Synthesized Approach for Evaluating the Integral Suspension Pressure (ISP) Method and the Hydrometer in the Determination of Particle Size Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Properties of the Soil
2.2. Hydrometer Method
2.3. Integral Suspension Pressure (ISP) Method
3. Results and Discussion
Comparison of the PSD from the ISP and Hydrometer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohn, H.; McNeal, B.; O’Connor, G. Soil Chemistry, 3rd ed.; Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Bedaiwy, M.N.A. Mechanical and hydraulic resistance relations in crust-topped soils. Catena 2008, 72, 270–281. [Google Scholar] [CrossRef]
- Gee, G.; Or, D. Particle-size analysis. In Methods of Soil Analysis: Part 4 Physical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 2002. [Google Scholar]
- Arya, L.M.; Leij, F.J.; Shouse, P.J.; van Genuchten, M.T. Relationship between the hydraulic conductivity function and the particle-size distributions. Soil Sci. Soc. Am. J. 1999, 63, 1063–1070. [Google Scholar] [CrossRef]
- Stokes, G. On the effect of the internal friction of fluids on the motion of pendulums. Math. Phys. Pap. 1850, 3, 1–86. [Google Scholar]
- Papuga, K.; Kaszubkiewicz, J.; Wilczewski, W.; Staś, M.; Belowski, J.; Kawałko, D. Soil grain size analysis by the dynamometer method-a comparison to the pipette and hydrometer method. Soil Sci. Annu. 2018, 69, 17. [Google Scholar] [CrossRef]
- Paul, N.; Biggs, S.; Shiels, J.; Hammond, R.; Edmondson, M.; Maxwell, L.; Hunter, T. Influence of shape and surface charge on the sedimentation of spheroidal, cubic and rectangular cuboid particles. Powder Technol. 2017, 322, 75–83. [Google Scholar] [CrossRef]
- Zhang, N.; Zhu, W.; He, H.; Lv, Y. Experimental study on sedimentation and consolidation of soil particles in dredged slurry. KSCE J. Civ. Eng. 2017, 21, 2596–2606. [Google Scholar] [CrossRef]
- Zhang, N.; Zhu, W. Study of sedimentation and consolidation of soil particles in dredged slurry. In Geoenvironmental Engineering; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Di Stefano, C.; Ferro, V.; Mirabile, S. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosyst. Eng. 2010, 106, 205–215. [Google Scholar] [CrossRef]
- Allen, T. A critical evaluation of the coulter counter. In Proceedings of the Symposium on Particle Size Analysis, Chemistry, Loughborough, UK, 14–16 September 1966; pp. 110–127. [Google Scholar]
- Jacobsen, A.; Sullivan, W. Centrifugal sedimentation method for particle size distribution. Ind. Eng. Chem. Anal. Ed. 1946, 18, 360–364. [Google Scholar] [CrossRef]
- Rząsa, S.; Owczarzak, W. Methods for the granulometric analysis of soil for science and practice. Pol. J. Soil Sci. 2015, 46, 1. [Google Scholar]
- Casagrande, M. Die Areometr Methode zur Bestimmung der Kornverteilung von Böden, 1st ed.; Springer: Berlin, Germany, 1934. [Google Scholar]
- Köhn, M. Beiträge zur Theorie und Praxis der mechanischen Bodenanalyse. Ph.D. Thesis, Forstliche Hochschule, Eberswalde, Germany, 1928. [Google Scholar]
- Loveday, J. Methods for Analysis of Irrigated Soils; Technical Communication; Commonwealth Agricultural Bureaux: Wallingford, UK, 1974. [Google Scholar]
- Baver, L.; Gardner, W.; Gardner, W. Soil Physics, 4th ed.; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Kun, A.; Katona, O.; Sipos, G.; Barta, K. Comparison of pipette and laser diffraction methods in determining the granulometric content of fluvial sediment samples. J. Environ. Geogr. 2013, 6, 49–54. [Google Scholar] [CrossRef]
- Gresina, F. Comparison of pipette method and state of the art analytical techniques to 454 determine granulometric properties of sediments and soils. Hung. Geogr. Bull. 2020, 69, 27–39. [Google Scholar]
- Bouyoucos, G. The hydrometer as a new method for the mechanical analysis of soils. Soil Sci. 1927, 23, 343–354. [Google Scholar] [CrossRef]
- Bouyoucos, G. The hydrometer method for making a very detailed mechanical analysis of soils. Soil Sci. 1928, 26, 233–238. [Google Scholar] [CrossRef]
- Bouyoucos, G. The hydrometer method for studying soils. Soil Sci. 1928, 25, 365–370. [Google Scholar] [CrossRef]
- Bedaiwy, M. A simplified approach for determining the hydrometer’s dynamic settling depth in particle-size analysis. Catena 2012, 72, 270–281. [Google Scholar] [CrossRef]
- Beretta, A.N.; Silbermann, A.V.; Paladino, L.; Torres, D.; Kassahun, D.; Musselli, R.; Lamohte, A.G. Soil texture analyses using a hydrometer: Modification of the bouyoucos method. Int. J. Agric. Nat. Resour. 2014, 41, 263–271. [Google Scholar] [CrossRef]
- Mwendwa, S. The Mwendwa Protocol: A modification of the Bouyoucos method of soil texture analysis. Res. Sq. 2020. Available online: https://assets.researchsquare.com/files/rs-65389/v1/39bb372c-96a8-4394-a694-dbcc3593a441.pdf?c=1631854429 (accessed on 4 December 2022).
- Durner, W.; Iden, S.; von Unold, G. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation. Water Resour. Res. 2017, 53, 33–48. [Google Scholar] [CrossRef]
- Durner, W.; Alina, M.; Thomas, P.; Sascha, C. Determining the particle-size distribution of soil materials with the integral suspension pressure (ISP) method-lessons learned from Pario measurements. In EGU General Assembly Conference Abstracts 2020; Online; EGU: Vienna, Austria, 2021. [Google Scholar]
- Kimaro, J.; Scharsich, V.; Kolb, A.; Huwe, B.; Bogner, C. Distribution of traditional irrigation canals and their discharge dynamics at the southern slopes of mount kilimanjaro. Front. Environ. Sci. 2019, 7, 24. [Google Scholar] [CrossRef]
- Olarte, M.; Ruge, J. Analysis of the relationship between the water retention curve 2020, 498 particle size and pore size distribution in the characterization of a collapsible porous clay. Respuestas 2020, 25, 33–43. [Google Scholar] [CrossRef]
- Foltran, E.; Ammer, C.; Lamersdorf, N. Douglas fir and norway spruce admixtures to beech forests along in northern germany–are soil nutrient conditions affected? BioRxiv 2020, preprint. [Google Scholar]
- Fuchs, S.; Leuschner, C.; Link, R.; Schuldt, B. Hydraulic variability of three temperate broadleaf tree species along a water availability gradient in central europe. New Phytol. 2021, 231, 1387–1400. [Google Scholar] [CrossRef]
- Syvitsky, J. Principles, Methods, and Application of Particle Size Analysis; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Goossens, D. Techniques to measure grain-size distributions of loamy sediments: A 452 comparative study of ten instruments for wet analysis. Sedimentology 2008, 55, 65–96. [Google Scholar] [CrossRef]
- Acevedo, S.E.; Contreras, C.P.; Ávila, C.J.; Bonilla, C.A. Testing the integral suspension pressure method for soil particle size analysis across a range of soil organic matter contents. Int. Agrophys. 2021, 35, 357–363. [Google Scholar] [CrossRef]
- Contreras, C.; Acevedo, S.; Martínez, S.; Bonilla, C. Evaluating the integral suspension pressure method for measuring the particle size distribution in soils with high organic matter content. In EGU General Assembly Conference Abstracts 2020; Online; EGU: Vienna, Austria, 2020. [Google Scholar]
- ASTM D854-14; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM: Philadelphia, PA, USA, 2014.
- ASTM D1140-17; Standard Test Methods for Determining the Amount of Material Finer than 75-m (no. 393 200) Sieve in Soils by washing. ASTM: Philadelphia, PA, USA, 2017.
- ASTM D7928-21e1; Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer). ASTM: Philadelphia, PA, USA, 2021.
- Keller, J.; Gee, G. Comparison of American society of testing materials and soil science society of america hydrometer methods for particle-size analysis. Soil Sci. Soc. Am. J. 2006, 70, 1094–1100. [Google Scholar] [CrossRef]
- ASTM D422-63; Standard Test Method for Particle-Size Analysis of Soils. ASTM: Philadelphia, PA, USA, 1998.
- DIN 18123; Soil, Investigation and Testing—Determination of Grain-Size Distribution. DIN: Berlin, Germany, 2011.
- Nemes, A.; Angyal, A.; Mako, A.; Jacobsen, J.; Herczeg, E. Measurement of soil 494 particle size distribution by the pario measurement system: Lessons learned and comparison 495 with two other measurement techniques. In EGU General Assembly Conference Abstracts 2020; Online; EGU: Vienna, Austria, 2020. [Google Scholar]
- Ramsey, C.; Suggs, J. Improving laboratory performance through scientific subsampling techniques. Environ. Test. Anal. 2001, 10, 12–16. [Google Scholar]
- Poppiel, R.; Lacerda, M.; Demattê, J.; Oliveira, M.; Gallo, B.; Safanelli, J. Pedology and soil class mapping from proximal and remote sensed data. Geoderma 2019, 348, 189–206. [Google Scholar] [CrossRef]
Ref. | Methods | Physical Principles Evaluated |
---|---|---|
[34] | ISP and hydrometer | Sedimentation |
[26] | ISP and pipette | Sedimentation |
[35] | ISP and sedimentation | Sedimentation |
Soil | Gs |
---|---|
Bentonite | 2.70 |
Kaoliny | 2.54 |
Kaolinw | 2.58 |
Clay Minerals/Sample | Kaolinw | Bentonite | Kaoliny |
---|---|---|---|
Kaolinite | 89.17 | 6.23 | 75.35 |
Illite | 9.75 | ----- | 16.00 |
Montmorillonite | 1.08 | 93.43 | 6.74 |
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Kaolinw | 61.16 | 18.92 | 3.71 | 0.12 | 1.70 | 1.67 | 0.91 | 0.95 | 0.53 |
Bentonite | 48.08 | 19.08 | 6.37 | 1.26 | 0.76 | 3.04 | 2.62 | 0.09 | 0.88 |
Kaoliny | 59.23 | 17.34 | 4.65 | 1.81 | 0.29 | 3.72 | 1.45 | 0.13 | 0.36 |
Number | Soil | Clay | Silt | ||
---|---|---|---|---|---|
Equation | R2 | Equation | R2 | ||
1 | Bentonite | y = 0.779x | 0.99 | y = 1.309x | 0.86 |
2 | Kaoliny | y = 0.382x | 0.98 | y = 2.076x | 0.99 |
3 | Kaolinw | y = 0.847x | 0.99 | y = 1.749x | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olarte, M.C.; Ruge, J.C.; Rodriguez-Rebolledo, J.F. Synthesized Approach for Evaluating the Integral Suspension Pressure (ISP) Method and the Hydrometer in the Determination of Particle Size Distribution. Sustainability 2023, 15, 6847. https://doi.org/10.3390/su15086847
Olarte MC, Ruge JC, Rodriguez-Rebolledo JF. Synthesized Approach for Evaluating the Integral Suspension Pressure (ISP) Method and the Hydrometer in the Determination of Particle Size Distribution. Sustainability. 2023; 15(8):6847. https://doi.org/10.3390/su15086847
Chicago/Turabian StyleOlarte, Maria Camila, Juan Carlos Ruge, and Juan Félix Rodriguez-Rebolledo. 2023. "Synthesized Approach for Evaluating the Integral Suspension Pressure (ISP) Method and the Hydrometer in the Determination of Particle Size Distribution" Sustainability 15, no. 8: 6847. https://doi.org/10.3390/su15086847
APA StyleOlarte, M. C., Ruge, J. C., & Rodriguez-Rebolledo, J. F. (2023). Synthesized Approach for Evaluating the Integral Suspension Pressure (ISP) Method and the Hydrometer in the Determination of Particle Size Distribution. Sustainability, 15(8), 6847. https://doi.org/10.3390/su15086847