Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residue and Biochar Attenuated Accumulation and Translocation of Antibiotics in Soils and Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Soil Amendments and Soil Mixture
2.2. Seed Germination Test
2.3. Planting Experiment
2.3.1. Greenhouse Plantation
2.3.2. Selection of Antibiotics
2.3.3. Measurement of Soil Properties
2.3.4. Determination of Antibiotic Concentrations in Soil–Plant Systems
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effects of Soil Amendments on Soil Properties
3.2. Effects of Soil Amendments on Seed Germination
3.3. Effects of Soil Amendments on Antibiotic Dissipation in Soils
3.4. Effect of Soil Amendments on Antibiotic Dissipation in Plant Tissues
3.5. Effects of Soil Amendments on Bioconcentration Factors of Antibiotics
3.6. Implications of Co-Application of SL, CMHRs and BC as Soil Amendment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils. 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Laghari, M.; Naidu, R.; Xiao, B.; Hu, Z.; Mirjat, M.S.; Hu, M.; Kandhro, M.N.; Chen, Z.; Guo, D.; Jogi, Q.; et al. Recent developments in biochar as an effective tool for agricultural soil management: A review. J. Sci. Food Agric. 2016, 96, 4840–4849. [Google Scholar] [CrossRef] [PubMed]
- Kalus, K.; Koziel, J.A.; Opaliński, S. A review of biochar properties and their utilization in crop agriculture and livestock production. Appl. Sci. 2019, 9, 3494. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Stofella, P.J. Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef]
- Chow, H.; Pan, M. Fertilization value of biosolids on nutrient accumulation and environmental risks to agricultural plants. Water Air Soil Pollut. 2000, 231, 578. [Google Scholar] [CrossRef]
- Nunes, N.; Ragonezi, C.; Gouveia, C.S.; Pinheiro de Carvalho, M.Â. Review of sewage sludge as a soil amendment in relation to current international guidelines: A heavy metal perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Zielińska, A.; Cornelissen, G. Stabilization of sewage sludge by different biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons (PAHs) content. Bioresour. Technol. 2014, 156, 139–145. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Oleszczuk, P.; Różyło, K. Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment. Sci. Total. Environ. 2017, 599, 854–862. [Google Scholar] [CrossRef]
- Kończak, M.; Oleszczuk, P. Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Sci. Total. Environ. 2018, 625, 8–15. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. Environ. Geochem. Health 2019, 41, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Penido, E.S.; Martins, G.C.; Mendes, T.B.M.; Melo, L.C.A.; do Rosário Guimarães, I.; Guilherme, L.R.G. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicol. Environ. Saf. 2019, 172, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Frišták, V.; Soja, G. Effect of wood-based biochar and sewage sludge amendments for soil phosphorus availability. Nova Biotechnol. Chim. 2015, 14, 104–115. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Wang, K.; Huang, Y.; Wang, H. Re-utilization of Chinese medicinal herbal residues improved soil fertility and maintained maize yield under chemical fertilizer reduction. Chemosphere 2021, 283, 131262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Selvam, A.; Wong, J.W. Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour. Technol. 2018, 249, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Wang, H.; Wu, J. Traditional Chinese medicine residue act as a better fertilizer for improving soil aggregation and crop yields than manure. Soil Tillage Res. 2019, 195, 104386. [Google Scholar] [CrossRef]
- Zhou, Y.; Selvam, A.; Wong, J.W.C. Effect of Chinese medicinal herbal residues on microbial community succession 2 and anti-pathogenic properties during co-composting with food waste. Bioresour. Technol. 2016, 217, 190–199. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Zhao, Y.; Chen, D.; Wang, H. Effects of traditional Chinese medicine residue on plant growth and soil properties: A case study with maize (Zea mays L.). Environ. Sci. Pollut. Res. 2019, 26, 32880–32890. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Pharmaceuticals and Personal Care Products. Available online: http://www.epa.gov/ppcp/basic2.html (accessed on 5 July 2021).
- Wang, S.; Wang, H. Adsorption behavior of antibiotic in soil environment: A critical review. Front. Environ. Sci. Eng. 2015, 9, 565–574. [Google Scholar] [CrossRef]
- Polianciuc, S.L.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. 2020, 93, 231–240. [Google Scholar] [CrossRef]
- Martínez-Carballo, E.; González-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 2007, 148, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total. Environ. 2016, 545–546, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, L.; Liu, W.; Huang, Y.; Luo, Y.; Christie, P. Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids. Environ. Sci. Pollut. Res. 2018, 25, 104–114. [Google Scholar] [CrossRef]
- Sidhu, H.; D’Angelo, E.; O’Connor, G. Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils. Sci. Total. Environ. 2019, 650, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Bair, D.A.; Anderson, C.G.; Chung, Y.; Scow, K.M.; Franco, R.B.; Parikh, S.J. Impact of biochar on plant growth and uptake of ciprofloxacin, triclocarban and triclosan from biosolids. J. Environ. Sci. Health Part B 2020, 55, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Pei, M.; Wang, D.; Cao, S.; Xiao, X.; Sun, B. Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes. Environ. Sci. Technol. 2017, 51, 4988–4998. [Google Scholar] [CrossRef]
- Yue, Y.; Cui, L.; Lin, Q.M.; Li, G.T.; Zhao, X.R. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 2017, 173, 551–556. [Google Scholar] [CrossRef]
- Pan, M. Biochar adsorption of antibiotics and its implications to remediation of contaminated soil. Water Air Soil Pollut. 2020, 231, 221. [Google Scholar] [CrossRef]
- Lian, F.; Sun, B.; Song, Z.; Zhu, L.; Qi, X.; Xing, B. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J. 2014, 248, 128–134. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J. Removal of chlortetracycline from water by Bacillus cereus immobilized on Chinese medicine residues biochar. Environ. Technol. Innov. 2021, 24, 101930. [Google Scholar] [CrossRef]
- Pan, M.; Yau, P.C.; Lee, K.C.; Zhang, H.; Lee, V.; Lai, C.Y.; Fan, H.J. Nutrient accumulation and environmental risks of biosolids and different fertilizers on horticultural plants. Water Air Soil Pollut. 2021, 232, 480. [Google Scholar] [CrossRef]
- Chau, K.C.; Chan, W.Y. Planter soils in Hong Kong: I. Soil properties and characterization. Arboric. J. 2000, 24, 59–74. [Google Scholar] [CrossRef]
- OECD. Terrestrial Plants, Growth Test: Seedling Emergence and Seeding Growth Test. Guideline for Testing of Chemicals 208; OECD: Paris, French, 1984. [Google Scholar]
- Pan, M.; Chu, L.M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ. Pollut. 2017, 231, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Hamscher, G.; Pawelzick, H.T.; Sczesny, S.; Nau, H.; Hartung, J. Antibiotics in dust originating from a pig-fattening farm: A new source of health hazard for farmers? Environ. Health Perspect. 2003, 111, 1590–1594. [Google Scholar] [CrossRef]
- Yao, L.; Wang, Y.; Tong, L.; Li, Y.; Deng, Y.; Guo, W.; Gan, Y. Seasonal variation of antibiotics concentration in the aquatic environment: A case study at Jianghan Plain, central China. Sci. Total Environ. 2015, 527–528, 56–64. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J.J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol. Environ. Saf. 2016, 126, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Mutiyar, P.K.; Mittal, A.K. Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: A case study of emerging pollutant. Desalin. Water Treat. 2013, 51, 6158–6164. [Google Scholar] [CrossRef]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Dong, Y.H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China. J. Hazard. Mater. 2008, 151, 833–839. [Google Scholar] [CrossRef]
- Yang, J.F.; Ying, G.G.; Zhao, J.L.; Tao, R.; Su, H.C.; Chen, F. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC–MS/MS. Sci. Total. Environ. 2010, 408, 3424–3432. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Tan, J.; Tang, C.; Yu, Y.; Wang, Z. Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China. Environ. Toxicol. Chem. 2008, 27, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Qi, Y.; Liu, F. Ultra-high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of antibiotic residues in environmental waters. Environ. Sci. Pollut. Res. 2015, 22, 16857–16867. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Yau, P.C.; Lee, K.C.; Man, H.Y. Effects of different fertilizers on the germination of tomato and cucumber seeds. Water Air Soil Pollut. 2022, 233, 25. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (Standard D854–06). In Annual Book of ASTM Standards: Soil and Rock (II) V4.08; American Society for Testing and Materials: West Conshohocken, PA, USA, 2006. [Google Scholar]
- ASTM. Standard test method for particle-size analysis of soils (Standard D422-63(2007)). In Annual Book of ASTM Standards: Soil and Rock (I); American Society for Testing and Materials: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ATSM. Standard test methods for laboratory determination of density (Unit Weight) of soil specimens (Standard D7263-09). In Annual Book of ASTM Standards: Soil and Rock (II) V4.09; American Society for Testing and Materials: West Conshohocken, PA, USA, 2009. [Google Scholar]
- ISO 11267:2014(EN); Soil Quality-Inhibition of Reproduction of Collembola (Folsomia candida) by Soil Contaminants. International Organization for Standardization: Geneva, Switzerland, 2014.
- Pan, M.; Chu, L.M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China. Sci. Total. Environ. 2018, 624, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Borchard, N.; Wolf, A.; Laabs, V.; Aeckersberg, R.; Scherer, H.W.; Moeller, A.; Amelung, W. Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use Manag. 2012, 28, 177–184. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Murphy, D.V.; Abbott, L.K. Biochars influence seed germination and early growth of seedlings. Plant Soil 2012, 353, 273–287. [Google Scholar] [CrossRef]
- Benitez, E.; Romero, E.; Gomez, M.; Gallardo-Lara, F.; Nogales, R. Biosolids and biosolids-ash as sources of heavy metals in a plant-soil system. Water Air Soil Pollut. 2001, 132, 75–87. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total. Environ. 2016, 563, 366–376. [Google Scholar] [CrossRef]
- Yang, J.F.; Ying, G.G.; Liu, S.; Zhou, L.J.; Zhao, J.L.; Tao, R.; Peng, P.A. Biological degradation and microbial function effect of norfloxacin in a soil under different conditions. J. Environ. Health. B 2012, 47, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Sun, M.; Feng, Y.; Wan, J.; Xie, S.; Tian, D.; Zhao, Y.; Wu, J.; Hu, F.; Li, H.; et al. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. J. Hazard. Mater. 2016, 309, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Li, H.; Gu, J.; Tuo, X.; Sun, W.; Qian, X.; Wang, X. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ. Pollut. 2017, 224, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhao, Z.; Zhu, Y. Changes in abiotic dissipation rates and bound fractions of antibiotics in biochar-amended soil. J. Clean. Prod. 2020, 256, 120314. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total. Environ. 2017, 599, 500–512. [Google Scholar] [CrossRef]
- Azanu, D.; Mortey, C.; Darko, G.; Weisser, J.J.; Styrishave, B.; Abaidoo, R.C. Uptake of antibiotics from irrigation water by plants. Chemosphere 2016, 157, 107–114. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere 2019, 219, 882–895. [Google Scholar] [CrossRef]
- Miller, E.L.; Nason, S.L.; Karthikeyan, K.G.; Pedersen, J.A. Root uptake of pharmaceuticals and personal care product ingredients. Environ. Sci. Technol. 2016, 50, 525–541. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konvalina, P.; Walkiewicz, A.; Neugschwandtner, R.W.; Kopecký, M.; Zamanian, K.; Chen, W.H.; Bucur, D. Feasibility of biochar derived from sewage sludge to promote sustainable agriculture and mitigate GHG emissions—A review. Int. J. Environ. Res. Public Health 2022, 19, 12983. [Google Scholar] [CrossRef]
Compound/Class | Molecular Formula | Structure | Molecular Weight | pKa | Log Kow [23,39] | Koc (L kg−1) [23,39] |
---|---|---|---|---|---|---|
Amoxicillin (AMX)/ β-lactam | C16H19N3O5S | 365.40 | 3.2; 7.43 [40] | 0.87 | 108 | |
Tetracycline (TC)/ Tetracyclines | C22H24N2O8 | 444.43 | 3.3; 7.7; 9.6 [41] | −1.3 | 1.37 × 105 | |
Sulfamethazine (SMZ)/ Sulphonamides | C12H14N4O2S | 278.33 | 2.79; 7.45 [42] | 0.76 | 165 | |
Norfloxacin (NOR)/ Quinolones | C16H18FN3O3 | 319.33 | 3.11; 6.1; 8.6 [43] | −1.03 | 7.48 × 104 | |
Erythromycin (ERY)/ Macrolides | C37H67NO13 | 733.93 | 8.88; 12.91 [44] | Not available | 1.63 × 104 | |
Chloramphenicol (CAP)/ Chloramphenicol | C11H12Cl2N2O5 | 323.13 | 5.5 [43]; 9.61 [45] | 0.92 | 128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Lee, S.H.; Luo, L.; Chen, X.W.; Sham, Y.T. Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residue and Biochar Attenuated Accumulation and Translocation of Antibiotics in Soils and Crops. Sustainability 2023, 15, 6972. https://doi.org/10.3390/su15086972
Pan M, Lee SH, Luo L, Chen XW, Sham YT. Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residue and Biochar Attenuated Accumulation and Translocation of Antibiotics in Soils and Crops. Sustainability. 2023; 15(8):6972. https://doi.org/10.3390/su15086972
Chicago/Turabian StylePan, Min, Shing Him Lee, Liwen Luo, Xun Wen Chen, and Yik Tung Sham. 2023. "Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residue and Biochar Attenuated Accumulation and Translocation of Antibiotics in Soils and Crops" Sustainability 15, no. 8: 6972. https://doi.org/10.3390/su15086972
APA StylePan, M., Lee, S. H., Luo, L., Chen, X. W., & Sham, Y. T. (2023). Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residue and Biochar Attenuated Accumulation and Translocation of Antibiotics in Soils and Crops. Sustainability, 15(8), 6972. https://doi.org/10.3390/su15086972