Does the Opening of High-Speed Railway Promote Corporate Digital Transformation?
Abstract
:1. Introduction
2. Literature Review and Theoretical Analysis
2.1. Literature
2.1.1. Research on Corporate Digital Transformation
2.1.2. Research on Economic Consequences of HSR
2.1.3. Summary of Relevant Literature
2.2. Theoretical Analysis
3. Data and Methodology
3.1. Data Sources and Sample Selections
3.2. Variable Specifications
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Control Variables
3.2.4. Mediator Variables
3.3. Model Settings
3.3.1. Benchmark Regression Model
3.3.2. Mediating Effect Model
4. Empirical Results
4.1. Descriptive Statistics
4.2. Benchmark Regression Results
4.3. Robustness Tests
4.3.1. Parallel Trend Test
4.3.2. Instrumental Variable Estimation Approach
4.3.3. Placebo Test
4.3.4. PSM-DID
4.3.5. Other Robustness Tests
4.4. Mechanism Analysis
4.5. Heterogeneity Analysis
4.5.1. Considering the Corporate Ownership
4.5.2. Considering Industry Attributes
4.5.3. Considering the Difference in Initial Traffic Resource
5. Conclusions
5.1. Discussion
5.2. Implications
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Mean | Bias (%) | Bias Reduction (%) | t-Test | ||||
---|---|---|---|---|---|---|---|
Treated | Control | T | p > |t| | ||||
Income | Unmatched | 21.591 | 21.368 | 15.3 | 93.2 | 9.65 | 0.000 |
Matched | 21.589 | 21.574 | 1.0 | 0.92 | 0.356 | ||
Lev | Unmatched | 0.421 | 0.456 | −17.3 | 91.3 | −11.04 | 0.000 |
Matched | 0.421 | 0.418 | 1.5 | 1.36 | 0.175 | ||
Den | Unmatched | 2.490 | 2.322 | 7.8 | 88.0 | 5.10 | 0.000 |
Matched | 2.490 | 2.470 | 0.9 | 0.87 | 0.383 | ||
Size | Unmatched | 22.259 | 21.945 | 24.7 | 95.7 | 15.60 | 0.000 |
Matched | 22.258 | 22.244 | 1.1 | 0.93 | 0.351 | ||
Eqd | Unmatched | 0.353 | 0.367 | −9.0 | 81.3 | −5.77 | 0.000 |
Matched | 0.353 | 0.356 | −1.7 | −1.49 | 0.136 | ||
Pseudo R2 | Unmatched | 0.036 | |||||
Matched | 0.000 |
References
- Li, L.; Su, F.; Zhang, W.; Mao, J.-Y. Digital Transformation by SME Entrepreneurs: A Capability Perspective. Inf. Syst. J. 2018, 28, 1129–1157. [Google Scholar] [CrossRef]
- Nwankpa, J.K.; Datta, P. Balancing Exploration and Exploitation of IT Resources: The Influence of Digital Business Intensity on Perceived Organizational Performance. Eur. J. Inf. Syst. 2017, 26, 469–488. [Google Scholar] [CrossRef]
- Liu, S.; Yan, J.; Zhang, S.; Lin, H. Can Corporate Digital Transformation Promote Input-Output Efficiency? J. Manag. World 2021, 37, 170–190+13. [Google Scholar]
- Yuan, C.; Xiao, T.; Sheng, Y. Digital Transformation and Division of Labor between Enterprises: Vertical Specialization or Vertical Integration. China Ind. Econ. 2021, 9, 137–155. [Google Scholar]
- Wu, F.; Hu, H.; Lin, H.; Ren, X. Enterprise Digital Transformation and Capital Market Performance: Empirical Evidence from Stock Liquidity. J. Manag. World 2021, 37, 130–144+10. [Google Scholar]
- He, F.; Liu, H. The Performance Improvement Effect of Digital Transformation Enterprises from the Digital Economy Perspective. Reform 2019, 4, 137–148. [Google Scholar]
- Yi, L.; Wu, F.; Xu, S. Research on the Performance Driving Effect of Enterprise Digital Transformation Securities Market Herald. Secur. Mark. Her. 2021, 8, 15–25. [Google Scholar]
- Zhao, C.; Wang, W.; Li, X. How Does Digital Transformation Affect the Total Factor Productivity of Enterprises? Financ. Trade Econ. 2021, 42, 114–129. [Google Scholar]
- Zhu, Z.; Huang, X.; Wang, H. Does Traffic Infrastructure Promote Innovation? A Quasi-natural Experiment Based on the Expansion of the High-Speed Railway Network in China. J. Financ. Res. 2019, 11, 153–169. [Google Scholar]
- Ji, Y.; Yang, Q. Can the High-speed Rail Service Promote Enterprise Innovation? A Study Based on Quasi-natural Experiments. J. World Econ. 2020, 43, 147–166. [Google Scholar]
- Ma, G.; Cheng, X.; Yang, E. How Does Transportation Infrastructure Affect Capital Flows—A Study from High-speed Rail and Cross-region Investment of Listed Companies. China Ind. Econ. 2020, 37, 5–23. [Google Scholar]
- Wang, J.; Li, Q.; Liu, J. High-Speed Rail and the Expansion of Enterprises Business Space: An Empirical Study Based on the Geographical Information of Listed Companies in 2004–2018. Econ. Geogr. 2020, 40, 114–122. [Google Scholar]
- Bernard, A.B.; Moxnes, A.; Saito, Y.U. Production Networks, Geography, and Firm Performance. J. Political Econ. 2019, 127, 639–668. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Q.; Liu, Q. Transportation Infrastructure, Market Access and Firm Productivity: A Competition and Resource Reallocation Perspective. Econ. Res. J. 2020, 55, 140–158. [Google Scholar]
- Zhu, R.; Tan, K.; Xin, X. Can the Opening of High-Speed Railway Restrain Corporate Financialization? Sustainability 2023, 15, 4807. [Google Scholar] [CrossRef]
- Yang, G.; Kuang, Y.; Liang, S. Infrastructure Construction and Corporate Cost Management Decisions: Evidence from the High-Speed Rail Opening. J. World Econ. 2021, 44, 207–232. [Google Scholar]
- Lin, Y. Travel Costs and Urban Specialization Patterns: Evidence from China’s High Speed Railway System. J. Urban Econ. 2016, 98, 98–123. [Google Scholar] [CrossRef]
- Du, X.; Peng, M. Does High-Speed Train Motivate the Flow of Corporate Highly Educated Talents? Bus. Manag. J. 2017, 39, 89–107. [Google Scholar]
- Long, Y.; Zhao, H.; Zhang, X.; Li, Y. High-speed Railway and Venture Capital Investment. Econ. Res. J. 2017, 52, 195–208. [Google Scholar]
- Helfat, C.E.; Martin, J.A. Dynamic Managerial Capabilities: Review and Assessment of Managerial Impact on Strategic Change. J. Manag. 2015, 41, 1281–1312. [Google Scholar] [CrossRef]
- Fitzgerald, S. How Digital Acceleration teams are influencing Nestle’s 2000 Brands. MIT Sloan Mang. Rev. 2014, 57, 1–5. [Google Scholar]
- Demirkan, H.; Spohrer, J.C.; Welser, J.J. Digital Innovation and Strategic Transformation. IT Prof. 2016, 18, 14–18. [Google Scholar] [CrossRef]
- Wiesbck, F.; Hess, T.; Spanjol, J. The Dual Role of IT Capabilities in the Development of Digital Products and Services. Inf. Manag. 2020, 57, 103389. [Google Scholar] [CrossRef]
- Warner, K.S.R.; Wager, M. Building Dynamic Capabilities for Digital Transformation: An Ongoing Process of Strategic Renewal. Long Range Plan. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Matarazzo, M.; Penco, L.; Profumo, G.; Quaglia, R. Digital Transformation and Customer Value Creation in Made in Italy SMEs: A Dynamic Capabilities Perspective. J. Bus. Res. 2021, 123, 642–656. [Google Scholar] [CrossRef]
- Chen, D.; Wang, L.; Chen, A. Digitalization and Strategic Management Theory:Review, Challenges and Prospects. J. Manag. World 2020, 36, 220–236+20. [Google Scholar]
- Cichosz, M.; Wallenburg, C.M.; Knemeyer, A.M. Digital Transformation at Logistics Service Providers: Barriers, Success Factorsand Leading Practices. Int. J. Logist. Manag. 2020, 31, 209–238. [Google Scholar] [CrossRef]
- Dai, B.; Zhai, Y. Capital Market Opening and Digital Transformation of Enterprises: Ride on the Momentum or Settle for the Status Quo? J. Yunnan Univ. Financ. Econ. 2022, 38, 81–99. [Google Scholar]
- Ren, X.; Su, X.; Chang, X.; Tang, Z. China Pilot Free Trade Zone and Enterprise Digital Transformation. China Soft Sci. 2022, 38, 130–140. [Google Scholar]
- Tang, S.; Su, X.; Zhao, D. Fintech and Enterprise Digital Transformation—From the Perspective of Enterprise Life Cycle. Financ. Econ. 2022, 17–32. [Google Scholar]
- Chen, Q.; Wang, Y.; Wan, M. Research on Peer Effect of Enterprise Digital Transformation and Influencing Factors. Chin. J. Manag. 2021, 18, 653–663. [Google Scholar]
- Lolli, F.; Coruzzolo, A.M.; Peron, M.; Sgarbossa, F. Age-based preventive maintenance with multiple printing options. Int. J. Prod. Econ. 2022, 243, 108339. [Google Scholar] [CrossRef]
- Ardito, L.; Raby, S.; Albino, V. The Duality of Digital and Environmental Orientations in the Context of SMEs: Implications for Innovation Performance. J. Bus. Res. 2021, 123, 44–56. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, Y.; Li, G. Research on Digital Transformation and Green Technology Innovation—Evidence from China’s Listed Manufacturing Enterprises. Sustainability 2023, 15, 6425. [Google Scholar] [CrossRef]
- Tu, X.; Yan, X. Digital Transformation, Knowledge Spillover, and Enterprise Total Factor Productivity: Empirical Evidence from Listed Manufacturing Companies. Ind. Econ. Res. 2022, 2, 43–56. [Google Scholar]
- Wang, S.; Xu, X.; Liu, Y. Will Enterprise Digital Transformation Reduce the Risk of Debt Default? Secur. Mark. Her. 2022, 32, 45–56. [Google Scholar]
- Qi, Y.; Xiao, X. Transformation of Enterprise Management in the Era of Digital Economy. J. Manag. World 2020, 36, 135–152+250. [Google Scholar]
- Wu, K.; Fu, Y.; Kong, D. Does the Digital Transformation of Enterprises Affect Stock Price Crash Risk? Financ. Res. Lett. 2022, 48, 102888. [Google Scholar] [CrossRef]
- Zhang, X. Has Transport Infrastructure Promoted Regional Economic Growth? With an Analysis of the Spatial Spillover Effects of Transport Infrastructure. Soc. Sci. China 2013, 34, 24–47. [Google Scholar]
- Wang, X.; Liu, J.; Zhang, W. Impact of High-Speed Rail on Spatial Structure in Prefecture-Level Cities: Evidence from the Central Plains Urban Agglomeration, China. Sustainability 2022, 14, 16312. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Li, T. Has the Opening of High-Speed Rail Promoted the Balanced Development between Cities? Evidence of Commercial and Residential Use Land Prices in China. Sustainability 2022, 14, 9437. [Google Scholar] [CrossRef]
- Wang, J.; Jiao, J.; Jin, F. Spatial Effects of High-speed Rails on Interurban Economic Linkages in China. Acta Geogr. Sin. 2014, 69, 1833–1846. [Google Scholar]
- Huang, K.; Sun, G. How does the High-speed Rail Opening Affect TFP of Enterprises? Research Based on Listed Companies in Chnia’s Manufacturing Industry. J. China Univ. Geosci. Soc. Sci. Ed. 2019, 19, 144–157. [Google Scholar]
- Deng, T.; Wang, D.; Hu, Y.; Liu, S. Did High-speed Railway Cause Urban Space Expansion? Empirical Evidence from China’s Prefecture-level Cities. Res. Transp. Econ. 2020, 80, 100840. [Google Scholar] [CrossRef]
- He, L.; Tao, D. Measurement of the Impact of High-speed Rail Opening on Knowledge Spillover and Urban Innovation Level. J. Quant. Technol. Econ. 2020, 37, 125–142. [Google Scholar]
- Qin, Y. “No County Left Behind?” The Distributional Impact of High-Speed Rail Upgrades in China. J. Econ. Geogr. 2017, 17, 489–520. [Google Scholar] [CrossRef]
- Zheng, K.; Li, Y.; Xin, X. The Influencing Mechanism of High-Speed Rail on Innovation: Firm-Level Evidence from China. Sustainability 2022, 14, 16592. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, J.; Liu, F. Opening of High-Speed Railway and Stock Price Crash Risk. J. Manag. World 2018, 34, 157–168+192. [Google Scholar]
- Li, Y.; Yang, J.; Zhang, W.; Zhou, Z.; Cong, J. Does High-Speed Railway Promote High-Quality Development of Enterprises? Evidence from China’s Listed Companies. Sustainability 2022, 14, 11330. [Google Scholar] [CrossRef]
- Mao, N.; Sun, W.; Yang, J. Transportaion Infrastructure Construction and Enterprise Digital Transforamtion—An Empirical Study on China’s High-speed Railway. J. Quant. Technol. Econ. 2022, 39, 47–67. [Google Scholar]
- Baker, M.; Wurgler, J. Investor Sentiment in the Stock Market. J. Econ. Perspect. 2007, 21, 129–151. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, F.; Zhong, C.; Lin, F. High-speed Railways, Market Access and Enterprises’ Productivity. China Ind. Econ. 2018, 5, 137–156. [Google Scholar]
- Tao, F.; Hu, J.; Li, S.; Wei, J. Does the Geographic Structure of a Financial System Affect Enterprise Productivity? Discussion of the Financial Supply-side Structural Reform. Econ. Res. J. 2017, 52, 55–71. [Google Scholar]
- Ye, D.; Li, X.; Wang, Z. Does Financial Spillover Effect Promote Urban Innovation? Based on the Perspective of High-speed Railway Opening. Rev. Investig. Stud. 2020, 39, 76–91. [Google Scholar]
- Deng, H.; Yang, L.; Pan, X. High-Speed Rail and Industrial Upgrading in China: Facts and Mechanisms. J. Financ. Econ. 2020, 46, 34–48. [Google Scholar]
- Liao, J.; Wu, X. The Impact of High-Speed Rail on the Quality of Enterprises’Patents:Evidences from Listed Companies. Contemp. Financ. Econ. 2021, 15, 3–14. [Google Scholar]
- Li, H.; Cui, H.; Wu, F. Does Financial Agglomeration Promote the Digital Transformation of Enterprises? Empirical Evidence based on Big Data Analysis of Corporate Annual Reports. South China J. Econ. 2022, 60–81. [Google Scholar]
- Lin, Y.; Li, Z. Policy Burden, Moral Hazard and Soft Budget Constraint. Econ. Res. J. 2004, 2, 17–27. [Google Scholar]
Variable Symbol | Variable Definitions |
---|---|
DTde | Sample conduct dig is 1 or 0 |
DTin | Ln(the frequency of dig keyword + 1) |
Hsr | Cities with HSR opened is 1, otherwise is 0 |
Station | The number of HSR stations |
Size | The nature log of total assets |
Age | Ln(years of establishment + 1) |
Roa | Net profit/total asset |
Lev | Total debts/total assets |
Ebit | Ln(income before interests and tax) |
Toq | Market value/total asset |
Eqd | The Shareholding ratio of the largest shareholders |
Den | Total asset/income |
Aud | Standard unqualified opinion is 1, otherwise is 0 |
Abs | The absolute value of SA index |
Phd | Ln(managers with PhD + 1) |
HHI | HHI index |
Fina | The loan balance of local financial institutions/the local GDP |
Variable | Obs | Mean | Std.Dev. | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
DTde | 21,774 | 0.5346 | 0.4988 | 0.0000 | 1.0000 | 1.0000 |
DTin | 21,774 | 1.0884 | 1.3165 | 0.0000 | 0.6931 | 4.8122 |
Hsr | 21,774 | 0.7455 | 0.4356 | 0.0000 | 1.0000 | 1.0000 |
Station | 21,774 | 4.5453 | 4.3479 | 0.0000 | 4.0000 | 25.0000 |
Size | 21,774 | 22.1792 | 1.3014 | 19.2306 | 22.0052 | 26.0543 |
Age | 21,774 | 3.1997 | 0.2126 | 2.6391 | 3.2189 | 3.6376 |
Roa | 21,774 | 0.0490 | 0.0401 | −0.0741 | 0.0401 | 0.2033 |
Lev | 21,774 | 0.4296 | 0.2039 | 0.0485 | 0.4258 | 0.9796 |
Ebit | 21,774 | 19.2246 | 1.4859 | 15.7114 | 19.1241 | 23.3742 |
Toq | 21,774 | 2.0044 | 1.2653 | 0.8874 | 1.5970 | 9.3058 |
Eqd | 21,774 | 0.3566 | 0.1508 | 0.0888 | 0.3385 | 0.7510 |
Den | 21,774 | 2.4476 | 2.1228 | 0.3872 | 1.8552 | 16.8216 |
Aud | 21,774 | 0.6522 | 0.4763 | 0.0000 | 1.0000 | 1.0000 |
Abs | 21,774 | 3.7410 | 0.2642 | 2.1126 | 3.7492 | 5.2368 |
Phd | 15,148 | 0.8702 | 0.5783 | 0.0000 | 0.6931 | 2.1972 |
HHI | 21,754 | 0.6662 | 0.3182 | 0.0543 | 0.6651 | 1.0000 |
Fina | 21,565 | 1.5199 | 0.6282 | 0.3988 | 1.5098 | 3.3530 |
DTdet+1 | DTint+1 | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Hsrt−1 | 0.039 *** | 0.032 ** | 0.086 *** | 0.068 ** |
(2.97) | (2.52) | (3.09) | (2.51) | |
Size | 0.045 *** | 0.166 *** | ||
(3.87) | (5.65) | |||
Age | −0.073 | −0.547 *** | ||
(−1.52) | (−4.17) | |||
Roa | 0.145 | −0.366 | ||
(0.66) | (−0.65) | |||
Lev | −0.046 | −0.221 *** | ||
(−1.39) | (−2.63) | |||
Ebit | 0.008 | 0.014 | ||
(0.74) | (0.54) | |||
Toq | 0.010 ** | 0.064 *** | ||
(2.24) | (5.21) | |||
Eqd | −0.032 | −0.215 ** | ||
(−0.97) | (−2.39) | |||
Den | −0.007 ** | −0.026 *** | ||
(−2.46) | (−4.03) | |||
Aud | −0.002 | −0.058 *** | ||
(−0.27) | (−3.02) | |||
Abs | 0.027 | 0.396 *** | ||
(0.65) | (3.82) | |||
constant | 0.506 *** | −0.483 *** | 1.024 *** | −2.477 *** |
(46.19) | (−3.25) | (42.64) | (−6.08) | |
Year/Industry FE | YES | YES | YES | YES |
Adjusted R2 | 0.329 | 0.341 | 0.478 | 0.494 |
Obs | 21,774 | 21,774 | 21,774 | 21,774 |
DTde | DTin | |||
---|---|---|---|---|
(1) | (2) | (4) | (5) | |
IVmc | 0.642 ** | 3.208 *** | ||
(2.03) | (3.56) | |||
IVmr_t | 0.093 * | 0.384 *** | ||
(1.93) | (3.14) | |||
Constant | −1.451 *** | −0.846 *** | −7.159 *** | −3.339 *** |
(−2.98) | (−4.64) | (−5.46) | (−7.12) | |
Control variables | YES | YES | YES | YES |
Year/Industry FE | YES | YES | YES | YES |
Adjusted R2 | 0.109 | 0.341 | 0.270 | 0.464 |
Kleibergen–Paap Wald rk LM | 32.96 *** | 438.4 *** | 32.96 *** | 438.4 *** |
Cragg–Donald F | 61.40 | 2330 | 61.40 | 2330 |
[16.38] | [16.38] | [16.38] | [16.38] | |
IV First Stage | 0.076 *** | 0.00002 *** | 0.076 *** | 0.00002 *** |
(5.74) | (20.94) | (5.74) | (20.94) | |
Obs | 2264 | 16670 | 2264 | 16670 |
DTdet+1 | DTint+1 | |
---|---|---|
(1) | (2) | |
Hsrt−1 | 0.031 ** | 0.064 ** |
(2.33) | (2.49) | |
Constant | −0.472 *** | −2.500 *** |
(−3.11) | (−5.93) | |
Control variables | YES | YES |
Year/Industry FE | YES | YES |
Adjusted R2 | 0.331 | 0.490 |
Obs | 20,614 | 20,614 |
ATT | 0.623 | |
(32.31) |
DTdet+1 | DTint+1 | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Hsrt−1 | 0.031 * | 0.029 ** | 0.091 ** | 0.086 *** | ||
(1.82) | (2.12) | (2.46) | (2.88) | |||
Stationt−1 | 0.005 *** | 0.014 *** | ||||
(4.37) | (4.23) | |||||
Constant | −0.465 *** | −0.518 *** | −0.615 *** | −2.426 *** | −2.797 *** | −2.706 *** |
(−3.13) | (−2.94) | (−3.64) | (−5.94) | (−5.60) | (−5.80) | |
Control variables | YES | YES | YES | YES | YES | YES |
Year/Industry FE | YES | YES | YES | YES | YES | YES |
Adjusted R2 | 0.341 | 0.332 | 0.341 | 0.494 | 0.494 | 0.468 |
Obs | 21,774 | 13,352 | 17,019 | 21,774 | 13,352 | 17,019 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
DTdet+1 | DTint+1 | Phdt | DTdet+1 | DTint+1 | |
Hsrt−1 | 0.041 *** | 0.098 *** | 0.109 *** | 0.038 *** | 0.090 *** |
(4.01) | (3.89) | (7.88) | (3.77) | (3.53) | |
Phdt | 0.021 *** | 0.082 *** | |||
(3.54) | (5.49) | ||||
Constant | −0.473 *** | −3.249 *** | −1.933 *** | 0.432 *** | −3.090 *** |
(−4.17) | (−11.48) | (−12.51) | (−3.79) | (−10.87) | |
Control variables | YES | YES | YES | YES | YES |
Year/Industry FE | YES | YES | YES | YES | YES |
Sobel Z | 0.002 *** | 0.009 *** | |||
(3.23) | (4.51) | ||||
Adjusted R2 | 0.316 | 0.510 | 0.317 | 0.317 | 0.511 |
Obs | 15,148 | 15,148 | 15,148 | 15,148 | 15,148 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
DTdet+1 | DTint+1 | HHIt | DTdet+1 | DTint+1 | |
Hsrt−1 | 0.039 *** | 0.079 *** | −0.164 *** | 0.036 *** | 0.058 *** |
(4.71) | (3.95) | (−30.69) | (4.25) | (2.85) | |
HHIt | −0.019 * | −0.125 *** | |||
(−1.77) | (−4.95) | ||||
Constant | −0.563 *** | −3.037 *** | 0.874 *** | −0.547 *** | −2.927 *** |
(−5.90) | (−13.21) | (14.17) | (−5.70) | (−12.68) | |
Control variables | YES | YES | YES | YES | YES |
Year/Industry FE | YES | YES | YES | YES | YES |
Sobel Z | 0.003 * | 0.021 *** | |||
(1.77) | (4.89) | ||||
Adjusted R2 | 0.323 | 0.492 | 0.325 | 0.323 | 0.493 |
Obs | 21,754 | 21,754 | 21,754 | 21,754 | 21,754 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
DTdet+1 | DTint+1 | Finat | DTdet+1 | DTint+1 | |
Hsrt−1 | 0.039 *** | 0.079 *** | 0.320 *** | 0.038 *** | 0.047 ** |
(4.64) | (3.96) | (29.12) | (4.64) | (2.30) | |
Finat | 0.018 *** | 0.101 *** | |||
(3.53) | (8.12) | ||||
Constant | −0.563 *** | −3.055 *** | 1.133 *** | −0.583 *** | −3.169 *** |
(−5.87) | (−13.25) | (8.94) | (−6.08) | (−13.74) | |
Control variable | YES | YES | YES | YES | YES |
Year/Industry FE | YES | YES | YES | YES | YES |
Sobel Z | −0.583 *** | 0.032 *** | |||
(−6.08) | (7.82) | ||||
Adjusted R2 | 0.324 | 0.493 | 0.273 | 0.324 | 0.494 |
Obs | 21,565 | 21,565 | 21,565 | 21,565 | 21,565 |
DTde | DTin | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
SOEs | Non-SOEs | SOEs | Non-SOEs | |
Hsrt−1 | 0.021 | 0.040 ** | 0.049 | 0.086 ** |
(1.14) | (2.26) | (1.38) | (2.17) | |
Constant | −0.883 *** | −0.565 *** | −3.131 *** | −3.312 *** |
(−3.32) | (−3.02) | (−4.87) | (−6.19) | |
Control variables | YES | YES | YES | YES |
Year/Industry FE | YES | YES | YES | YES |
Adjusted R2 | 0.352 | 0.322 | 0.477 | 0.493 |
Obs | 9148 | 12,625 | 9148 | 12,625 |
p-value | 0.028 ** | 0.022 ** |
DTde | DTin | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Tech | Non-Tech | Tech | Non-Tech | |
Hsrt−1 | 0.040 ** | 0.024 | 0.111 *** | 0.018 |
(2.45) | (1.25) | (3.01) | (0.44) | |
Constant | −0.452 ** | −0.524 ** | −2.550 *** | −2.220 *** |
(−2.39) | (−2.19) | (−4.71) | (−3.75) | |
Control variables | YES | YES | YES | YES |
Year/Industry FE | YES | YES | YES | YES |
Adjusted R2 | 0.354 | 0.322 | 0.534 | 0.387 |
Obs | 12,088 | 9686 | 12,088 | 9686 |
p-value | 0.004 *** | 0.000 *** |
DTde | DTin | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
High Traffic Endowments | Low Traffic Endowments | High Traffic Endowments | Low Traffic Endowments | |
Hsrt−1 | 0.060 *** | 0.012 | 0.087 ** | 0.042 |
(2.87) | (0.74) | (1.97) | (1.18) | |
Constant | −0.403 | −0.514 *** | −1.899 *** | −2.634 *** |
(−1.62) | (−2.72) | (−2.86) | (−5.08) | |
Control variables | YES | YES | YES | YES |
Year/Industry FE | YES | YES | YES | YES |
Adjusted R2 | 0.342 | 0.345 | 0.541 | 0.475 |
Obs | 7623 | 14,070 | 7623 | 14,070 |
p-value | 0.000 *** | 0.026 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.-H.; Ou, G.-L.; Zhu, R.-Y. Does the Opening of High-Speed Railway Promote Corporate Digital Transformation? Sustainability 2023, 15, 6871. https://doi.org/10.3390/su15086871
Xin X-H, Ou G-L, Zhu R-Y. Does the Opening of High-Speed Railway Promote Corporate Digital Transformation? Sustainability. 2023; 15(8):6871. https://doi.org/10.3390/su15086871
Chicago/Turabian StyleXin, Xiao-Hui, Guo-Li Ou, and Ruo-Yu Zhu. 2023. "Does the Opening of High-Speed Railway Promote Corporate Digital Transformation?" Sustainability 15, no. 8: 6871. https://doi.org/10.3390/su15086871
APA StyleXin, X. -H., Ou, G. -L., & Zhu, R. -Y. (2023). Does the Opening of High-Speed Railway Promote Corporate Digital Transformation? Sustainability, 15(8), 6871. https://doi.org/10.3390/su15086871