, 6, 306–310. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Liu, X.; He, D.; Bao, A.; Yi, Q.; Wang, B.; Liu, T. Analysis of spatial-temporal variation in NPP based on hydrothermal conditions in the Lancang-Mekong River Basin from 2000 to 2014. Environ. Monit. Assess. 2018, 190, 2–15. [Google Scholar] [CrossRef]
- Kamali, A.; Khosravi, M.; Hamidianpour, M. Spatial–temporal analysis of net primary production (NPP) and its relationship with climatic factors in Iran. Environ. Monit. Assess. 2020, 192, 718. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Liao, Z.; Chen, S.; Jia, H.; Zhu, J.; Fei, X. Net Primary Productivity of Forest Ecosystems in the Southwest Karst Region from the Perspective of Carbon Neutralization. Forests 2022, 13, 1367. [Google Scholar] [CrossRef]
- Bao, G.; Tuya, A.; Bayarsaikhan, S.; Dorjsuren, A.; Mandakh, U.; Bao, Y.; Li, C.; Vanchindorj, B. Variations and climate constraints of terrestrial net primary productivity over Mongolia. Quat. Int. 2020, 537, 112–125. [Google Scholar] [CrossRef]
- Twine, T.E.; Kucharik, C.J. Climate impacts on net primary productivity trends in natural and managed ecosystems of the central and eastern United States. Agric. For. Meteorol. 2009, 149, 2143–2161. [Google Scholar] [CrossRef]
- Hadian, F.; Jafari, R.; Bashiri, H.; Tartesh, M.; Clarke, K.C. Estimation of spatial and temporal changes in net Primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of Semirom County Iran. J. Arid Land 2019, 11, 477–494. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yan, Y.; Wang, Q.; Du, X.; Li, J.; Gang, C.; Zhou, W.; Wang, Z. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Sci. Total Environ. 2019, 652, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi, M. Challenges and opportunities for tourism development in Iran: Perspectives of Iranian tourism suppliers. Tour. Manag. Perspect. 2016, 19, 90–92. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Foreign Affairs Iran. 2018. Available online: https://en.mfa.gov.ir/portal/ministrinfo/33618 (accessed on 27 October 2022).
- Minaei, M. Evolution, density and completeness of OpenStreetMap road networks in developing countries: The case of Iran. Appl. Geogr. 2020, 119, 102246. [Google Scholar] [CrossRef]
- Statistical Center of Iran. 2019. Available online: https://www.amar.org.ir/ (accessed on 23 November 2022).
- The World Bank. World Bank Open Data. 2020. Available online: https://data.worldbank.org (accessed on 24 November 2022).
- Monteith, J.L. Solar radation and productivity in tropical ecosystems. Appl. Ecol. 1972, 9, 7–766. [Google Scholar]
- Knorr, W.; Heimann, M. Uncertainties in global terrestrial biosphere modeling 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme. Glob. Biogeochem. Cycles 2001, 15, 207–255. [Google Scholar] [CrossRef]
- Eisfelder, C.H.; Klein, I.; Niklaus, M.; Kuenzer, C. Net primary productivity in Kazakhstan its spatio-temporal patterns and relation to meteorological variables. J. Arid Environ. 2013, 103, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Thornton, P.E.; Nemani, R.R.; Glassy, J.M. Global Terrestrial Gross and Net Primary Productivity Fromthe Earth Observing System. In Methods in Ecosystem Science; Springer: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343–352. [Google Scholar] [CrossRef]
- Masitoh, F.; Rusydi, A.N. Vegetation Health Index (VHI) analysis during drought season in Brantas Watershed. IOP Conf. Ser. Earth Environ. Sci. 2019, 389, 012033. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, R.; Qu, Y.; Bento, V.A.; Zhou, T.; Lin, Y.; Wu, X.; Qi, J.; Shui, W.; Wang, Q. Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018. Weather Clim. Extrem. 2022, 35, 10012. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Mancini, M. Trend detection of Annual and seasonal rainfall in Calabria (Southern Italy). Int. J. Climatol. 2011, 31, 44–56. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Baghini, N.; Falahatkar, S.; Hassanvand, M.S. Time series analysis and spatial distribution map of aggregate risk index due to tropospheric NO2 and O3 based on satellite observation. J. Environ. Manag. 2022, 304, 114202. [Google Scholar] [CrossRef]
- Li, J.; He, S.; Wang, J.; Ma, W.; Ye, H. Investigating the spatiotemporal changes and driving factors of nighttime light patterns in RCEP Countries based on remote sensed satellite image. J. Clean. Prod. 2022, 359, 131944. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1983, 30, 81. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; McConkey, B.; Townley, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1986, 63, 1379–1389. [Google Scholar] [CrossRef]
- Sharma, S.; Dubey, P.; Mirdha, I.S. Precipitation Trend Analysis by Mann-Kendall Test of Different Districts of Malwa Agroclimatic Zone Precipitation Trend Analysis by Mann-Kendall Test of Different Districts of Malwa Agroclimatic Zone. Environ. Ecol. 2018, 36, 664–671. [Google Scholar]
- Maghrabi, A.H.; Alotaibi, R.N. Long-term variations of AOD froman AERONET station in the central Arabian Peninsula. Theor. Appl. Climatol. 2018, 134, 1015–1026. [Google Scholar] [CrossRef]
- Asakereh, H. Fundamentals of Statistical Climatology, 3rd ed.; Zanjan University Press: Zanjan, Iran, 2011; pp. 215–216. ISBN 978_96_4888_537_8. [Google Scholar]
- Leeuw, J.D.; Rizayeva, A.; Namazov, E.; Bayramov, E.; Marshall, M.T.; Etzolde, J.; Neudertf, R. Application of the MODIS MOD 17 net primary production product in grassland carrying capacity assessment. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 66–76. [Google Scholar] [CrossRef]
- Wang, J.; Delang, C.O.; Hou, G.; Gao, L.; Lu, X. Net primary production increases in the Yangtze River Basin within the latest two decades. Glob. Ecol. Conserv. 2021, 26, e01497. [Google Scholar] [CrossRef]
- Song, X.; Tian, H.; Xu, X.; Hui, D.; Chen, G.; Sommers, G.; Marzen, L.; Liu, M. Projecting terrestrial carbon sequestration of the southeastern United States in the 21st century. Ecosphere 2013, 4, 88. [Google Scholar] [CrossRef]
- Wu, J.; Rouleta, N.T.; Moorea, T.R.; Lafleur, P.; Humphreysc, E. Dealing with microtopography of an ombrotrophic bog for simulating ecosystem-level CO2 exchanges. Ecol. Model. 2011, 222, 1038–1047. [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Wang, Q. Spatio-temporal pattern of net primary productivity in Hengduan mountains area, China: Impacts of climate change and human activities. Chin. Geogr. Sci. 2017, 27, 948–962. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.; Deng, Q.; Tian, H.; Luo, Y. Global Climate Change and Greenhouse Gases Emissions in Terrestrial Ecosystems, 1st ed.; Lackner, M., Sajjadi, B., Chen, W.Y., Eds.; Springer: New York, NY, USA, 2021; pp. 216–219. ISBN 978-1-4614-6431-0. [Google Scholar] [CrossRef]
- Kumar, A.; Bhatia, A.; Sehgal, V.K.; Tomer, R.; Jain, N.; Pathak, H. Net Ecosystem Exchange of Carbon Dioxide in Rice-Spring Wheat System of Northwestern Indo-Gangetic Plains. Land 2021, 10, 701. [Google Scholar] [CrossRef]
- Grossi, G.; Vitali, A.; Bernabucci, U.; Lacetera, N.; Nardone, A. Greenhouse Gas Emissions and Carbon Sinks of an Italian Natural Park. Front. Environ. Sci. 2021, 9, 706880. [Google Scholar] [CrossRef]
- Liu, S.; Ji, C.; Wang, C.; Chen, J.; Jin, Y.; Zou, Z.; Li, S.H.; Niu, S.; Jianwen Zou, J. Climatic Role of Terrestrial Ecosystem under Elevated CO2: A Bottom-Up Greenhouse Gases Budget. Ecol. Lett. 2018, 21, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, U.K.; Tripathi, O.P.; Nath, A.J.; Deb, S.; Das, D.J.; Gupta, A.; Devi, N.B.; Charturvedi, S.S.; Singh, S.L.; Kumar, A.; et al. Quantifying Tree Diversity, Carbon Stocks, and Sequestration Potential for Diverse Land Uses in Northeast India. Front. Environ. Sci. 2021, 9, 724950. [Google Scholar] [CrossRef]
- Madani, K. Water management in Iran: What is causing the looming crisis. J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Pei, F.; Li, X.; Liu, X.; Lao, C. Assessing the impacts of droughts on net primary productivity in China. J. Environ. Manag. 2013, 14, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Li, Y.; Yin, B.; Wu, N.; Ye, R.; Liu, G. Spatiotemporal variation of net primary productivity and its response to drought in Inner Mongolian desert steppe. Glob. Ecol. Conserv. 2022, 33, e01991. [Google Scholar] [CrossRef]
- Qi, G.; Song, J.; Li, Q.; Bai, H.; Sun, H.; Zhang, S.; Cheng, D. Response of vegetation to multi-timescales drought in the Qinling Mountains of China. Ecol. Indic. 2022, 135, 108539. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef]
ECO_NAME | MIN (g*C/m2) | MAX (g*C/m2) | RANGE (g*C/m2) | MEAN (g*C/m2) | STD 1 |
---|---|---|---|---|---|
Caspian Hyrcanian mixed forests | −80.73 | 52.19 | 132.9 | −12.25 | 16.43 |
Tigris–Euphrates alluvial salt marsh | −16.39 | 11.58 | 27.98 | −3.09 | 4.73 |
Arabian Desert and East Sahero-Arabian xeric shrublands | −8.66 | 0.56 | 9.22 | −0.62 | 1.48 |
Kopet Dag semi-desert | −15.93 | 12.14 | 28.08 | −0.61 | 8.59 |
Caspian lowland desert | −23.81 | 25.39 | 49.21 | −0.02 | 10.97 |
Registan–North Pakistan sandy desert | −6.21 | 2.34 | 8.55 | 0.90 | 2.04 |
South Iran Nubo-Sindian desert and semi-desert | −22.70 | 37.69 | 60.40 | 1.88 | 5.6 |
Kuh Rud and Eastern Iran montane woodlands | −21.60 | 33.95 | 55.56 | 3.382 | 2.37 |
Badghyz and Karabil semi-desert | −4.30 | 9.92 | 14.22 | 3.99 | 1.34 |
Mesopotamian shrub desert | −3.04 | 10.82 | 13.86 | 4.39 | 2.30 |
Central Persian desert basins | −34.84 | 44.67 | 79.51 | 4.73 | 4.41 |
Lake | −9.90 | 18.45 | 28.35 | 5.41 | 4.20 |
Elburz Range forest steppe | −38.08 | 53.15 | 91.24 | 5.59 | 6.28 |
Zagros Mountains forest steppe | −59.83 | 53.41 | 113.25 | 6.10 | 4.19 |
Kopet Dag woodlands and forest steppe | −13.26 | 24.57 | 37.84 | 6.19 | 2.69 |
Middle East steppe | 7.72 | 7.72 | 0 | 7.72 | 0 |
Eastern Anatolian montane steppe | −78.40 | 51.93 | 130.33 | 8.58 | 4.86 |
Azerbaijan shrub desert and steppe | −44.71 | 40.42 | 85.14 | 12.29 | 5.79 |
ECO_NAME | −83 to −30 | −30 to 0 | 0 to 30 | 30 to 53 |
---|---|---|---|---|
Caspian Hyrcanian mixed forests | 6.42 | 24.64 | 11.41 | 0.13 |
Tigris–Euphrates alluvial salt marsh | Non-significant | 4.519 | 0.73 | Non-significant |
Arabian Desert and East Sahero-Arabian xeric shrublands | Non-significant | 3.27 | 0.04 | Non-significant |
Kopet Dag semi-desert | Non-significant | 0.32 | 0.316 | Non-significant |
Caspian lowland desert | Non-significant | 2.32 | 1.55 | Non-significant |
Registan–North Pakistan sandy desert | Non-significant | 0.00 | 0.03 | Non-significant |
South Iran Nubo-Sindian desert and semi-desert | Non-significant | 0.58 | 1.34 | 0.00 |
Kuh Rud and Eastern Iran montane woodlands | Non-significant | 0.33 | 18.12 | 0.0 |
Badghyz and Karabil semi-desert | Non-significant | 0.03 | 20.17 | Non-significant |
Mesopotamian shrub desert | Non-significant | 0.07 | 6.40 | Non-significant |
Central Persian desert basins | 0.00 | 0.29 | 8.50 | 0.00 |
Lake | Non-significant | 0.06 | 1.187 | Non-significant |
Elburz Range forest steppe | 0.04 | 1.94 | 37.77 | 0.03 |
Zagros Mountains forest steppe | 0.003 | 1.01 | 42.57 | 0.01 |
Kopet Dag woodlands and forest steppe | Non-significant | 0.02 | 23.27 | Non-significant |
Middle East steppe | Non-significant | Non-significant | 4.43 | Non-significant |
Eastern Anatolian montane steppe | 0.02 | 0.34 | 63.40 | 0.03 |
Azerbaijan shrub desert and steppe | 0.02 | 0.32 | 32.72 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamangar, M.; Kisi, O.; Minaei, M. Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts. Sustainability 2023, 15, 6577. https://doi.org/10.3390/su15086577
Kamangar M, Kisi O, Minaei M. Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts. Sustainability. 2023; 15(8):6577. https://doi.org/10.3390/su15086577
Chicago/Turabian StyleKamangar, Muhammad, Ozgur Kisi, and Masoud Minaei. 2023. "Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts" Sustainability 15, no. 8: 6577. https://doi.org/10.3390/su15086577
APA StyleKamangar, M., Kisi, O., & Minaei, M. (2023). Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts. Sustainability, 15(8), 6577. https://doi.org/10.3390/su15086577