On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy
Abstract
:1. Introduction
2. Wood Pulping and Papermaking
3. Paper Waste and Rejects and Their Recycling
4. Conversion of Paper Waste into Energy and High-Value Materials
4.1. Biofuels
4.2. Biohydrogen and Biogas
4.3. Heat by Incineration
4.4. Nanocellulose
4.5. Hydrochar by Carbonization
4.6. Construction Materials
4.7. Soil Amendment by Composting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bajpai, P. Biermann’s Handbook of Pulp and Paper: Raw Material and Pulp Making; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1. [Google Scholar]
- Latha, A.; Arivukarasi, M.; Keerthana, C.; Subashri, R.; Vishnu Priya, V. Paper and Pulp Industry Manufacturing and Treatment Processes—A Review. Int. J. Eng. Res. Technol 2018, 6, IJERTCON011. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Panjagari, N.R.; Alam, T. An overview of paper and paper based food packaging materials: Health safety and environmental concerns. J. Food Sci. Technol. 2019, 56, 4391–4403. [Google Scholar] [CrossRef]
- Ozola, Z.U.; Vesere, R.; Kalnins, S.N.; Blumberga, D. Paper waste recycling. circular economy aspects. Rigas Teh. Univ. Zinat. Raksti 2019, 23, 260–273. [Google Scholar]
- Asrat, T.H.; Bachheti, R.K.; Getachew, M.; Abate, L. Evaluation of pulp and paper making properties of Caesalpinia decapetela. Nord. Pulp Pap. Res. J. 2022, 37, 14–24. [Google Scholar] [CrossRef]
- Ezeudu, O.B.; Agunwamba, J.C.; Ezeasor, I.C.; Madu, C.N. Sustainable production and consumption of paper and paper products in Nigeria: A review. Resources 2019, 8, 53. [Google Scholar] [CrossRef]
- Izadi, A.; Hosseini, M.; Najafpour Darzi, G.; Nabi Bidhendi, G.; Pajoum Shariati, F. Treatment of paper-recycling wastewater by electrocoagulation using aluminum and iron electrodes. J. Environ. Health Sci. Eng. 2018, 16, 257–264. [Google Scholar] [CrossRef]
- Sharma, P.; Iqbal, H.M.N.; Chandra, R. Evaluation of pollution parameters and toxic elements in wastewater of pulp and paper industries in India: A case study. Case Stud. Chem. Environ. Eng. 2022, 5, 100163. [Google Scholar] [CrossRef]
- Rizaluddin, A.T. Review on renewable energy sources based on thermal conversion in the pulp and paper industry. In Proceedings of the SATREPS Conference, Bogor, Indonesia, 17 November 2020. [Google Scholar]
- Simão, L.; Hotza, D.; Raupp-Pereira, F.; Labrincha, J.; Montedo, O. Wastes from pulp and paper mills-a review of generation and recycling alternatives. Cerâmica 2018, 64, 443–453. [Google Scholar] [CrossRef]
- Tait, P.W.; Brew, J.; Che, A.; Costanzo, A.; Danyluk, A.; Davis, M.; Khalaf, A.; McMahon, K.; Watson, A.; Rowcliff, K. The health impacts of waste incineration: A systematic review. Aust. N. Z. J. Public Health 2020, 44, 40–48. [Google Scholar] [CrossRef]
- Abushammala, H.; Ghulam, S.T. Impact of Residents’ Demographics on Their Knowledge, Attitudes, and Practices towards Waste Management at the Household Level in the United Arab Emirates. Sustainability 2023, 15, 685. [Google Scholar] [CrossRef]
- Dori, Y.J.; Tal, R.T. Formal and informal collaborative projects: Engaging in industry with environmental awareness. Sci. Educ. 2000, 84, 95–113. [Google Scholar] [CrossRef]
- Pawar, K.; Rothkar, R.V. Forest conservation & environmental awareness. Procedia Earth Planet. Sci. 2015, 11, 212–215. [Google Scholar]
- Miranda Carreño, R.; Blanco Suárez, Á. Environmental awareness and paper recycling. Cellul. Chem. Technol. 2010, 44, 431–449. [Google Scholar]
- Abushammala, H.; Mao, J. Waste Iron Filings to Improve the Mechanical and Electrical Properties of Glass Fiber-Reinforced Epoxy (GFRE) Composites. J. Compos. Sci. 2023, 7, 90. [Google Scholar] [CrossRef]
- Souza, A.G.d.; Kano, F.S.; Bonvent, J.J.; Rosa, D.d.S. Cellulose nanostructures obtained from waste paper industry: A comparison of acid and mechanical isolation methods. Mater. Res. 2017, 20, 209–214. [Google Scholar] [CrossRef]
- Cherubini, F.; Bargigli, S.; Ulgiati, S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 2009, 34, 2116–2123. [Google Scholar] [CrossRef]
- Dominczyk, A.; Krzystek, L.; Ledakowicz, S. Biodrying of organic municipal wastes and residues from the pulp and paper industry. Dry. Technol. 2014, 32, 1297–1303. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, G.; Xu, Y.; Gong, Q. Waste-to-energy in China: Key challenges and opportunities. Energies 2015, 8, 14182–14196. [Google Scholar] [CrossRef]
- Finnveden, G.; Ekvall, T. Life-cycle assessment as a decision-support tool—The case of recycling versus incineration of paper. Resour. Conserv. Recycl. 1998, 24, 235–256. [Google Scholar] [CrossRef]
- Rahman, M.O.; Hussain, A.; Basri, H. A critical review on waste paper sorting techniques. Int. J. Environ. Sci. Technol. 2014, 11, 551–564. [Google Scholar] [CrossRef]
- Pivnenko, K.; Eriksson, E.; Astrup, T.F. Waste paper for recycling: Overview and identification of potentially critical substances. Waste Manag. 2015, 45, 134–142. [Google Scholar] [CrossRef]
- Kumar, V.; Pathak, P.; Bhardwaj, N.K. Waste paper: An underutilized but promising source for nanocellulose mining. Waste Manag. 2020, 102, 281–303. [Google Scholar] [CrossRef]
- Shakir, A.A.; Naganathan, S.; Mustapha, K.N.B. Development of bricks from waste material: A review paper. Aust. J. Basic Appl. Sci. 2013, 7, 812–818. [Google Scholar]
- Clark, T. Plant fibers in the paper industry. Econ. Bot. 1965, 19, 394–405. [Google Scholar] [CrossRef]
- Heinze, T. Cellulose: Structure and Properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas, O.J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–52. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Demuner, I.F.; Gomes, F.J.B.; Gomes, J.S.; Coura, M.R.; Borges, F.P.; Carvalho, A.M.M.L.; Silva, C.M. Improving kraft pulp mill sustainability by lignosulfonates production from processes residues. J. Clean. Prod. 2021, 317, 128286. [Google Scholar] [CrossRef]
- Pérez, J.; Muñoz-Dorado, J.; de la Rubia, T.; Martínez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef]
- Yang, X.; Berthold, F.; Berglund, L.A. Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency. Biomacromolecules 2018, 19, 3020–3029. [Google Scholar] [CrossRef]
- Laftah, W.A.; Wan Abdul Rahman, W.A. Pulping process and the potential of using non-wood pineapple leaves fiber for pulp and paper production: A review. J. Nat. Fibers 2016, 13, 85–102. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Lipkiewicz, A.; Przybysz, K.; Przybysz, P. Analysis of cellulose pulp characteristics and processing parameters for efficient paper production. Sustainability 2020, 12, 7219. [Google Scholar] [CrossRef]
- Rullifank, K.F.; Roefinal, M.E.; Kostanti, M.; Sartika, L.; Evelyn. Pulp and paper industry: An overview on pulping technologies, factors, and challenges. IOP Conf. Ser. Mater. Sci. Eng. 2020, 845, 012005. [Google Scholar] [CrossRef]
- Mao, J.; Heck, B.; Abushammala, H.; Reiter, G.; Laborie, M.-P. A structural fibrillation parameter from small angle X-ray scattering to quantify pulp refining. Cellulose 2019, 26, 4265–4277. [Google Scholar] [CrossRef]
- Das, T.K.; Houtman, C. Evaluating chemical-, mechanical-, and bio-pulping processes and their sustainability characterization using life-cycle assessment. Environ. Prog. 2004, 23, 347–357. [Google Scholar] [CrossRef]
- Mboowa, D. A review of the traditional pulping methods and the recent improvements in the pulping processes. Biomass Conv. Bioref. 2021. [Google Scholar] [CrossRef]
- M’hamdi, A.I.; Kandri, N.I.; Zerouale, A.; Blumberga, D.; Gusca, J. Life cycle assessment of paper production from treated wood. Energy Procedia 2017, 128, 461–468. [Google Scholar] [CrossRef]
- Jiménez, L.; Angulo, V.; Ramos, E.; De la Torre, M.J.; Ferrer, J.L. Comparison of various pulping processes for producing pulp from vine shoots. Ind. Crops Prod. 2006, 23, 122–130. [Google Scholar] [CrossRef]
- Iglesias, M.C.; Gomez-Maldonado, D.; Via, B.K.; Jiang, Z.; Peresin, M.S. Pulping processes and their effects on cellulose fibers and nanofibrillated cellulose properties: A review. For. Prod. J. 2020, 70, 10–21. [Google Scholar] [CrossRef]
- Aguayo, M.G.; Fernández Pérez, A.; Reyes, G.; Oviedo, C.; Gacitúa, W.; Gonzalez, R.; Uyarte, O. Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers 2018, 10, 1145. [Google Scholar] [CrossRef] [PubMed]
- Suess, H.U. Pulp Bleaching Today; De Gruyter: Berlin, Germany; New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Haile, A.; Gelebo, G.G.; Tesfaye, T.; Mengie, W.; Mebrate, M.A.; Abuhay, A.; Limeneh, D.Y. Pulp and paper mill wastes: Utilizations and prospects for high value-added biomaterials. Bioresour. Bioprocess. 2021, 8, 35. [Google Scholar] [CrossRef]
- Chauhan, S.; Meena, B.L. Introduction to pulp and paper industry: Global scenario. Phys. Sci. Rev. 2021, 6, 81–109. [Google Scholar] [CrossRef]
- Han, N.; Zhang, J.; Hoang, M.; Gray, S.; Xie, Z. A review of process and wastewater reuse in the recycled paper industry. Environ. Technol. Innov. 2021, 24, 101860. [Google Scholar] [CrossRef]
- Sharma, N.; Bhardwaj, N.K.; Singh, R.B.P. Environmental issues of pulp bleaching and prospects of peracetic acid pulp bleaching: A review. J. Clean. Prod. 2020, 256, 120338. [Google Scholar] [CrossRef]
- Brandt, A.; Gräsvik, J.; Hallett, J.P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013, 15, 550–583. [Google Scholar] [CrossRef]
- Mao, J.; Abushammala, H.; Pereira, L.B.; Laborie, M.-P. Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions. Carbohydr. Polym. 2016, 153, 284–291. [Google Scholar] [CrossRef]
- Abushammala, H.; Hettegger, H.; Bacher, M.; Korntner, P.; Potthast, A.; Rosenau, T.; Laborie, M.-P. On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: Part 2—The impact of lignin on the kinetics of cellulose acetylation. Cellulose 2017, 24, 2767–2774. [Google Scholar] [CrossRef]
- Abushammala, H. Nano-Brushes of Alcohols Grafted onto Cellulose Nanocrystals for Reinforcing Poly(Butylene Succinate): Impact of Alcohol Chain Length on Interfacial Adhesion. Polymers 2020, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Roselli, A.; Hummel, M.; Monshizadeh, A.; Maloney, T.; Sixta, H. Ionic liquid extraction method for upgrading eucalyptus kraft pulp to high purity dissolving pulp. Cellulose 2014, 21, 3655–3666. [Google Scholar] [CrossRef]
- Zhao, L.J.; Zhang, Y.F.; Hong, J.F.; Tu, W.W. Papermaking Wastewater Treatment—A Brief Review. Adv. Mater. Res. 2014, 926–930, 4276–4279. [Google Scholar] [CrossRef]
- Priya, A. Environmental Impact Assessment in Pulp and Paper Industry. J. Ecophysiol. Occup. Health 2017, 17, 1–3. [Google Scholar]
- Mavroulidou, M.; Hassan, S.; Gray, C.; Gunn, M.; Youssef, A.; Garelick, J. Geotechnical properties of paper recycling waste streams. In Proceedings of the ECSMGE 2019–XVII European Conference on Soil Mechanics and Geotechnical Engineering, Reykjavik, Iceland, 1–6 September 2019. [Google Scholar]
- Abdullah, R.; Ishak, C.F.; Kadir, W.R.; Bakar, R.A. Characterization and feasibility assessment of recycled paper mill sludges for land application in relation to the environment. Int. J. Environ. Res. Public Health 2015, 12, 9314–9329. [Google Scholar] [CrossRef]
- Steffen, F.; Janzon, R.; Wenig, F.; Saake, B. Valorization of waste streams from deinked pulp mills through anaerobic digestion of deinking sludge. BioResources 2017, 12, 4547–4566. [Google Scholar] [CrossRef]
- Rigol, A.; Latorre, A.; Lacorte, S.; Barceló, D. Determination of toxic compounds in paper-recycling process waters by gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry. J. Chromatogr. A 2002, 963, 265–275. [Google Scholar] [CrossRef]
- van Ewijk, S.; Stegemann, J.A.; Ekins, P. Limited climate benefits of global recycling of pulp and paper. Nat. Sustain. 2021, 4, 180–187. [Google Scholar] [CrossRef]
- Čabalová, I.; Kačík, F.; Geffert, A.; Kačíková, D. The Effects of Paper Recycling and Its Environmental Impact; InTech: Rijeka, Croatia, 2011; Volume 17. [Google Scholar]
- Bajpai, P. Recycling and Deinking of Recovered Paper; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Grée, G.C.H.D.d.l.; Yu, Q.L.; Brouwers, H.J.H. Upgrading and Evaluation of Waste Paper Sludge Ash in Eco-Lightweight Cement Composites. J. Mater. Civ. Eng. 2018, 30, 04018021. [Google Scholar] [CrossRef]
- Kissinger, M.; Fix, J.; Rees, W.E. Wood and non-wood pulp production: Comparative ecological footprinting on the Canadian prairies. Ecol. Econ. 2007, 62, 552–558. [Google Scholar] [CrossRef]
- Laftah, W.A.; Rahaman, W.A.W.A. Chemical pulping of waste pineapple leaves fiber for kraft paper production. J. Mater. Res. Technol. 2015, 4, 254–261. [Google Scholar] [CrossRef]
- El-Sayed, E.S.A.; El-Sakhawy, M.; El-Sakhawy, M.A.-M. Non-wood fibers as raw material for pulp and paper industry. Nord. Pulp Pap. Res. J. 2020, 35, 215–230. [Google Scholar] [CrossRef]
- Suseno, N.; Adiarto, T.; Sifra, M.; Elvira, V. Utilization of rice straw and used paper for the recycle papermaking. IOP Conf. Ser. Mater. Sci. Eng. 2019, 703, 012044. [Google Scholar] [CrossRef]
- Eugenio, M.E.; Ibarra, D.; Martín-Sampedro, R.; Espinosa, E.; Bascón, I.; Rodríguez, A. Alternative raw materials for pulp and paper production in the concept of a lignocellulosic biorefinery. Cellulose 2019, 12, 78. [Google Scholar]
- Tutuş, A.; Kazaskeroğlu, Y.; Çiçekler, M. Evaluation of tea wastes in usage pulp and paper production. BioResources 2015, 10, 5407–5416. [Google Scholar] [CrossRef]
- Othman, S.A.; Mahazir, N.S. Production of Paper From Non-Wood: A Review. Int. J. Adv. Res. Eng. Innov. 2021, 3, 103–110. [Google Scholar]
- Gemechu, E.D.; Butnar, I.; Gomà-Camps, J.; Pons, A.; Castells, F. A comparison of the GHG emissions caused by manufacturing tissue paper from virgin pulp or recycled waste paper. Int. J. Life Cycle Assess. 2013, 18, 1618–1628. [Google Scholar] [CrossRef]
- Berglund, C.; Söderholm, P. An Econometric Analysis of Global Waste Paper Recovery and Utilization. Environ. Resour. Econ. 2003, 26, 429–456. [Google Scholar] [CrossRef]
- Sevigné-Itoiz, E.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X. Methodology of supporting decision-making of waste management with material flow analysis (MFA) and consequential life cycle assessment (CLCA): Case study of waste paper recycling. J. Clean. Prod. 2015, 105, 253–262. [Google Scholar] [CrossRef]
- Misman, M.; Alwi, S.W.; Manan, Z.A. State-of-the-art for paper recycling. In Proceedings of the International Conference on Science and Technology (ICSTIE), George Town, Malaysia, 17–18 September 2014; pp. 1–5. [Google Scholar]
- Vu, H.H.T.; Lai, T.Q.; Ahn, J.W. Appropriate technology for the paper recycling: A new paradigm. J. Energy Eng. 2018, 27, 81–88. [Google Scholar]
- Faul, A.M. Quality requirements in graphic paper recycling. Cellul. Chem. Technol. 2010, 44, 451. [Google Scholar]
- Ervasti, I.; Miranda, R.; Kauranen, I. A global, comprehensive review of literature related to paper recycling: A pressing need for a uniform system of terms and definitions. Waste Manag. 2016, 48, 64–71. [Google Scholar] [CrossRef]
- Dumea, N.; Lado, Z.; Poppel, E. Differences in the recycling behaviour of paper printed by various techniques. Cellul. Chem. Technol. 2009, 43, 57. [Google Scholar]
- Fricker, A.; Thompson, R.; Manning, A. Novel solutions to new problems in paper deinking. Pigment. Resin Technol. 2007, 36, 141–152. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Venditti, R.A.; Rojas, O.J. What happens to cellulosic fibers during papermaking and recycling? A review. BioResources 2007, 2, 739–788. [Google Scholar]
- Jin, H.; Kose, R.; Akada, N.; Okayama, T. Relationship between wettability of pulp fibers and tensile strength of paper during recycling. Sci. Rep. 2022, 12, 1560. [Google Scholar] [CrossRef]
- Nakamura, M. Development of The Dry Paper Recycling Technology which Realizes a New Ofice Papermaking System. Jpn. Tappi J. 2018, 72, 786–792. [Google Scholar] [CrossRef]
- Ono, Y.; Hayashi, M.; Yokoyama, K.; Okamura, T.; Itsubo, N. Environmental assessment of innovative paper recycling technology using product lifecycle perspectives. Resources 2020, 9, 23. [Google Scholar] [CrossRef]
- Chang, J.C.; Beach, R.H.; Olivetti, E.A. Consequential effects of increased use of recycled fiber in the United States pulp and paper industry. J. Clean. Prod. 2019, 241, 118133. [Google Scholar] [CrossRef]
- Buist, H.; van Harmelen, T.; van den Berg, C.; Leeman, W.; Meima, M.; Krul, L. Evaluation of measures to mitigate mineral oil migration from recycled paper in food packaging. Packag. Technol. Sci. 2020, 33, 531–546. [Google Scholar] [CrossRef]
- Peretz, R.; Mamane, H.; Wissotzky, E.; Sterenzon, E.; Gerchman, Y. Making Cardboard and Paper Recycling More Sustainable: Recycled Paper Sludge For Energy Production and Water-Treatment Applications. Waste Biomass Valoriz. 2021, 12, 1599–1608. [Google Scholar] [CrossRef]
- Dessì, P.; Porca, E.; Lakaniemi, A.-M.; Collins, G.; Lens, P.N. Temperature control as key factor for optimal biohydrogen production from thermomechanical pulping wastewater. Biochem. Eng. J. 2018, 137, 214–221. [Google Scholar] [CrossRef]
- Kalair, A.R.; Seyedmahmoudian, M.; Stojcevski, A.; Abas, N.; Khan, N. Waste to energy conversion for a sustainable future. Heliyon 2021, 7, e08155. [Google Scholar] [CrossRef]
- Saeed, O.F.; Muallah, S. Treatment of Waste Paper Using Ultrasound and Sodium Hydroxide for Bioethanol Production. J. Biotechnol. Res. Cent. 2018, 12, 108–114. [Google Scholar] [CrossRef]
- Darmawan, M.A.; Hermawan, Y.A.; Samsuri, M.; Gozan, M. Conversion of paper waste to bioethanol using selected enzyme combination (cellulase and cellobiase) through simultaneous saccharification and fermentation. AIP Conf. Proc. 2019, 2085, 020018. [Google Scholar]
- Branco, R.H.; Serafim, L.S.; Xavier, A.M. Second generation bioethanol production: On the use of pulp and paper industry wastes as feedstock. Fermentation 2018, 5, 4. [Google Scholar] [CrossRef]
- Duncan, S.M.; Alkasrawi, M.; Gurram, R.; Almomani, F.; Wiberley-Bradford, A.E.; Singsaas, E. Paper mill sludge as a source of sugars for use in the production of bioethanol and isoprene. Energies 2020, 13, 4662. [Google Scholar] [CrossRef]
- Wan, X.; Liu, J.; Zhang, Y.; Tian, D.; Liu, Y.; Zhao, L.; Huang, M.; Hu, J.; Shen, F. Conversion of agricultural and forestry biomass into bioethanol, water-soluble polysaccharides, and lignin nanoparticles by an integrated phosphoric acid plus hydrogen peroxide process. Ind. Crops Prod. 2023, 191, 115969. [Google Scholar] [CrossRef]
- Abushammala, H.; Hashaikeh, R. Enzymatic hydrolysis of cellulose and the use of TiO2 nanoparticles to open up the cellulose structure. Biomass Bioenergy 2011, 35, 3970–3975. [Google Scholar] [CrossRef]
- Mendes, C.t.V.; Rocha, J.M.; Carvalho, M.G.A.V. Valorization of residual streams from pulp and paper mills: Pretreatment and bioconversion of primary sludge to bioethanol. Ind. Eng. Chem. Res. 2014, 53, 19398–19404. [Google Scholar] [CrossRef]
- Ioelovich, M. Waste paper as promising feedstock for production of biofuel. J. Sci. Res. Rep 2014, 3, 905–917. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.Z.; Koh, L.P.; Tan, H.T. The biofuel potential of municipal solid waste. Gcb Bioenergy 2009, 1, 317–320. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Bonifacio, S.; Clowes, J.; Foulds, A.; Holland, R.; Matthews, J.C.; Percival, C.J.; Shallcross, D.E. Investigation of biofuel as a potential renewable energy source. Atmosphere 2021, 12, 1289. [Google Scholar] [CrossRef]
- Prasetyo, J.; Naruse, K.; Kato, T.; Boonchird, C.; Harashima, S.; Park, E.Y. Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiaeTJ14. Biotechnol. Biofuels 2011, 4, 35. [Google Scholar] [CrossRef]
- Wang, L.; Sharifzadeh, M.; Templer, R.; Murphy, R.J. Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis. Appl. Energy 2013, 111, 1172–1182. [Google Scholar] [CrossRef]
- Park, H.; Cruz, D.; Tiller, P.; Johnson, D.K.; Mittal, A.; Jameel, H.; Venditti, R.; Park, S. Effect of ash in paper sludge on enzymatic hydrolysis. Biomass Bioenergy 2022, 165, 106567. [Google Scholar] [CrossRef]
- Mendes, C.V.; Cruz, C.H.; Reis, D.F.; Carvalho, M.G.V.; Rocha, J.M. Integrated bioconversion of pulp and paper primary sludge to second generation bioethanol using Saccharomyces cerevisiae ATCC 26602. Bioresour. Technol. 2016, 220, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renew. Sustain. Energy Rev. 2023, 173, 113113. [Google Scholar] [CrossRef]
- Zhu, M.-J.; Lin, H.-N. Biohydrogen production from waste biomass. Trends Renew. Energy 2016, 2, 54–55. [Google Scholar] [CrossRef]
- Baloch, M.Y.J.; Talpur, S.A.; Iqbal, J.; Munir, M.; Bajwa, K.; Baidya, P.; Talpur, H.A. Review Paper Process Design for Biohydrogen Production from Waste Materials and Its Application. Sustain. Environ. 2022, 7, 2022. [Google Scholar]
- Rogeri, R.C.; Fuess, L.T.; Eng, F.; do Vale Borges, A.; de Araujo, M.N.; Damianovic, M.H.R.Z.; da Silva, A.J. Strategies to control pH in the dark fermentation of sugarcane vinasse: Impacts on sulfate reduction, biohydrogen production and metabolite distribution. J. Environ. Manag. 2023, 325, 116495. [Google Scholar] [CrossRef]
- Qin, Y.; Li, L.; Wu, J.; Xiao, B.; Hojo, T.; Kubota, K.; Cheng, J.; Li, Y.-Y. Co-production of biohydrogen and biomethane from food waste and paper waste via recirculated two-phase anaerobic digestion process: Bioenergy yields and metabolic distribution. Bioresour. Technol. 2019, 276, 325–334. [Google Scholar] [CrossRef]
- Xiao, B.; Zhang, W.; Yi, H.; Qin, Y.; Wu, J.; Liu, J.; Li, Y.-Y. Biogas production by two-stage thermophilic anaerobic co-digestion of food waste and paper waste: Effect of paper waste ratio. Renew. Energy 2019, 132, 1301–1309. [Google Scholar] [CrossRef]
- Ofoefule, A.U.; Nwankwo, J.I.; Ibeto, C.N. Biogas Production from Paper Waste and its blend with Cow dung. Adv. Appl. Sci. Res. 2010, 1, 1–8. [Google Scholar]
- Priadi, C.; Wulandari, D.; Rahmatika, I.; Moersidik, S.S. Biogas production in the anaerobic digestion of paper sludge. APCBEE Procedia 2014, 9, 65–69. [Google Scholar] [CrossRef]
- Bakraoui, M.; Karouach, F.; Ouhammou, B.; Aggour, M.; Essamri, A.; El Bari, H. Biogas production from recycled paper mill wastewater by UASB digester: Optimal and mesophilic conditions. Biotechnol. Rep. 2020, 25, e00402. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, J.; Xiao, B.; Hojo, T.; Li, Y.-Y. Biogas recovery from two-phase anaerobic digestion of food waste and paper waste: Optimization of paper waste addition. Sci. Total Environ. 2018, 634, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Alaswad, A.; El-Hassan, Z.; Olabi, A.-G. Mechanical pretreatment of waste paper for biogas production. Waste Manag. 2017, 68, 157–164. [Google Scholar] [CrossRef]
- Getahun, T.; Gebrehiwot, M.; Ambelu, A.; Van Gerven, T.; Van der Bruggen, B. The potential of biogas production from municipal solid waste in a tropical climate. Environ. Monit. Assess. 2014, 186, 4637–4646. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, E.-M.; Hedenström, M.; Svensson, B.H.; Yekta, S.S.; Björn, A. Methane potentials and organic matter characterization of wood fibres from pulp and paper mills: The influence of raw material, pulping process and bleaching technique. Biomass Bioenergy 2020, 143, 105824. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, Y.; Zhi, Q. The status of municipal solid waste incineration (MSWI) in China and its clean development. Energy Procedia 2016, 104, 498–503. [Google Scholar] [CrossRef]
- Tan, S.; Hashim, H.; Lee, C.; Taib, M.R.; Yan, J. Economical and environmental impact of waste-to-energy (WTE) alternatives for waste incineration, landfill and anaerobic digestion. Energy Procedia 2014, 61, 704–708. [Google Scholar] [CrossRef]
- Assamoi, B.; Lawryshyn, Y. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag. 2012, 32, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.M.; Snellings, R.; Van den Heede, P.; Matthys, S.; De Belie, N. The use of municipal solid waste incineration ash in various building materials: A Belgian point of view. Materials 2018, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, L.; Liu, X.; Yang, Y.; Qin, L.; Li, D.; Liu, G. Bridging the energy benefit and POPs emission risk from waste incineration. Innovation 2021, 2, 100075. [Google Scholar] [CrossRef]
- Magnanelli, E.; Tranås, O.L.; Carlsson, P.; Mosby, J.; Becidan, M. Dynamic modeling of municipal solid waste incineration. Energy 2020, 209, 118426. [Google Scholar] [CrossRef]
- Pirotta, F.; Ferreira, E.; Bernardo, C. Energy recovery and impact on land use of Maltese municipal solid waste incineration. Energy 2013, 49, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Templer, R.; Murphy, R.J. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: Bioethanol production, recycling and incineration with energy recovery. Bioresour. Technol. 2012, 120, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Florea, M.; Spiesz, P.; Brouwers, H. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Constr. Build. Mater. 2015, 83, 77–94. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, Y.; He, D.; Yang, E.-H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Peretz, R.; Sterenzon, E.; Gerchman, Y.; Vadivel, V.K.; Luxbacher, T.; Mamane, H. Nanocellulose production from recycled paper mill sludge using ozonation pretreatment followed by recyclable maleic acid hydrolysis. Carbohydr. Polym. 2019, 216, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Gibril, M.E.; Lekha, P.; Andrew, J.; Sithole, B.; Tesfaye, T.; Ramjugernath, D. Beneficiation of pulp and paper mill sludge: Production and characterisation of functionalised crystalline nanocellulose. Clean Technol. Environ. Policy 2018, 20, 1835–1845. [Google Scholar] [CrossRef]
- Cheng, M.; Qin, Z.; Chen, Y.; Hu, S.; Ren, Z.; Zhu, M. Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain. Chem. Eng. 2017, 5, 4656–4664. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016, 93, 2–25. [Google Scholar] [CrossRef]
- Yi, T.; Zhao, H.; Mo, Q.; Pan, D.; Liu, Y.; Huang, L.; Xu, H.; Hu, B.; Song, H. From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 2020, 13, 5062. [Google Scholar] [CrossRef]
- Michelin, M.; Gomes, D.G.; Romaní, A.; Polizeli, M.d.L.T.; Teixeira, J.A. Nanocellulose production: Exploring the enzymatic route and residues of pulp and paper industry. Molecules 2020, 25, 3411. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, F.; Behrooz, R.; Rahimi, M. The effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper. Int. J. Nano Dimens. 2017, 8, 206–215. [Google Scholar]
- Maslennikov, A.; Peretz, R.; Vadivel, V.K.; Mamane, H. Recycled Paper Sludge (RPS)-Derived Nanocellulose: Production, Detection and Water Treatment Application. Appl. Sci. 2022, 12, 3077. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Habibi, Y.; Adhikari, B. Surface modifications of nanocellulose: From synthesis to high-performance nanocomposites. Prog. Polym. Sci. 2021, 119, 101418. [Google Scholar] [CrossRef]
- Abushammala, H. A Simple Method for the Quantification of Free Isocyanates on the Surface of Cellulose Nanocrystals upon Carbamation using Toluene Diisocyanate. Surfaces 2019, 2, 32. [Google Scholar] [CrossRef]
- Kumar, R.; Rai, B.; Gahlyan, S.; Kumar, G. A comprehensive review on production, surface modification and characterization of nanocellulose derived from biomass and its commercial applications. Express Polym. Lett. 2021, 15, 104–120. [Google Scholar] [CrossRef]
- Abushammala, H. Process for Preparing Individual Cellulose Nanocrystals, and Cellulose Nanocrystals and Use Thereof. U.S. Patent 20140083416A1, 27 March 2014. [Google Scholar]
- Jung, Y.H.; Chang, T.-H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V.W.; Mi, H.; Kim, M.; Cho, S.J.; Park, D.-W. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170. [Google Scholar] [CrossRef]
- Abushammala, H.; Mao, J. Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics. Nanomaterials 2023, 13, 782. [Google Scholar] [CrossRef]
- Sabo, R.; Yermakov, A.; Law, C.T.; Elhajjar, R. Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: A review. J. Renew. Mater. 2016, 4, 297–312. [Google Scholar] [CrossRef]
- Norfarhana, A.; Ilyas, R.; Ngadi, N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydrate Polymers 2022, 291, 119563. [Google Scholar] [CrossRef]
- Abushammala, H.; Hashaikeh, R.; Cooney, C. Microcrystalline cellulose powder tableting via networked cellulose-based gel material. Powder Technol. 2012, 217, 16–20. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, H.-J.; Kim, J.-C. Nanocellulose applications for drug delivery: A review. J. For. Environ. Sci. 2019, 35, 141–149. [Google Scholar]
- Zaki, A.S.C.; Yusoff, N.A.; Rohaizad, N.M.; Sohaimi, K.; Mohamed, A.; Salleh, N.H.M.; Termizi, S. Isolation and characterization of nanocellulose structure from waste newspaper. J. Adv. Res. Eng. Knowl. 2018, 5, 27–34. [Google Scholar]
- Luo, H.; Cha, R.; Li, J.; Hao, W.; Zhang, Y.; Zhou, F. Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr. Polym. 2019, 224, 115144. [Google Scholar] [CrossRef]
- Abushammala, H.; Mao, J. Impact of the Surface Properties of Cellulose Nanocrystals on the Crystallization Kinetics of Poly(Butylene Succinate). Crystals 2020, 10, 196. [Google Scholar] [CrossRef]
- Azeredo, H.M. Bacterial cellulose for edible films and coatings. In Proceedings of the 4th International Symposium on Bacterial Nanocellulose, Porto, Portugal, 3–4 October 2019. [Google Scholar]
- Fürtauer, S.; Hassan, M.; Elsherbiny, A.; Gabal, S.A.; Mehanny, S.; Abushammala, H. Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers 2021, 13, 2739. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Pinheiro, I.F.; de Souza, S.F.; Mei, L.H.; Lona, L.M. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review. J. Compos. Sci. 2019, 3, 51. [Google Scholar] [CrossRef]
- Noor, S.; Anuar, A.; Tamunaidu, P.; Goto, M.; Shameli, K.; Ab Halim, M. Nanocellulose production from natural and recyclable sources: A review. IOP Conf. Ser. Earth Environ. Sci. 2020, 479, 012027. [Google Scholar] [CrossRef]
- Balea, A.; Merayo, N.; Negro, C.; Delgado-Aguilar, M.; Mutje, P.; Blanco, A. Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose 2018, 25, 1339–1351. [Google Scholar] [CrossRef]
- Barbash, V.; Yashchenko, O.; Vasylieva, O. Preparation and application of nanocellulose from Miscanthus× giganteus to improve the quality of paper for bags. SN Appl. Sci. 2020, 2, 727. [Google Scholar] [CrossRef]
- Li, A.; Xu, D.; Luo, L.; Zhou, Y.; Yan, W.; Leng, X.; Dai, D.; Zhou, Y.; Ahmad, H.; Rao, J. Overview of nanocellulose as additives in paper processing and paper products. Nanotechnol. Rev. 2021, 10, 264–281. [Google Scholar] [CrossRef]
- Lei, W.; Zhou, X.; Fang, C.; Li, Y.; Song, Y.; Wang, C.; Huang, Z. New approach to recycle office waste paper: Reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Manag. 2019, 95, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Putro, J.N.; Santoso, S.P.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Nanocrystalline cellulose from waste paper: Adsorbent for azo dyes removal. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100260. [Google Scholar] [CrossRef]
- Chen, G.; Wu, G.; Alriksson, B.; Wang, W.; Hong, F.F.; Jönsson, L.J. Bioconversion of waste fiber sludge to bacterial nanocellulose and use for reinforcement of CTMP paper sheets. Polymers 2017, 9, 458. [Google Scholar] [CrossRef]
- Wang, S.; Wen, Y.; Hammarström, H.; Jönsson, P.G.; Yang, W. Pyrolysis behaviour, kinetics and thermodynamic data of hydrothermal carbonization–Treated pulp and paper mill sludge. Renew. Energy 2021, 177, 1282–1292. [Google Scholar] [CrossRef]
- Sadish, O.; Sebastian, S.P.; Banu, K.S.P.; Mahendran, R. Hydrochar as an energy alternative to coal: Effect of temperature on hydrothermal carbonization of paper board mill sludge. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 1668–1675. [Google Scholar] [CrossRef]
- Phuthongkhao, P.; Phasin, K.; Boonma, P.; Khunphonoi, R.; Kanchanatip, E.; Suwannaruang, T.; Shivaraju, H.P.; Wantala, K. Preparation and characterization of hydrothermally processed carbonaceous hydrochar from pulp and paper sludge waste. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Assis, E.I.; Chirwa, E.M.; Tichapondwa, S.M. Hydrothermal Carbonization of Different Recycling Paper Mill Waste Streams. Chem. Eng. Trans. 2021, 88, 43–48. [Google Scholar]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into biochar and hydrochar production and applications: A review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Saha, N.; Saba, A.; Saha, P.; McGaughy, K.; Franqui-Villanueva, D.; Orts, W.J.; Hart-Cooper, W.M.; Reza, M.T. Hydrothermal carbonization of various paper mill sludges: An observation of solid fuel properties. Energies 2019, 12, 858. [Google Scholar] [CrossRef]
- Assis, E.I.; Gidudu, B.; Chirwa, E.M. Hydrothermal carbonisation of paper sludge: Effect of process conditions on hydrochar fuel characteristics and energy recycling efficiency. J. Clean. Prod. 2022, 373, 133775. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Peng, X.; Hu, S.; Yu, Z.; Fang, S. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Appl. Therm. Eng. 2015, 91, 574–582. [Google Scholar] [CrossRef]
- Gupta, D.; Mahajani, S.; Garg, A. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresour. Technol. 2019, 285, 121329. [Google Scholar] [CrossRef]
- Mäkelä, M.; Benavente, V.; Fullana, A. Hydrothermal carbonization of industrial mixed sludge from a pulp and paper mill. Bioresour. Technol. 2016, 200, 444–450. [Google Scholar] [CrossRef]
- Berge, N.D.; Ro, K.S.; Mao, J.; Flora, J.R.; Chappell, M.A.; Bae, S. Hydrothermal carbonization of municipal waste streams. Environ. Sci. Technol. 2011, 45, 5696–5703. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Nguyen, X.H.; Nguyen, N.D.K.; Van, H.T.; Le, H.N.; Pham, V.D.; Nguyen, N.A.; Nguyen, T.P.; Nguyen, T.H. H2O2 modified-hydrochar derived from paper waste sludge for enriched surface functional groups and promoted adsorption to ammonium. J. Taiwan Inst. Chem. Eng. 2021, 126, 119–133. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Van, H.T.; Chu, T.H.H.; Nguyen, T.H.V.; Nguyen, T.D. Paper waste sludge—Derived hydrochar modified by iron (III) chloride for enhancement of ammonium adsorption: An adsorption mechanism study. Environ. Technol. Innov. 2021, 21, 101223. [Google Scholar] [CrossRef]
- Assis, E.I.; Chirwa, E.M. Physicochemical characteristics of different pulp and paper mill waste streams for hydrothermal conversion. Chem. Eng. Trans. 2021, 86, 607–612. [Google Scholar]
- Gavrilescu, D. Energy from biomass in pulp and paper mills. Environ. Eng. Manag. J. 2008, 7, 537–546. [Google Scholar] [CrossRef]
- Hospodarova, V.; Stevulova, N.; Briancin, J.; Kostelanska, K. Investigation of waste paper cellulosic fibers utilization into cement based building materials. Buildings 2018, 8, 43. [Google Scholar] [CrossRef]
- Shermale, Y.; Varma, M. Papercrete: An efficient use of waste paper. Recent Trends Civ. Eng. Technol. 2015, 15, 54–59. [Google Scholar]
- Akinwumi, I.I.; Olatunbosun, O.M.; Olofinnade, O.M.; Awoyera, P.O. Structural evaluation of lightweight concrete produced using waste newspaper and office paper. Civ. Environ. Res. 2014, 6, 160–167. [Google Scholar]
- Sangrutsamee, V.; Srichandr, P.; Poolthong, N. Re-pulped waste paper-based composite building materials with low thermal conductivity. J. Asian Archit. Build. Eng. 2012, 11, 147–151. [Google Scholar] [CrossRef]
- Pahusuwanno, P.; Chakartnarodom, P.; Ineure, P.; Prakaypan, W. The influences of chemical treatment on recycled rejected fiber cement used as fillers in the fiber cement products. J. Met. Mater. Miner. 2019, 29, 3. [Google Scholar]
- Sutcu, M.; del Coz Díaz, J.J.; Rabanal, F.P.Á.; Gencel, O.; Akkurt, S. Thermal performance optimization of hollow clay bricks made up of paper waste. Energy Build. 2014, 75, 96–108. [Google Scholar] [CrossRef]
- Goel, G.; Vasić, M.V.; Katiyar, N.K.; Kirthika, S.; Pezo, M.; Dinakar, P. Potential pathway for recycling of the paper mill sludge compost for brick making. Constr. Build. Mater. 2021, 278, 122384. [Google Scholar] [CrossRef]
- Azmi, A.N.; Fauzi, M.A.; Nor, M.D.; Ridzuan, A.R.M.; Arshad, M.F. Production of Controlled Low Strength Material Utilizing Waste Paper Sludge Ash and Recycled Aggregate Concrete. MATEC Web Conf. 2016, 47, 01011. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.; Xue, C. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resour. Conserv. Recycl. X 2020, 6, 100036. [Google Scholar] [CrossRef]
- Mavroulidou, M. Use of waste paper sludge ash as a calcium-based stabiliser for clay soils. Waste Manag. Res. 2018, 36, 1066–1072. [Google Scholar] [CrossRef]
- Mäkelä, M.; Watkins, G.; Pöykiö, R.; Nurmesniemi, H.; Dahl, O. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: Relevant physicochemical properties and heavy metal availability. J. Hazard. Mater. 2012, 207, 21–27. [Google Scholar] [CrossRef]
- Nafees, M.; Baig, S.A.; Zahid, S. Chemical composition and nutritional values of pulp and paper mill sludge compost. 2018. Available online: https://www.researchgate.net/profile/Nafees-Mohammad/publication/327982232_Chemical_composition_and_nutritional_values_of_pulp_and_paper_mill_sludge_compost/links/5bb1f70ea6fdccd3cb80b209/Chemical-composition-and-nutritional-values-of-pulp-and-paper-mill-sludge-compost.pdf (accessed on 17 January 2023). [CrossRef]
- Gopinathan, M.; Thirumurthy, M. Evaluation of phytotoxicity for compost from organic fraction of municipal solid waste and paper & pulp mill sludge. Environ. Res. Eng. Manag. 2012, 59, 47–51. [Google Scholar]
- Cooperband, L. The Art and Science of Composting; Center for Integrated Agricultural Systems: Madison, WI, USA, 2002. [Google Scholar]
- Ahmed, S.; Hall, A.; Ahmed, S. Biodegradation of Different Types of Paper in a Compost Environment. In Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March, Chittagong, Bangladesh, 30–31 March 2018; pp. 30–31. [Google Scholar]
- Zawadzińska, A.; Salachna, P.; Nowak, J.S.; Kowalczyk, W.; Piechocki, R.; Łopusiewicz, Ł.; Pietrak, A. Compost Based on Pulp and Paper Mill Sludge, Fruit-Vegetable Waste, Mushroom Spent Substrate and Rye Straw Improves Yield and Nutritional Value of Tomato. Agronomy 2021, 12, 13. [Google Scholar] [CrossRef]
- Wahyuningsih, S. Application of pulp and paper sludge compost on Anthocephalus cadamba seedlings in ultisol and peat media. IOP Conf. Ser. Earth Environ. Sci. 2020, 415, 012021. [Google Scholar] [CrossRef]
- Rosazlin, A.; Fauziah, C.; Wan Rasidah, K.; Rosenani, A.; Kala, D. Assessment on the quality of recycled paper mill sludge mixed with oil palm empty fruit bunch compost. Malays. J. Soil Sci. 2011, 15, 49–62. [Google Scholar]
- Ghulam, S.T.; Abushammala, H. Challenges and Opportunities in the Management of Electronic Waste and Its Impact on Human Health and Environment. Sustainability 2023, 15, 1837. [Google Scholar] [CrossRef]
- Okan, M.; Aydin, H.M.; Barsbay, M. Current approaches to waste polymer utilization and minimization: A review. J. Chem. Technol. Biotechnol. 2019, 94, 8–21. [Google Scholar] [CrossRef]
- Moult, J.; Allan, S.; Hewitt, C.; Berners-Lee, M. Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy 2018, 77, 50–58. [Google Scholar] [CrossRef]
- Piippo, S.; Lauronen, M.; Postila, H. Greenhouse gas emissions from different sewage sludge treatment methods in north. J. Clean. Prod. 2018, 177, 483–492. [Google Scholar] [CrossRef]
- Chan, Y.C.; Sinha, R.K.; Wang, W. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manag. Res. 2011, 29, 540–548. [Google Scholar] [CrossRef]
- Kristanto, G.A.; Koven, W. Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City Environ. Interact. 2019, 4, 100027. [Google Scholar] [CrossRef]
- Baldasano, J.M.; Soriano, C. Emission of greenhouse gases from anaerobic digestion processes: Comparison with other municipal solid waste treatments. Water Sci. Technol. 2000, 41, 275–282. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abushammala, H.; Masood, M.A.; Ghulam, S.T.; Mao, J. On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy. Sustainability 2023, 15, 6915. https://doi.org/10.3390/su15086915
Abushammala H, Masood MA, Ghulam ST, Mao J. On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy. Sustainability. 2023; 15(8):6915. https://doi.org/10.3390/su15086915
Chicago/Turabian StyleAbushammala, Hatem, Muhammad Adil Masood, Salma Taqi Ghulam, and Jia Mao. 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy" Sustainability 15, no. 8: 6915. https://doi.org/10.3390/su15086915
APA StyleAbushammala, H., Masood, M. A., Ghulam, S. T., & Mao, J. (2023). On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy. Sustainability, 15(8), 6915. https://doi.org/10.3390/su15086915