Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges
Abstract
:1. Introduction
2. Wastewater Generation and Treatment
3. Sludge Composition and Pretreatment
3.1. Drying and Dewatering
3.2. Aerobic Digestion
3.3. Electrochemical Treatment
4. Industrial Sludge
5. Sludge Management
5.1. Landfilling
5.2. Biogas Production
5.3. Incineration
5.4. Land Application
5.5. Benefits of Land Application
5.5.1. Physico-Chemical Properties
5.5.2. Biological Properties
5.5.3. Crop Yield and Quality
6. Risks Related to the Agricultural Valorization of Sludge
6.1. Physical Land Degradation
6.2. Soil Contamination
6.3. Human Health
7. Guidelines and Regulations of Bio-Sludge Land Application
8. Prevention of Pollutant Accumulation in Sludge-Amended Soils
- Setting rigorous pre-treatment requirements to minimize metal discharge in the wastewater collection networks and treatment systems;
- Requiring the sludge to undergo advanced treatment processes to remove metals;
- Establishing strict guidelines for maximum metal concentrations in sludge and for loading limits in different soil types;
- Employing a combination of all of these approaches.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bevington, J.; Scudiero, E.; Teatini, P.; Vellidis, G.; Morari, F. Factorial Kriging analysis leverages soil physical properties and exhaustive data to predict distinguished zones of hydraulic properties. Comput. Electron. Agric. 2019, 156, 426–438. [Google Scholar] [CrossRef]
- Hamdi, H.; Benzarti, S.; Aoyama, I.; Jedidi, N. Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int. Biodeterior. Biodegrad. 2012, 67, 40–47. [Google Scholar] [CrossRef]
- Gianico, A.; Braguglia, C.; Gallipoli, A.; Montecchio, D.; Mininni, G. Land Application of Biosolids in Europe: Possibilities, con-straints and future perspectives. Water 2021, 13, 103. [Google Scholar] [CrossRef]
- Neves, T.I.; Uyeda, C.A.; Carvalho, M.; Abrahão, R. Environmental evaluation of the life cycle of elephant grass fertilization—Cenchrus purpureus (Schumach.) morrone—Using chemical fertilization and Biosolids. Environ. Monit. Assess. 2017, 190, 30. [Google Scholar] [CrossRef] [PubMed]
- Savci, S. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Hamdi, H.; Hechmi, S.; Khelil, M.N.; Zoghlami, I.R.; Benzarti, S.; Mokni-Tlili, S.; Hassen, A.; Jedidi, N. Repetitive land application of urban sewage sludge: Effect of amendment rates and soil texture on fertility and degradation parameters. CATENA 2019, 172, 11–20. [Google Scholar] [CrossRef]
- Scotti, R.; Conte, P.; Berns, A.; Alonzo, G.; Rao, M. Effect of organic amendments on the evolution of soil organic matter in soils stressed by intensive agricultural practices. Curr. Org. Chem. 2013, 17, 2998–3005. [Google Scholar] [CrossRef]
- Hechmi, S.; Hamdi, H.; Mokni-Tlili, S.; Ghorbel, M.; Khelil, M.N.; Zoghlami, I.R.; Benzarti, S.; Jellali, S.; Hassen, A.; Jedidi, N. Impact of urban sewage sludge on soil physico-chemical properties and phytotoxicity as influenced by soil texture and reuse conditions. J. Environ. Qual. 2020, 49, 973–986. [Google Scholar] [CrossRef]
- Zuo, M.; Gu, C.; Zhang, W.; Xu, K.; Wang, Y.; Bai, Y.; Shan, Y.; Dai, Q. Sewage sludge amendment improved soil properties and sweet sorghum yield and quality in a newly reclaimed mudflat land. Sci. Total Environ. 2019, 654, 541–549. [Google Scholar] [CrossRef]
- Parr, J.F.; Papendick, R.I.; Colacicco, D. Recycling of organic wastes for a sustainable agriculture. Biol. Agric. Hortic. 1986, 3, 115–130. [Google Scholar] [CrossRef]
- Hamdi, H.; Benzarti, S.; Manusadžianas, L.; Ayoama, I.; Jedidi, N. Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating landfarming. Chemosphere 2007, 70, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Loss, A.; da Rosa Couto, R.; Brunetto, G.; da Veiga, M.; Toselli, M.; Baldi, E. Animal manure as fertilizer: Changes in soil attributes, productivity and food composition. Int. J. Res. Granthaalayah 2019, 7, 307–331. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.Q.; Wang, D.F. Immobilization of heavy metals in sewage sludge during land application process in China: A Review. Sustainability 2017, 9, 2020. [Google Scholar] [CrossRef]
- Hechmi, S.; Hamdi, H.; Mokni-Tlili, S.; Zoghlami, R.I.; Khelil, M.N.; Jellali, S.; Benzarti, S.; Jedidi, N. Variation of soil properties with sampling depth in two different light-textured soils after repeated applications of urban sewage sludge. J. Environ. Manag. 2021, 297, 113355. [Google Scholar] [CrossRef] [PubMed]
- Özyazici, M.A. Effects of sewage sludge on the yield of plants in the rotation system of wheat-white head cabbage-tomato. Eurasian, J. Soil Sci. 2013, 2, 35–44. [Google Scholar]
- Jamil, M.; Bae, L.D.; Yong, J.K.; Ashraf, M.; Chun, L.S.; Shik, R.E. Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J. Cent. Eur Agric. 2006, 7, 273–282. [Google Scholar]
- Kumar, V.; Chopra, A.K.; Kumar, A. A review on sewage sludge (biosolids): A resource for sustainable agriculture. Arch. Agri. Environ. Sci. 2017, 2, 340–347. [Google Scholar] [CrossRef]
- Kogbara, R.B.; Yiming, W.; Iyengar, S.R.; Abdalla, O.A.E.; Al-Wawi, H.M.; Onwusogh, U.C.; Youssef, K.; Al-Ansary, M.; Sunifar, P.A.; Arora, D. Effect of gas-to-liquid biosludge on soil properties and alfalfa yields in an arid soil. J. Clean. Prod. 2020, 250, 119524. [Google Scholar] [CrossRef]
- Singh, V.; Phuleria, H.C.; Chandel, M.K. Estimation of energy recovery potential of sewage sludge in India: Waste to watt approach. J. Clean. Prod. 2020, 276, 122538. [Google Scholar] [CrossRef]
- Faubert, P.; Barnabe, S.; Bouchard, S.; Cote, R.; Villeneuve, C. Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions? Resour. Conserv. Recycl. 2016, 108, 107–133. [Google Scholar] [CrossRef]
- Chemical Engineering Transactions. Available online: https://www.cetjournal.it/index.php/cet/article/view/CET2188099 (accessed on 12 December 2021).
- Zoghlami, R.I.; Mokni-Tlili, S.; Hamdi, H.; Khelil, M.N.; Ben Aissa, N.; Jedidi, N. Physicochemical, microbiological and ecotoxicological characterization of urban sewage sludge destined for agricultural reuse. J. New Sci. 2016, 27, 1540–1547. [Google Scholar]
- Nunes, N.; Ragonezi, C.; Gouveia, C.S.S.; Pinheiro de Carvalho, M.Â.A. Review of sewage sludge as a soil amendment in relation to current international guidelines: A heavy metal perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Javier, M.S.; Liqa, R.S.; Anne-Louise, T. Global wastewater and sludge production, treatment and use. In Wastewater: Economic Asset in an Urbanizing World, 1st ed.; Pay, D., Manzoor, Q., Wichelns, D., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 15–38. [Google Scholar]
- Jones, E.R.; van Vliet, M.T.H.; Qadir, M.; Bierkens, M.F.P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 2021, 13, 237–254. [Google Scholar] [CrossRef]
- Global Water Intelligence. Available online: https://www.globalwaterintel.com/news/2017/4/where-will-the-water-energy-nexus-go-in-2017 (accessed on 11 November 2022).
- Hernández-Sancho, F.; Molinos-Senante, M.; Sala-Garrido, R. Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Sci. Total Environ. 2010, 408, 953–957. [Google Scholar] [CrossRef] [PubMed]
- UN Environment Programme. UN World Water Development Report, Wastewater: The Untapped Resource; UN Environment Programme: Nairobi, Kenya, 2017; 198p. [Google Scholar]
- Gandiglio, M.; Lanzini, A.; Soto, A.; Leone, P.; Santarelli, M. Enhancing the energy efficiency of wastewater treatment plants through co-digestion and fuel cell systems. Front. Environ. Sci. 2017, 5, 70. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K. Accumulation and translocation of metals in soil and different parts of French bean (Phaseolus vulgaris L.) amended with sewage sludge. Bull. Environ. Contam. Toxicol. 2013, 92, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.T. Waste Treatment and Disposal, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005; pp. 171–243. [Google Scholar]
- Poulsen, P.H.; Magid, J.; Luxhøi, J.; de Neergaard, A. Effects of fertilization with urban and agricultural organic wastes in a field trial—Waste imprint on soil microbial activity. Soil. Biol. Biochem. 2013, 57, 794–802. [Google Scholar] [CrossRef]
- Tunçal, T.; Uslu, O. A review of dehydration of various industrial sludges. Dry. Technol. 2014, 32, 1642–1654. [Google Scholar] [CrossRef]
- Spinoza, L. Co-management of sludge with solid waste: Towards more efficient processing. Water 2008, 21, 21. [Google Scholar]
- Van Veelen, A.; Copping, R.; Law, G.T.; Smith, A.J.; Bargar, J.R.; Rogers, J.; Shuh, D.K.; Wogelius, R.A. Uranium uptake onto Magnox sludge minerals studied using EXAFS. Miner. Mag. 2012, 76, 3095–3104. [Google Scholar] [CrossRef]
- Encyclopædia Britannica. Available online: https://www.britannica.com/technology/wastewater-treatment/Sludge-treatment-and-disposal (accessed on 23 November 2022).
- Rathankumar, A.K.; Saikia, K.; Nagarajan, K.T.; Vaithyanathan, V.K.; Vaidyanathan, V.K.; Cabana, H. Development of efficient and sustainable added-value products from municipal biosolids through an industrially feasible process. J. Clean. Prod. 2020, 266, 121749. [Google Scholar] [CrossRef]
- Shaddel, S.; Bakhtiary-Davijany, H.; Kabbe, C.; Dadgar, F.; Østerhus, S. Sustainable Sewage Sludge Management: From current practices to emerging nutrient recovery technologies. Sustainability 2019, 11, 3435. [Google Scholar] [CrossRef]
- Sharma, M.; Yadav, A.; Manda, M.K.; Pandey, S.; Pal, S.; Chaudhuri, H.; Chakrabarti, S.; Dubey, K.K. Wastewater Treatment and Sludge Management Strategies for Environmental Sustainability. In Circular Economy and Sustainability, 1st ed.; Stefanakis, A., Nikolaou, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 97–112. [Google Scholar]
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Capodaglio, A.G. Sustainable management of biological solids in small treatment plants: Overview of strategies and reuse options for a solar drying facility in Poland. Environ. Sci. Pollut. Res. 2020, 28, 24680–24693. [Google Scholar] [CrossRef] [PubMed]
- Moiambo, O.; Mutevuie, R.; Ferreira, F.; Matos, J. Modelling faecal sludge dewatering processes in drying beds based on the results from Tete, Mozambique. Sustainability 2021, 13, 8981. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef] [PubMed]
- Bougrier, C.; Albasi, C.; Delgenès, J.P.; Carrère, H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Process. 2006, 45, 711–718. [Google Scholar] [CrossRef]
- Januševičius, T.; Mažeikienė, A.; Danila, V.; Paliulis, D. The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods. Biomass. Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Mostafa, M.K. Improve effluent water quality at Abu-Rawash WWTP using aluminum chloride and carbon dioxide. J. Water Res. Prot. 2015, 7, 1049–1057. [Google Scholar] [CrossRef]
- Demirbas, A.; Coban, V.; Taylan, O.; Kabli, M. Aerobic digestion of sewage sludge for waste treatment. Energy Source Part A 2017, 39, 1056–1062. [Google Scholar] [CrossRef]
- Vaithyanathan, V.K.; Cabana, H.; Vaidyanathan, V.K. Remediation of trace organic contaminants from biosolids: Influence of various pre-treatment strategies prior to Bacillus subtilis aerobic digestion. Chem. Eng. J. 2021, 419, 129966. [Google Scholar] [CrossRef]
- Jafari, M.; Botte, G.G. Electrochemical treatment of sewage sludge and pathogen inactivation. J. Appl. Electrochem. 2021, 51, 119–130. [Google Scholar] [CrossRef]
- Afanga, H.; Zazou, H.; Tichou, F.E.; Rakhila, Y.; Ait Akbour, R.; Elmchaouri, A.; Ghanbaja, J.; Hamdani, M. Integrated electrochemical processes for textile industry wastewater treatment: System performances and sludge settling characteristics. Sustain. Environ. Res. 2020, 30, 2. [Google Scholar] [CrossRef]
- Li, M. Improved bio-electricity production in bio-electrochemical reactor for wastewater treatment using biomass carbon derived from sludge supported carbon felt anode. Sci. Total Environ. 2020, 726, 138573. [Google Scholar] [CrossRef]
- Mokni-Tlili, S.; Hechmi, S.; Ouzari, H.I.; Mechergui, N.; Ghorbel, M.; Jedidi, N.; Hassen, A.; Hamdi, H. Co-occurrence of antibiotic and metal resistance in long-term sewage sludge-amended soils: Influence of application rates and pedo-climatic conditions. Environ. Sci. Pollut. Res. Int. 2023, 30, 26596–26612. [Google Scholar] [CrossRef]
- Parsad, M.N.V.; Favas, P.J.C.; Vithanage, M.; Mohan, S.V. Industrial and Municipal Sludge Emerging Concerns and Scope for Resource Recovery, 1st ed.; Butterworth-Heinemann Publishing: Oxford, UK, 2019; 816p. [Google Scholar]
- Surkatti, R.; El-Naas, M.H.; Van Loosdrecht, M.C.M.; Benamor, A.; Al-Naemi, F.; Onwusogh, U. Biotechnology for Gas-to-Liquid (GTL) wastewater treatment: A review. Water 2020, 12, 2126. [Google Scholar] [CrossRef]
- Statista. Countries with Largest Liquefied Natural Gas (LNG) Export Capacity in Operation Worldwide as of July 2022. Available online: https://www.statista.com/statistics/1262074/global-lng-export-capacity-by-country/ (accessed on 12 October 2022).
- Kogbara, R.B.; Yiming, W.; Iyengar, S.R.; Onwusogh, U.C.; Youssef, K.; Al-Ansary, M.; Sunifar, P.A.; Arora, D.; Al-Sharshani, A.; Abdalla, O.A.E.; et al. Recycling industrial biosludge for buffel grass production in Qatar: Impact on soil, leachate and plant characteristics. Chemosphere 2020, 247, 125886. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Zhu, X.; Zhu, W.; Li, X. Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresour. Bioprocess 2019, 6, 8. [Google Scholar] [CrossRef]
- Đurđević, D.; Blecich, P.; Jurić, Ž. Energy recovery from sewage sludge: The case study of Croatia. Energies 2019, 12, 1927. [Google Scholar] [CrossRef]
- Jaria, G.; Silva, C.P.; Ferreira, C.I.A.; Otero, M.; Calisto, V. Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: An alternative waste management strategy. J. Environ. Manag. 2017, 188, 203–211. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.C.; Champagne, P. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresour. Technol. 2010, 101, 2713–2721. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, D.; Jian, Q.; Wang, X.; Zheng, X.; Xue, G.; Liu, Y.; Li, X.; Hassan, G.K. Treatment of industrial ferric sludge through a facile acid-assisted hydrothermal reaction: Focusing on dry mass reduction and hydrochar recyclability performance. Sci. Total Environ. 2023, 869, 161879. [Google Scholar] [CrossRef]
- Sangwan, P.; Kaushik, C.P.; Garg, P.K. Vermiconversion of industrial sludge for recycling the nutrients. Bioresour. Technol. 2008, 99, 8699–8704. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Healy, M.G.; Ashekuzzaman, S.M.; Daly, K.; Leahy, J.J.; Fenton, O. Dairy processing sludge and co-products: A review of present and future re-use pathways in agriculture. J. Clean. Prod. 2021, 314, 128035. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Grubb, G.F.; Bakshi, B.R. Biosolids Management with net-zero CO2 emissions: A techno-ecological synergy design. Clean. Technol. Environ. Policy 2017, 19, 2099–2111. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef]
- Samolada, M.C.; Zabaniotou, A.A. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag. 2014, 34, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Wiechmann, B.; Dienemann, C.; Kabbe, C.; Brandt, S.; Vogel, I.; Roskosch, A. Sewage Sludge Management in Germany; Technical Report; Umwelt Bundesamt (UBA): Bonn, Germany, 2013; 88p.
- O’Kelly, B.C. Sewage sludge to landfill: Some pertinent engineering properties. J. Air. Waste Manag. Assoc. 2005, 55, 765–771. [Google Scholar] [CrossRef]
- Werther, J.; Ogada, T. Sewage sludge combustion. Prog. Energy Combust. Sci. 1999, 25, 55–116. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Venkatesh, G.; Dhakal, S. An international look at the water-energy nexus. J. Am. Water Works Assoc. 2012, 104, 93–96. [Google Scholar] [CrossRef]
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T.A. Review of sludge-to-energy recovery methods. Energies 2018, 12, 60. [Google Scholar] [CrossRef]
- Hassan, G.K.; Mahmoud, W.H.; Al-sayed, A.; Ismail, S.H.; El-Sherif, A.A.; Abd El Wahab, S.M. Multi-functional of TiO2@Ag core–shell nanostructure to prevent hydrogen sulfide formation during anaerobic digestion of sewage sludge with boosting of bio-CH4 production. Fuel 2023, 333, 126608. [Google Scholar] [CrossRef]
- Bioenergy Technologies Office (BTO). Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities; U.S. Department of Energy: Washington, DC, USA, 2017; Updated; 110p.
- Venkatesh, G.; Elmi, R.A. Economic–environmental analysis of handling biogas from sewage sludge digesters in wwtps (wastewater treatment plants) for energy recovery: Case study of bekkelaget WWTP in Oslo (Norway). Energy 2013, 58, 220–235. [Google Scholar] [CrossRef]
- Bachmann, N. Biogas production in wastewater treatment plants. In Sustainable Biogas Production in Municipal Wastewater Treatment Plants, Technical Report; IEA Bioenergy: Paris, France, 2015; 20p. [Google Scholar]
- Moo-Young, M. Comprehensive Biotechnology, 3rd ed.; Pergamon Press: Oxford, UK, 2019; Volume 3, pp. 10–23. [Google Scholar]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Janzen, H.H. Carbon cycling in earth systems. Agric. Ecosyst. Environ. 2004, 104, 397–417. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon in soils of arid ecosystems. Land Degrad. Dev. 2009, 20, 441–454. [Google Scholar] [CrossRef]
- Masciandaro, G.; Macci, C.; Peruzzi, E.; Ceccanti, B.; Doni, S. Organic matter- microorganism-plant in soil bioremediation: A synergic approach. Rev. Environ. Sci. Biotechnol. 2013, 12, 399–419. [Google Scholar] [CrossRef]
- Adediran, J.A.; De Baets, N.; Mnkeni, P.N.S.; Kiekens, L.; Muyima, N.Y.O.; Thys, A. Organic waste materials for soil fertility improvement in the border region of the Eastern Cape, South Africa. Biol. Agric. Hortic. 2003, 20, 283–300. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Roszalin, A.; Wan Rasidah, K.; Fauziah, C.I.; Rosenani, A.B.; Rozita, A. Growth and residual nutrients in soil of intercropped stand of Khaya senegalensis and Orthosiphon stamineus treated with paper mill biosludge. J. Trop. For. Sci. 2015, 27, 255–266. [Google Scholar]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. J. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Sree Ramulu, U.S. Reuse of Municipal Sewage and Sludge in Agriculture; Scientific Publishers: Jodhpur, India, 2001; pp. 305–309. [Google Scholar]
- Epstein, E. Effect of Sewage Sludge on Some Soil Physical Properties. J. Environ. Qual. 1975, 4, 139–142. [Google Scholar] [CrossRef]
- Tejada, M.; Gonzalez, J.J.S. Influence of organic amendments on soil structure and soil loss under simulated rain. Soil Tillage Res. 2007, 93, 197–205. [Google Scholar] [CrossRef]
- Nicolás, C.; Kennedy, J.N.; Hernández, T.; García, C.; Six, J. Soil aggregation in a semiarid soil amended with composted and non-composted sewage sludge—A field experiment. Geoderma 2014, 219–220, 24–31. [Google Scholar] [CrossRef]
- Zoghlami, R.I.; Hamdi, H.; Mokni-Tlili, S.; Khelil, M.N.; Ben Aissa, N.; Jedidi, N. Changes in light-textured soil parameters following two successive annual amendments with urban sewage sludge. Ecol. Eng. 2016, 95, 604–611. [Google Scholar] [CrossRef]
- Zoghlami, R.I.; Hamdi, H.; Boudabbous, K.; Hechmi, S.; Khelil, M.N.; Jedidi, N. Seasonal toxicity variation in light-textured soil amended with urban sewage sludge: Interaction effect on cadmium, nickel, and phytotoxicity. Environ. Sci. Pollut. Res. 2018, 25, 3608–3615. [Google Scholar] [CrossRef] [PubMed]
- Fliesbach, A.; Martens, R.; Reber, H. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem. 1994, 26, 1201–1205. [Google Scholar] [CrossRef]
- Banerjee, M.R.; Burton, D.L.; Depoe, S. Impact of sewage sludge application on soil biological characteristics. Agric. Ecosyst. Environ. 1997, 66, 241–249. [Google Scholar] [CrossRef]
- Dar, G.H. Effects of cadmium and sewage sludge on soil microbial biomass and enzymes activities. Bioresour. Technol. 1996, 56, 141–145. [Google Scholar] [CrossRef]
- Dowdy, R.H.; Larson, W.E.; Titrud, J.M.; Latterell, J.J. Growth and metal uptake of snap beans grown on sewage sludge-amended soil: A four-year field study. J. Environ. Qual. 1978, 7, 252–257. [Google Scholar] [CrossRef]
- Iqbal, G.M.A.; Huda, S.M.S.; Sujauddin, M.; Hossain, M.K. Effects of sludge on germination and initial growth performance of Leucaena leucocephala seedlings in the nursery. J. For. Res. 2007, 18, 226–230. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K. Agronomical performance of high yielding cultivar of eggplant (Solanum melongena L.) grown in sewage sludge amended soil. Res. Agric. 2016, 1, 1–24. [Google Scholar] [CrossRef]
- Belmeskine, H.; Ouameur, W.A.; Dilmi, N.; Aouabed, A. The vermicomposting for agricultural valorization of sludge from Algerian wastewater treatment plant: Impact on growth of snap Bean Phaseolus vulgaris L. Heliyon 2020, 6, e04679. [Google Scholar] [CrossRef] [PubMed]
- Morera, M.T.; Echeverria, J.; Garrido, J. Bioavailability of heavy metals in soils amended with sewage sludge. Can. J. Soil Sci. 2002, 82, 433–438. [Google Scholar] [CrossRef]
- Teixeira, L.A.; Berton, R.S.; Coscione, A.R.; Saes, L.A.; Chiba, M.K. Agronomic efficiency of biosolid as source of nitrogen to banana plants. App. Environ. Soil. Sci. 2015, 2015, 873504. [Google Scholar] [CrossRef]
- Antolín, M.C.; Pascual, I.; García, C.; Polo, A.; Sánchez-Díaz, M.J. Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crop Res. 2005, 94, 224–237. [Google Scholar] [CrossRef]
- Lassoued, N.; Bilal, E.; Rejeb, R.; Guénole-Bilal, I.; Khelil, N.; Rejeb, M.; Frédéric, G. Behavior canola (Brassica napus) following a sewage sludge treatment. Carpath. J. Earth Environ. Sci. 2013, 8, 155–165. [Google Scholar]
- Bozkurt, M.A.; Yarılgaç, T. The effects of sewage sludge applications on the yield, growth, nutrition and heavy metal accumulation in apple trees growing in dry conditions. Turk. J. Agric. For. 2003, 27, 285–292. [Google Scholar]
- Fahim, S.; Nisar, N.; Ahmad, Z.; Asghar, Z.; Said, A.; Atif, S.; Ghani, N.; Qureshi, N.; Soomro, G.; Iqbal, M.; et al. Managing paper and pulp industry by-productwaste utilizing sludge as a bio-fertilizer. Pol. J. Environ. Stud. 2018, 28, 83–90. [Google Scholar] [CrossRef]
- Méndez, A.; Paz-Ferreiro, J.; Gil, E.; Gascó, G. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci. Hortic. 2015, 193, 225–230. [Google Scholar] [CrossRef]
- Chandra, R.; Yadav, S.; Mohan, D. Effect of distillery sludge on seed germination and growth parameters of green gram (Phaseolus mungo L.). J. Hazard. Mater. 2008, 152, 431–439. [Google Scholar] [CrossRef]
- Abdul Khaliq, S.J.; Al-Busaidi, A.; Ahmed, M.; Al-Wardy, M.; Agrama, H.; Choudri, B.S. The effect of municipal sewage sludge on the quality of soil and crops. Int. J. Recycl. Org. Waste Agric. 2017, 6, 289–299. [Google Scholar] [CrossRef]
- Buta, M.; Hubeny, J.; Zieliński, W.; Harnisz, M.; Korzeniewska, E. Sewage sludge in agriculture—The effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops—A review. Ecotoxicol. Environ. Saf. 2021, 214, 112070. [Google Scholar] [CrossRef]
- Breda, C.C.; Soares, M.B.; Tavanti, R.F.; Viana, D.G.; Freddi, O.; da Piedade, A.R.; Mahl, D.; Traballi, R.C.; Guerrini, I.A. Successive sewage sludge fertilization: Recycling for sustainable agriculture. Waste Manag. 2020, 109, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Alrumman, S.A.; Farahat, E.A.; El-Bebany, A. Prediction models for evaluating the uptake of heavy metals by cucumbers (Cucumis sativus L.) grown in agricultural soils amended with sewage sludge. Environ. Monit. Assess. 2018, 190, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Odeh, I.O.; Onus, A. Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia. Environ. Manag. 2008, 42, 265–278. [Google Scholar] [CrossRef]
- Abdollahi, R.; Shadizadeh, S.; Zargar, G. Experimental investigation of acid-induced sludge precipitation: Using acid additives in Iran. Energy Source Part A 2014, 36, 1793–1799. [Google Scholar] [CrossRef]
- Buni, A. Effects of liming acidic soils on improving soil properties and yield of haricot bean. J. Environ. Anal. Toxicol. 2014, 5, 248. [Google Scholar]
- Alayu, E.; Leta, S. Brewery sludge quality, agronomic importance and its short-term residual effect on soil properties. Int. J. Environ. Sci. Technol. 2020, 17, 2337–2348. [Google Scholar] [CrossRef]
- USDA-NRCS. Soil Electrical Conductivity. Soil Health—Guide for Educators; USDA: Washingtion, DC, USA, 2014; pp. 1–9.
- Sparks, D.L.; Singh, B.; Siebecker, M.G. The Chemistry of Saline and Sodic Soils. In Environmental Soil Chemistry, 3rd ed.; Sparks, D.L., Singh, B., Siebecker, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2023; Volume 10, pp. 411–436. [Google Scholar]
- Navas, A.; Bermúdez, F.; Machín, J. Influence of sewage sludge application on physical and chemical properties of Gypsisols. Geoderma 1998, 87, 123–135. [Google Scholar] [CrossRef]
- Tang, S.; She, D.; Wang, H. Effect of salinity on soil structure and soil hydraulic characteristics. Can. J. Soil Sci. 2021, 101, 62–73. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. A Guide for Land Appliers on the Requirements of the Federal Standards for the Use or Disposal of Sewage Sludge, 40 CFR Part 503. In Land Application of Sewage Sludge; Technical Report; United States Environmental Protection Agency: Washington, DC, USA, 1994; 59p. [Google Scholar]
- Association Française de Normalisation. NF U44-095: Organic Soil Improvers—Composts Containing Substances Essential to Agriculture, Stanning from Water Treatment. 2022. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-u44095/organic-soil-improvers-composts-containing-substances-essential-to-agricult/fa107372/520 (accessed on 22 December 2022).
- Schallmey, M.; Singh, A.; Ward, O. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Karvelas, M.; Katsoyiannis, A.; Samara, C. Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 2003, 53, 1201–1210. [Google Scholar] [CrossRef]
- Gowrek, B.; Ratenska, A.J. Mercury migration pattern in air soil-plant. Environ. Nat. Resour. J. 2009, 41, 614. [Google Scholar]
- Hue, N.; Ranjith, S. Sewage sludges in Hawaii: Chemical composition and reactions with soils and plants. Water Air Soil Pollut. 1994, 72, 265–283. [Google Scholar] [CrossRef]
- Saha, S.; Saha, B.N.; Pati, S.; Pal, B.; Hazra, G.C. Agricultural use of sewage sludge in India: Benefits and potential risk of heavy metals contamination and possible remediation options—A review. Int. J. Environ. Technol. Manag. 2017, 20, 183–199. [Google Scholar] [CrossRef]
- Stöven, K.; Schnug, E. Long-term effects of heavy metal enriched sewage sludge disposal in agriculture on soil biota. Landbauforschung—vTI. Agric. For. Res. 2009, 2, 131–138. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Suriyagoda, L.D.B.; Dittert, K.; Lambers, H. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agric. Ecosyst. Environ. 2018, 253, 23–37. [Google Scholar] [CrossRef]
- McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G. Long-term leaching of trace elements in a heavily sludge-amended silty clay loam soil. Soil Sci. 1999, 164, 613–623. [Google Scholar] [CrossRef]
- UNESCO. Emerging Pollutants in Water and Wastewater. Available online: https://en.unesco.org/emergingpollutants (accessed on 21 October 2022).
- Harrison, E.Z.; Rayne Oakes, S.; Hysell, M.; Hay, A. Organic chemicals in sewage sludges. Sci. Total Environ. 2006, 367, 481–497. [Google Scholar] [CrossRef]
- Khadhar, S.; Higashi, T.; Hamdi, H.; Matsuyama, S.; Charef, A. Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants. J. Hazard. Mater. 2010, 183, 98–102. [Google Scholar] [CrossRef]
- Rizvi, S.G.; Ahammad, S.Z. COVID-19 and antimicrobial resistance: A cross-study. Sci. Total Environ. 2022, 807, 150873. [Google Scholar] [CrossRef] [PubMed]
- Europeam Commission. Evaluation of Sludge Treatments for Pathogen Reduction; Office for Official Publications of the European Communities: Luxembourg, 2001; 52p. [Google Scholar]
- Major, N.; Schierstaedt, J.; Jechalke, S.; Nesme, J.; Ban, S.G.; Černe, M.; Sørensen, S.J.; Ban, D.; Schikora, A. Composted sewage sludge influences the microbiome and persistence of human pathogens in soil. Microorganisms 2020, 8, 1020. [Google Scholar] [CrossRef]
- Zhang, J.; Sui, Q.; Tong, J.; Zhong, H.; Wang, Y.; Chen, M.; Wei, Y. Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Environ. Int. 2018, 118, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Harder, R.; Peters, G.M.; Molander, S.; Ashbolt, N.J.; Svanström, M. Including pathogen risk in life cycle assessment: The effect of modelling choices in the context of sewage sludge management. Int. J. Life Cycle Assess. 2016, 21, 60–69. [Google Scholar] [CrossRef]
- Viau, E.; Bibby, K.; Paez-Rubio, T.; Peccia, G. Toward a consensus view on the infectious risks associated with land application of sewage sludge. Environ. Sci. Technol. 2011, 45, 5459–5469. [Google Scholar] [CrossRef]
- Harrison, E.Z.; Oakes, S. Investigation of alleged health incidents associated with land application of sewage sludges. New Solut. 2003, 12, 387–408. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghazali, M.; Al-Azawi, S. Listeria monocytogenes contamination of crops grown on soil treated with sewage sludge cake. J. Appl. Bacteriol. 1990, 69, 642–647. [Google Scholar] [CrossRef]
- Wild, S.R.; Berrow, M.L.; McGrath, S.P.; Jones, K.C. Polynuclear aromatic hydrocarbons in crops from long-term field experiments amended with sewage sludge. Environ. Pollut. 1992, 76, 25–32. [Google Scholar] [CrossRef]
- Muchuweti, M.; Birkett, J.W.; Chinyanga, E.; Zvauya, R.; Scrimshaw, M.D.; Lester, J.N. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agric. Ecosyst. Environ. 2006, 112, 41–48. [Google Scholar] [CrossRef]
- Heaton, J.C.; Jones, K. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: A review. J. Appel. Microbiol. 2008, 104, 613–626. [Google Scholar] [CrossRef]
- Ramesh, V. Food Microbiology; MJP Publishers: Chennai, India, 2019; p. 802. [Google Scholar]
- Perković, S.; Paul, C.; Vasić, F.; Helming, K. Human health and soil health risks from heavy metals, micro(nano)plastics, and antibiotic resistant bacteria in agricultural soils. Agronomy 2022, 12, 2945. [Google Scholar] [CrossRef]
- United Kingdom Health Security Agency. The Sludge (Use in Agriculture) Regulations No. 1263 of 1989; 1989. Available online: https://www.legislation.gov.uk/uksi/1989/1263/made (accessed on 28 December 2022).
- Institut National de la Normalisation et de la Propriété Industrielle (INNORPI). Fertilizing Materials—Urban Sewage Sludge. Reuse Standards NT 106-20, Tunisia. 2002. Available online: http://innorpi.tn:8080/web/guest/normes (accessed on 28 December 2022).
- Chang, A.C.; Pan, G.; Page, A.L.; Asano, T. Developing Human Health-Related Chemical Guidelines for Reclaimed Wastewater and Sewage Sludge Applications in Agriculture; Report prepared for the World Health Organization (WHO); WHO: Genewa, Switzerland, 2002; 94p. [Google Scholar]
- Kumazawa, K. Use of Sewage Sludge for Agriculture in Japan. In Sewage Sludge and Wastewater for Use in Agriculture; IAEA Proceedings: Vienna, Austria, 1997; pp. 111–128. [Google Scholar]
- Duffus, J.H. Heavy metals—A meaningless term? Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Wang, F.; Yao, J.; Si, Y.; Chen, H.; Russel, M.; Chen, K.; Qian, Y.; Zaray, G.; Bramanti, E. Short-time effect of heavy metals upon microbial community activity. J. Hazard. Mater. 2010, 173, 510–516. [Google Scholar] [CrossRef]
- Ying, S.C.; Masue-Slowey, Y.; Kocar, B.D.; Griffis, S.D.; Webb, S.; Marcus, M.A.; Francis, C.A.; Fendorf, S. Distributed microbially- and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. Geochim. Cosmochim. Acta 2013, 104, 29–41. [Google Scholar] [CrossRef]
- Qatar Construction Specifications (QCS). Part-01: Landscape Planting. 2014. Available online: https://www.scribd.com/document/328683307/QCS-2014-pdf (accessed on 12 October 2022).
- Council of the European Union. Council Directive 86/278/EEC of on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge is Used in Agriculture; Official Journal of the European Communities; European Union: Brussels, Belgium, 1986; pp. 6–12. [Google Scholar]
- Institut National de la Normalisation et de la Propriété Industrielle (INNORPI). Norme Tunisienne NT. 106.002 Relative Aux Rejets D’effluents dans le Milieu Hydrique (Protection de L’environnement). Norme Homologuée par Arrêté du Ministre de l’Economie Nationale du 20 Juillet 1989, JORT no 59, Page 1332. Date de Prise D’effet: 1er Octobre 1989. Available online: http://www.citet.nat.tn/Portail/doc/SYRACUSE/40964/norme-tunisienne-nt-106-002-norme-tunisienne-nt-106-002-1989-relative-aux-rejets-d-effluents-dans-le?_lg=fr-FR (accessed on 21 February 2023).
- Hudcová, H.; Vyamazal, J.; Rozkosny, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- Romdhana, M.H.; Lecomte, D.; Ladevie, B.; Sablayrolles, C. Monitoring of pathogenic microorganisms contamination during heat drying process of sewage sludge. Process Saf. Environ. Prot. 2009, 87, 377–386. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Control of Pathogens and Vector Attraction in Sewage Sludge (Including Domestic Septage) Under 40 CFR Part 503. In Environmental Regulations and Technology; Technical Report; United States Environmental Protection Agency: Washington, DC, USA, 2003; 173p. [Google Scholar]
- Nogueira, T.; David, P.H.C.; Pothier, J. Antibiotics as both friends and foes of the human gut microbiome: The microbial community approach. Drug Dev. Res. 2019, 80, 86–97. [Google Scholar] [CrossRef]
- Hussein, I.A.J.; Abu-Sharar, T.M.; Mrayyan, B. Assessment of the application of treated wastewater and sewage sludge in productive agriculture: A case study from northern Jordan. Water Environ. J. 2007, 19, 394–403. [Google Scholar] [CrossRef]
- Reyes-Contreras, C.; Neumann, P.; Barriga, F.; Venegas, M.; Dominguez, C.; Bayona, J.M.; Vidal, G. Organic micropollutants in sewage sludge: Influence of thermal and ultrasound hydrolysis processes prior to anaerobic stabilization. Environ. Technol. 2018, 41, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Euvard, E.; Druart, C.; Crini, N.; Crini, G. Monitoring and origin of polycyclic aromatic hydrocarbons (PAHs) in effluents from a surface treatment industry. Polycycl. Aromat Compd. 2019, 39, 452–461. [Google Scholar] [CrossRef]
- Alexander, D.E. Bioaccumulation, Bioconcentration, Biomagnification Environmental Geology; Springer: Dordrecht, The Netherlands, 1999; pp. 43–44. [Google Scholar]
- Fijalkowski, K. Emerging contaminants in sludge (endocrine disruptors, pesticides, and pharmaceutical residues, including illicit drugs/controlled substances, etc.). In Industrial and Municipal Sludge; Parsad, M.N.V., Favas, P.J.C., Vithanage, M., Mohan, S.V., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 455–473. [Google Scholar]
- Yan, R.; Wang, Y.; Li, J.; Wang, Y. Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter. J. Hazard. Mater. 2022, 425, 127764. [Google Scholar] [CrossRef]
- Pimmata, P.; Reungsang, A.; Plangklang, P. Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. Int. Biodeterior. Biodegrad. 2013, 85, 196–204. [Google Scholar] [CrossRef]
- Sigmund, F.; Massner, C.; Erdmann, P.; Stelzl, A.; Rolbieski, H.; Desai, M.; Bricault, S.; Wörner, T.P.; Snijder, J.; Geerlof, A.; et al. Bacterial encapsulins as orthogonal compartments for mammalian cell engineering. Nat. Commun. 2018, 9, 1990. [Google Scholar] [CrossRef]
- Koba, O.; Golovko, O.; Kodešová, R.; Fér, M.; Grabic, R. Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. Environ. Pollut. 2017, 220, 1251–1263. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C. Natural and human factors affect the distribution of soil heavy metal pollution: A review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- McKinnon, K.; Serikstad, G.L.; Eggen, T. Contaminants in manure—A problem for organic farming? In Proceedings of the 4th ISOFAR Scientific Conference ‘Building Organic Bridges’, Organic World Congress, Istanbul, Turkey, 13–15 October 2014; pp. 903–904. [Google Scholar]
- Brathwaite, R.L.; Rabone, S.D. Heavy metal sulphide deposits and geochemical surveys for heavy metals in New Zealand. J. R. Soc. N. Z. 1985, 15, 363–370. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Thornton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef]
- Kashif Uddin, M. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2007, 308, 438–462. [Google Scholar] [CrossRef]
- Czikkely, M.; Neubauer, E.; Fekete, I.; Ymeri, P.; Fogarassy, C. Review of heavy metal adsorption processes by several organic matters from wastewaters. Water 2018, 10, 1377. [Google Scholar] [CrossRef]
- Hizal, J.; Apak, R. Modeling of copper (II) and lead (II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J. Colloid Interface Sci. 2006, 295, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Marzougui, N.; Ounalli, N.; Sabbahi, S.; Fezzani, T.; Abidi, F.; Jebari, S.; Melki, S.; Berndtsson, R.; Oueslati, W. How can sewage sludge use in sustainable Tunisian agriculture be increased? Sustainability 2022, 14, 13722. [Google Scholar] [CrossRef]
Sandy Soil | Sandy Loam Soil | Sewage Sludge | |
---|---|---|---|
Sand (%) | 83.3 | 70.9 | - |
Clay (%) | 5.2 | 11.9 | - |
Loam (%) | 11.5 | 16.2 | - |
pH (1:2.5) | 7.24 | 7.72 | 7.7 |
EC (µS/cm) (1:5) | 119 | 155 | 1702 |
Organic matter (%) | 1.15 | 1.31 | 31.8 |
TOC (%) | 0.67 | 0.76 | 18.5 |
N (%) | 0.1 | 0.071 | 1.18 |
C:N | 7 | 10.7 | 15.7 |
P Olsen (mg kg−1) | 17.5 | 14.1 | 220 |
K (mg kg−1) | 8.44 | 58.8 | 9.54 |
Ca (mg kg−1) | 1540 | 9560 | 11,354 |
Na (mg kg−1) | 80 | 196 | 1231 |
Cd (mg kg−1) | 0.36 | 0.74 | 4.04 |
Pb (mg kg−1) | 16.2 | 16.5 | 35 |
Ni (mg kg−1) | 0.58 | 0.44 | 22.2 |
Zn (mg kg−1) | 5.88 | 2.48 | 342 |
Cu (mg kg−1) | 1.37 | 0.1 | 174.4 |
Bacteria (CFU g−1) | 103 × 105 | 122 × 105 | 125 × 107 |
Fungi (CFU g−1) | 52 × 102 | 58 × 102 | 3 × 107 |
Fecal coliforms (CFU g−1) | nd | nd | 9 × 102 |
F. streptococci (CFU g−1) | nd | nd | 20 × 105 |
Parameters (%) | GTL Sludge (Qatar) [55] | PPM Sludge (Thunder Bay, Canada) [59] |
---|---|---|
TOC | 29.3 | 41.2 |
N | 3.65 | 4.18 |
P | 0.54 | 0.87 |
K | 0.17 | 0.53 |
C/N | 8.02 | 9.85 |
Na | 0.82 | 7.04 |
Mg | 0.72 | 0.81 |
Ca | 4.97 | 1.42 |
Zn | 0.02 | 0.06 |
Fe | 2.1 | 0.48 |
Al | 0.07 | 1.65 |
Mn | 0.016 | 0.34 |
Element (mg kg−1) | USA Class A [118] | Qatar [152] | EU [153] | Tunisia [154] | France [119] | Oman [106] |
---|---|---|---|---|---|---|
Zn | 2800 | 2500 | 2500–4000 | 2000 | 3000 | 3000 |
Cu | 1500 | 1000 | 1000–1750 | 1000 | 1000 | 1000 |
Cr | 1200 | 300 | 1000 | 500 | 1000 | 1000 |
As | 41 | 10 | - | - | - | - |
Cd | 39 | 20 | 20–40 | 20 | 20 | 20 |
Pb | 300 | 300 | 750–1200 | 800 | 800 | 1000 |
Hg | 17 | 10 | 16–25 | - | 10 | 10 |
Ni | 420 | 200 | 300–400 | 200 | 200 | 300 |
Se | 36 | 50 | - | - | - | 50 |
USA Class A 40 CFR Part 503 [118] | Bulgaria (EEA-BG) [155] | France (NF U44-095) [119] | Tunisia (NT 106-20) [146] | Jordan (JS 893/2002) [159] | |
---|---|---|---|---|---|
Salmonella sp. | <1000 MPN */g | No occurrence in 20 g | <8 MPN/10 g | - | <3 MPN/4 g |
E. coli | <1000 MPN/100 g | <100 MPN/g | <1000 CFU | - | - |
Fecal coliforms | - | - | - | <2 ×106 MPN/g | <1000 MPN/g |
Enteroviruses | <1 PFU/g | - | <3 MPN/g | - | - |
Helminth eggs | <1 viable/g | <1 viable/kg | <3 viable/10 g | - | <1 viable/5 g |
EU * [155] | Denmark [155] | Germany [155] | Portugal [155] | France [155] | Luxembourg [155] | Qatar [152] | |
---|---|---|---|---|---|---|---|
AOX (mg kg−1) | 500 | - | 500 | - | - | - | - |
DEHP (mg kg−1) | 100 | 50 | - | - | - | - | - |
LAS (mg kg−1) | 2600 | 1300 | - | 5000 | - | - | - |
NP/NPE (mg kg−1) | 50 | 10 | - | 450 | - | - | - |
PAH (mg kg−1) | 6 a | 3 a | - | 6 a | 9.5 b | 20 c | - |
PCB (mg kg−1) | 0.8 | - | 0.2 | 0.8 | 0.8 | 0.2 | - |
PCDD/F (ng TEQ/kg) | 100 | - | 100 | 100 | - | 20 | - |
Pesticides (mg kg−1) | |||||||
DDT/DDE/DDD (Banned in 2001) | - | - | - | - | - | - | 0.5 |
Aldrin (Banned in 2001) | - | - | - | - | - | - | 0.02 |
Dieldrin (Banned in 2001) | - | - | - | - | - | - | 0.02 |
Chlordane (Banned in 2001) | - | - | - | - | - | - | 0.02 |
Heptachlor (Banned in 2001) | - | - | - | - | - | - | 0.02 |
HCB (Banned in 2001) | - | - | - | - | - | - | 0.02 |
Lindane (Banned in 2001) | - | - | - | - | - | - | 0.02 |
BHC (Banned in 2001) | - | - | - | - | - | - | 0.02 |
USA (kg ha−1) [118] | EU (mg kg−1) [155] | Oman (mg kg−1) [106] | Bulgaria (mg kg−1) [155] | Lithuania (mg kg−1) [155] | |||
---|---|---|---|---|---|---|---|
Cumulative (20 years) | 6 < pH < 7 | pH > 7 | 6 < pH < 7.4 | pH > 7.4 | Sand Sandy loam | Clay Clay loam | |
Zn | 2800 | 150–300 | 300 | 250 | 300 | 120 | 200 |
Cu | 1500 | 50–140 | 150 | 140 | 200 | 40 | 60 |
Cr * | 3000 | - | 400 | 200 | 200 | 40 | 60 |
As * | 41 | - | - | - | - | - | - |
Cd * | 39 | 1–3 | 3 | 2 | 3 | 0.8 | 1.1 |
Pb * | 300 | 50–300 | 30 | 100 | 120 | 40 | 60 |
Hg * | 17 | 1–1.5 | 1 | 1 | 1 | 0.5 | 0.8 |
Ni | 420 | 30–75 | 75 | - | 110 | 35 | 45 |
Mo | - | - | 3 | - | - | - | - |
Se | 100 | - | 50 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabrouk, O.; Hamdi, H.; Sayadi, S.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H.; Zouari, N. Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges. Sustainability 2023, 15, 6773. https://doi.org/10.3390/su15086773
Mabrouk O, Hamdi H, Sayadi S, Al-Ghouti MA, Abu-Dieyeh MH, Zouari N. Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges. Sustainability. 2023; 15(8):6773. https://doi.org/10.3390/su15086773
Chicago/Turabian StyleMabrouk, Oumaima, Helmi Hamdi, Sami Sayadi, Mohammad A. Al-Ghouti, Mohammed H. Abu-Dieyeh, and Nabil Zouari. 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges" Sustainability 15, no. 8: 6773. https://doi.org/10.3390/su15086773
APA StyleMabrouk, O., Hamdi, H., Sayadi, S., Al-Ghouti, M. A., Abu-Dieyeh, M. H., & Zouari, N. (2023). Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges. Sustainability, 15(8), 6773. https://doi.org/10.3390/su15086773