Examining the Impact of Real Estate Development on Carbon Emissions Using Differential Generalized Method of Moments and Dynamic Panel Threshold Model
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
3. Research Methodology
3.1. Variable Selection and Descriptive Statistics
3.2. Data Sources
3.3. Econometric Model Construction
4. Results and Discussion
4.1. Tests for Data Stationarity and Cointegration
4.2. Differential GMM Estimation Results
4.3. Analysis of Threshold Effects Using the ln GDP as a Threshold
4.4. Analysis of Threshold Effects Using the ln POPU as a Threshold
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics of China. 2004. Available online: http://www.stats.gov.cn/sj/ndsj/yb2004-c/indexch.htm (accessed on 23 October 2022).
- National Bureau of Statistics of China. 2020. Available online: http://www.stats.gov.cn/sj/ndsj/2020/indexch.htm (accessed on 23 October 2022).
- Zhu, Y.; Huo, C.J. The Impact of Agricultural Production Efficiency on Agricultural Carbon Emissions in China. Energies 2022, 15, 4464. [Google Scholar] [CrossRef]
- Fan, J.S.; Zhou, L. Impact of urbanization and real estate investment on carbon emissions: Evidence from China’s provincial regions. J. Clean. Prod. 2019, 209, 309–323. [Google Scholar] [CrossRef]
- Yu, S.W.; Hu, X.; Yang, J. Housing prices and carbon emissions: A dynamic panel threshold model of 60 Chinese cities. Appl. Econ. Lett. 2020, 28, 170–185. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.J.; Zhang, K.B. The key sectors for energy conservation and carbon emissions reduction in China: Evidence from the input-output method. J. Clean. Prod. 2018, 179, 180–190. [Google Scholar] [CrossRef]
- Martinsen, D.; Krey, V.; Markewitz, P. Implications of high energy prices for energy system and emissions-The response from an energy model for Germany. Energy Policy 2007, 35, 4504–4515. [Google Scholar] [CrossRef]
- Xu, S.C.; He, Z.X.; Long, R.Y. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Appl. Energy 2014, 127, 182–193. [Google Scholar] [CrossRef]
- Cheng, S.P.; Meng, L.J.; Xing, L. Energy technological innovation and carbon emissions mitigation: Evidence from China. Kybernetes 2022, 51, 982–1008. [Google Scholar] [CrossRef]
- Fang, D.L.; Duan, C.C.; Chen, B. Average propagation length analysis for carbon emissions in China. Appl. Energy 2020, 275, 115386. [Google Scholar] [CrossRef]
- Xu, G.Y.; Zhao, T.; Wang, R. Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry. Energies 2022, 15, 6502. [Google Scholar] [CrossRef]
- Tang, Y.L.; Zhu, H.M.; Yang, J. The asymmetric effects of economic growth, urbanization and deindustrialization on carbon emissions: Evidence from China. Energy Rep. 2022, 8, 513–521. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Lv, Q.; Wang, Y.D. Economic development, technological progress, and provincial carbon emissions intensity: Empirical research based on the threshold panel model. Appl. Econ. 2021, 54, 3495–3504. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, Z.Q. Does financial development promote renewable energy? Evidence of G20 economies. Environ. Sci. Pollut. Res. 2021, 28, 64461–64474. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yang, J.; Jiang, J.Q. Urban Sprawl and Haze Pollution: Based on Raster Data of Haze PM2.5 Concentrations in 283 Cities in Mainland China. Front. Environ. Sci. 2022, 10, 929558. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Lu, W.C. The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 1351–1365. [Google Scholar] [CrossRef]
- Bianco, V.; Cascetta, F.; Marino, A.; Nardini, S. Understanding energy consumption and carbon emissions in Europe: A focus on inequality issues. Energy 2019, 270, 120–130. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.E.; Chang, C.P. The effects of environmental regulation and industrial structure on carbon dioxide emission: A non-linear investigation. Environ. Sci. Pollut. Res. 2019, 26, 30252–30267. [Google Scholar] [CrossRef]
- Dong, F.; Wang, Y.; Su, B.; Hua, Y.F.; Zhang, Y.Q. The process of peak CO2 emissions in developed economies: A perspective of industrialization and urbanization. Resour. Conserv. Recycl. 2019, 141, 61–75. [Google Scholar] [CrossRef]
- Al-mulali, U.; Binti Che Sab, C.N.; Fereidouni, H.G. Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission. Energy 2012, 46, 156–167. [Google Scholar] [CrossRef]
- Tan, X.L.; Zhou, H.; Jiang, S.C.; Liang, S. Study on the impact of population factors on real estate price of Jilin city based on regression model. In Proceedings of the World Automation Congress 2012, Taiwan, China, 24 June 2012. [Google Scholar]
- Kong, Y.; Glascock, J.L.; Lu-Andrews, R. An Investigation into Real Estate Investment and Economic Growth in China: A Dynamic Panel Data Approach. Sustainability 2016, 8, 66. [Google Scholar] [CrossRef]
- Liu, T.Y.; Su, C.W.; Chang, H.L.; Chu, C.C. Is urbanization improving real estate investment? A cross-regional study of China. Rev. Dev. Econ. 2018, 22, 862–878. [Google Scholar] [CrossRef]
- Vimpari, J. Should energy efficiency subsidies be tied into housing prices? Environ. Res. Lett. 2021, 16, 064027. [Google Scholar] [CrossRef]
- Sun, Z.Z. An Empirical Study on the Relationship between Education and Economic Development Based on PVAR Model. Sci. Program. 2021, 2021, 6052182. [Google Scholar] [CrossRef]
- Kan, D.X.; Lyu, L.J.; Huang, W.C.; Yao, W.Q. The Impact of Urban Education on the Income Gap of Urban Residents: Evidence from Central China. Sustainability 2022, 14, 4493. [Google Scholar] [CrossRef]
- Sun, L.X.; Yang, S.; Li, S.M.; Zhang, Y.D. Does education level affect individuals’ environmentally conscious behavior? Evidence from Mainland China. Soc. Behav. Personal. 2020, 48, 1–12. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, G.; Xie, Q. Spatial-Temporal Evolution and Driving Factors of Green Building Development in China. Sustainability 2020, 12, 2773. [Google Scholar] [CrossRef]
- Yan, H.; Fan, Z.Y.; Zhang, Y.B.; Zhang, L.; Hao, Z.B. A city-level analysis of the spatial distribution differences of green buildings and the economic forces—A case study in China. J. Clean. Prod. 2022, 371, 133433. [Google Scholar] [CrossRef]
- He, W.; Wang, B.; Danish; Wang, Z. Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data. Energy Econ. 2018, 74, 263–274. [Google Scholar] [CrossRef]
- Shan, Y.L.; Liu, J.H.; Liu, Z.; Xu, X.W.H.; Shao, S.; Wang, P.; Guan, D.B. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Shan, Y.L.; Guan, D.B.; Zheng, H.R.; Ou, J.M.; Li, Y.; Meng, J.; Mi, Z.F.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef]
- Shan, Y.L.; Huang, Q.; Guan, D.B.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef]
- Guan, Y.R.; Shan, Y.L.; Huang, Q.; Chen, H.L.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Gong, W.Q.; Kong, Y. Nonlinear Influence of Chinese Real Estate Development on Environmental Pollution: New Evidence from Spatial Econometric Model. Int. J. Environ. Res. Public Health 2022, 19, 588. [Google Scholar] [CrossRef]
- Li, J.T.; Ji, J.Y.; Guo, H.W.; Chen, L. Research on the Influence of Real Estate Development on Private Investment: A Case Study of China. Sustainability 2018, 10, 2659. [Google Scholar] [CrossRef]
- Gu, R.D.; Li, C.F.; Li, D.D.; Yang, Y.Y.; Gu, S. The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration. Int. J. Environ. Res. Public Health 2022, 19, 7997. [Google Scholar] [CrossRef]
- Dong, B.Y.; Xu, Y.Z.; Fan, X.M. How to achieve a win-win situation between economic growth and carbon emission reduction: Empirical evidence from the perspective of industrial structure upgrading. Environ. Sci. Pollut. Res. 2020, 27, 43829–43844. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, X.P.; Zhou, C.S.; Hu, J.C.; Ou, J.P. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Aydin, C.; Esen, Ö. Does the level of energy intensity matter in the effect of energy consumption on the growth of transition economies? Evidence from dynamic panel threshold analysis. Energy Econ. 2018, 69, 185–195. [Google Scholar] [CrossRef]
- Luan, B.J.; Huang, J.B.; Zou, H. Domestic R&D, technology acquisition, technology assimilation and China’s industrial carbon intensity: Evidence from a dynamic panel threshold model. Sci. Total Environ. 2019, 693, 133436. [Google Scholar]
- Maddah, M.; Ghaffari Nejad, A.H.; Sargolzaee, M. Natural resources, political competition, and economic growth: An empirical evidence from dynamic panel threshold kink analysis in Iranian provinces. Resour. Policy 2022, 78, 102928. [Google Scholar] [CrossRef]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Kremer, S.; Bick, A.; Nautz, D. Inflation and growth: New evidence from a dynamic panel threshold analysis. Empir. Econ. 2013, 44, 861–878. [Google Scholar] [CrossRef]
- Pedroni, P. Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests, with an Application to the Ppp Hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Westerlund, J. New Simple Tests for Panel Cointegration. Econom. Rev. 2005, 24, 297–316. [Google Scholar] [CrossRef]
- Li, K.; Lin, B.Q. Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China. Energy Econ. 2015, 48, 230–241. [Google Scholar] [CrossRef]
Variable | Sample Capacity | Mean | Standard Deviation | Min | Max | Unit |
---|---|---|---|---|---|---|
CO2 | 510 | 302.49 | 260.11 | 7.55 | 1700.04 | Million Tons |
PRICE | 510 | 5366.85 | 4756.20 | 964.00 | 38,433.00 | RMB/m2 |
INVEST | 510 | 257.08 | 294.85 | 2.28 | 2211.24 | RMB billion |
GDP | 510 | 16,680.20 | 17,041.81 | 385.00 | 107,987.00 | RMB billion |
POPU | 510 | 4470.57 | 2730.87 | 534.00 | 12,489.00 | Ten Thousand People |
URBAN | 510 | 53.11 | 14.55 | 24.77 | 89.60 | % |
ISU | 510 | 88.67 | 6.10 | 65.80 | 99.70 | % |
Variables | LLC | Fisher-ADF (Pm) | Fisher-PP (Pm) |
---|---|---|---|
ln CO2 | −4.004 *** | 7.650 *** | 2.502 *** |
ln PRICE | −4.812 *** | 10.977 *** | 6.155 *** |
ln INVEST | −6.214 *** | 3.832 *** | 3.565 *** |
ln GDP | −4.558 *** | 4.682 *** | 2.831 *** |
ln POPU | −12.417 *** | 7.131 *** | 17.596 *** |
ln URBAN | −19.507 *** | 6.444 *** | 15.756 *** |
ln ISU | −5.120 *** | 10.148 *** | 5.779 *** |
Test Methods | Statistics | p Value | |
---|---|---|---|
Pedroni test | Modified Phillips–Perron t | 7.664 *** | 0.000 |
Phillips–Perron t | −22.302 *** | 0.000 | |
Westerlund test | Augmented Dickey–Fuller t | −29.528 *** | 0.000 |
Variance ratio | 30.758 *** | 0.000 |
Variables | ||
---|---|---|
Model (1) | Model (2) | |
0.395 *** (0.123) | / | |
−0.035 *** (0.012) | / | |
/ | 2.398 *** (0.579) | |
/ | −0.137 *** (0.034) | |
with a one-period lag | 0.588 *** (0.041) | 0.525 *** (0.024) |
0.119 ** (0.052) | 0.135 *** (0.051) | |
−0.434 *** (0.149) | −0.450 *** (0.151) | |
0.030 *** (0.012) | 0.012 (0.014) | |
1.132 (0.715) | 0.324 (0.497) | |
Constant Term | −3.508 (2.746) | −8.899 *** (2.294) |
AR (1) | −2.093 ** [0.036] | −2.109 ** [0.035] |
AR (2) | 0.598 [0.550] | 0.907 [0.365] |
Sargon | 24.120 [1.000] | 25.620 [1.000] |
Threshold Variable | Number of Thresholds | Threshold Value | F Value | p Value | 95% Confidence Intervals | 1% | 5% | 10% |
---|---|---|---|---|---|---|---|---|
ln GDP | Single-Threshold ** | 9.904 | 19.620 | 0.013 | [9.875, 9.905] | 19.774 | 15.224 | 13.213 |
Double-Threshold | 8.720 | 7.380 | 0.340 | [8.702, 8.739] | 18.780 | 14.700 | 12.390 |
Variables | |||
---|---|---|---|
Coefficient | Standard Error | p Value | |
0.036 *** | 0.011 | 0.001 | |
0.026 ** | 0.011 | 0.021 | |
Constant Term | −0.672 | 1.114 | 0.547 |
Other Control Variables | controlled | ||
F value | 5.430 *** |
Threshold Variable | Number of Thresholds | Threshold Value | F Value | p Value | 95% Confidence Intervals | 1% | 5% | 10% |
---|---|---|---|---|---|---|---|---|
ln POPU | Single-threshold ** | 7.839 | 8.420 | 0.033 | [7.836, 7.842] | 9.860 | 7.860 | 6.178 |
Double Threshold | 8.211 | 0.840 | 0.940 | [8.188, 8.213] | 9.441 | 6.414 | 5.454 |
Variables | |||
---|---|---|---|
Coefficient | Standard Error | p Value | |
0.031 ** | 0.013 | 0.014 | |
0.036 *** | 0.013 | 0.005 | |
Constant Term | 0.408 | 1.117 | 0.715 |
Other Control Variables | controlled | ||
F value | 5.080 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Zhou, C. Examining the Impact of Real Estate Development on Carbon Emissions Using Differential Generalized Method of Moments and Dynamic Panel Threshold Model. Sustainability 2023, 15, 6897. https://doi.org/10.3390/su15086897
Fu C, Zhou C. Examining the Impact of Real Estate Development on Carbon Emissions Using Differential Generalized Method of Moments and Dynamic Panel Threshold Model. Sustainability. 2023; 15(8):6897. https://doi.org/10.3390/su15086897
Chicago/Turabian StyleFu, Chun, and Can Zhou. 2023. "Examining the Impact of Real Estate Development on Carbon Emissions Using Differential Generalized Method of Moments and Dynamic Panel Threshold Model" Sustainability 15, no. 8: 6897. https://doi.org/10.3390/su15086897
APA StyleFu, C., & Zhou, C. (2023). Examining the Impact of Real Estate Development on Carbon Emissions Using Differential Generalized Method of Moments and Dynamic Panel Threshold Model. Sustainability, 15(8), 6897. https://doi.org/10.3390/su15086897