A Reliability-Based Traffic Equilibrium Model with Boundedly Rational Travelers Considering Acceptable Arrival Thresholds
Abstract
:1. Introduction
2. TTB with Route Travel Time Boundary
2.1. Truncated Route Travel Distribution
2.2. TTB with Lower Boundary
3. R-BRTE Model
3.1. Definition of BRCL
3.2. Threshold Estimation
3.3. Equilibrium Model and VI Formulation
4. Solution Algorithm
5. Numerical Example
5.1. A Nine-Grid Transportation Network
5.2. Nguyen–Dupuis Transportation Network
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wardrop, J.G. Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. Part II 1952, 2, 352–362. [Google Scholar] [CrossRef]
- Yang, H.; Huang, H. The multi-class, multi-criteria traffic network equilibrium and systems optimum problem. Transp. Res. Part B Methodol. 2004, 38, 1–15. [Google Scholar] [CrossRef]
- Tian, L.; Huang, H.; Gao, Z. A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time. Netw. Spat. Econ. 2012, 12, 589–608. [Google Scholar] [CrossRef]
- Xu, H.; Yang, H.; Zhou, J.; Yin, Y. A Route Choice Model with Context-Dependent Value of Time. Transp. Sci. 2017, 51, 536–548. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.X. Bounded rationality and irreversible network change. Transp. Res. Part B Methodol. 2011, 45, 1606–1618. [Google Scholar] [CrossRef]
- Han, K.; Szeto, W.Y.; Friesz, T.L. Formulation, existence, and computation of boundedly rational dynamic user equilibrium with fixed or endogenous user tolerance. Transp. Res. Part B Methodol. 2015, 79, 16–49. [Google Scholar] [CrossRef]
- Nakayama, S. Effect of providing traffic information estimated by a stochastic network equilibrium model with stochastic demand. Transp. Res. Part C Emerg. Technol. 2016, 70, 238–251. [Google Scholar] [CrossRef]
- Lam, T.C.; Small, K.A. The value of time and reliability: Measurement from a value pricing experiment. Transp. Res. Part E Logist. Transp. Rev. 2001, 37, 231–251. [Google Scholar] [CrossRef]
- Uchida, K.; Kato, T. A Simplified Network Model for Travel Time Reliability Analysis in a Road Network. J. Adv. Transp. 2017, 2017, 17. [Google Scholar] [CrossRef]
- Lo, H.K.; Luo, X.W.; Siu, B.W.Y. Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion. Transp. Res. Part B Methodol. 2006, 40, 792–806. [Google Scholar] [CrossRef]
- Chen, A.; Zhou, Z. The α-reliable mean-excess traffic equilibrium model with stochastic travel times. Transp. Res. Part B Methodol. 2010, 44, 493–513. [Google Scholar] [CrossRef]
- Chen, A.; Zhou, Z.; Lam, W.H.K. Modeling stochastic perception error in the mean-excess traffic equilibrium model. Transp. Res. Part B Methodol. 2011, 45, 1619–1640. [Google Scholar] [CrossRef]
- Shen, L.; Wang, F.R.; Chen, Y.Y.; Lv, X.Y.; Wen, Z.L. A Reliability-Based Stochastic Traffic Assignment Model for Signalized Traffic Network with Consideration of Link Travel Time Correlations. Sustainability 2022, 14, 14520. [Google Scholar] [CrossRef]
- Fayyaz, M.; Bliemer, M.; Beck, M.J.; Hess, S.; van Lint, J. Stated choices and simulated experiences: Differences in the value of travel time and reliability. Transp. Res. Part C Emerg. Technol. 2021, 128, 103145. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, J.; Xu, W. A decision-making rule for modeling travelers’ route choice behavior based on cumulative prospect theory. Transp. Res. Part C Emerg. Technol. 2011, 19, 218–228. [Google Scholar] [CrossRef]
- Gao, S.; Frejinger, E.; Ben-Akiva, M. Adaptive route choices in risky traffic networks: A prospect theory approach. Transp. Res. Part C Emerg. Technol. 2010, 18, 727–740. [Google Scholar] [CrossRef]
- Zhou, L.; Zhong, S.; Ma, S.; Jia, N. Prospect theory based estimation of drivers’ risk attitudes in route choice behaviors. Accid. Anal. Prev. 2014, 73, 1–11. [Google Scholar] [CrossRef]
- Li, M.; Huang, H. A regret theory-based route choice model. Transp. A Transp. Sci. 2017, 13, 250–272. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, H.Z.; Zhang, X.J.; Wu, X.B. A regret-based route choice model with asymmetric preference in a stochastic network. Adv. Mech. Eng. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, B. The impact of bounded rational differences in consumers on suppliers’ product pricing: A two-level popolation game model. Syst. Eng. Theory Pract. 2022, 42, 144–154. [Google Scholar]
- Zhu, Y.; Xia, C.; Wang, Z.; Chen, Z. Networked Decision-Making Dynamics Based on Fair, Extortionate and Generous Strategies in Iterated Public Goods Games. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2450–2462. [Google Scholar] [CrossRef]
- Xu, X.; Chen, A.; Lo, H.K.; Yang, C. Modeling the impacts of speed limits on uncertain road networks. Transp. A Transp. Sci. 2017, 14, 66–88. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, H.Z.; Zhu, J.Z.; Wei, Y.F. A Reliability-Based Network Equilibrium Model with Adaptive Risk-Averse Travelers. J. Adv. Transp. 2018, 2018, 5294185. [Google Scholar] [CrossRef]
- Yan, C.; Jiang, R.; Gao, Z.; Shao, H. Effect of speed limits in degradable transport networks. Transp. Res. Part C Emerg. Technol. 2015, 56, 94–119. [Google Scholar] [CrossRef]
- Mahmassani, H.S.; Chang, G. On Boundedly Rational User Equilibrium in Transportation Systems. Transp. Sci. 1987, 21, 89–99. [Google Scholar] [CrossRef]
- Lou, Y.; Yin, Y.; Lawphongpanich, S. Robust congestion pricing under boundedly rational user equilibrium. Transp. Res. Part B Methodol. 2010, 44, 15–28. [Google Scholar] [CrossRef]
- Di, X.; Liu, H.X.; Pang, J.; Ban, X.J. Boundedly Rational User Equilibria (BRUE): Mathematical Formulation and Solution Sets. Procedia Soc. Behav. Sci. 2013, 80, 231–248. [Google Scholar] [CrossRef]
- Cantillo, V.; Heydecker, B.; Ortuzar, J.D. A discrete choice model incorporating thresholds for perception in attribute values. Transp. Res. Part B Methodol. 2006, 40, 807–825. [Google Scholar] [CrossRef]
- Cantillo, V.; Ortuzar, J.D.; Williams, H. Modeling discrete choices in the presence of inertia and serial correlation. Transp. Sci. 2007, 41, 195–205. [Google Scholar] [CrossRef]
- Sun, C.; Cheng, L.; Ma, J. Travel time reliability with boundedly rational travelers. Transp. A Transp. Sci. 2017, 14, 210–229. [Google Scholar] [CrossRef]
- Tao, L.; Hongzhi, G.; Keke, L. Day-to-day dynamic evolution of network traffic folw under bounded rational view. Aacta Phys. Sin. 2016, 17–27. [Google Scholar]
- Ramirez, H.G.; Leclercq, L.; Chiabaut, N.; Becarie, C.; Krug, J. Travel time and bounded rationality in travellers’ route choice behaviour: A computer route choice experiment. Travel Behav. Soc. 2021, 22, 59–83. [Google Scholar] [CrossRef]
- Lo, H.K.; Tung, Y. Network with degradable links: Capacity analysis and design. Transp. Res. Part B Methodol. 2003, 37, 345–363. [Google Scholar] [CrossRef]
OD Pair | Route # | Associated Link |
---|---|---|
1-6 | 1 | 1-2-3-6 |
2 | 1-2-5-6 | |
3 | 1-5-5-6 | |
7-6 | 4 | 7-8-9-6 |
5 | 7-8-5-6 | |
6 | 7-4-5-6 |
OD | Route | Route Flow (veh/h) | Shortest TTB (min) | Boundedly Rational Threshold | BRCL | |
---|---|---|---|---|---|---|
Early Arrival Threshold (min) | Early Arrival Threshold (min) | |||||
1-6 | 1 | 566.32 | 48.99 | 14.21 | 8.59 | 0.88 |
2 | 456.35 | 0.45 | ||||
3 | 477.33 | 0.54 | ||||
7-6 | 4 | 597.28 | 56.38 | 14.49 | 8.95 | 0.40 |
5 | 621.97 | 0.48 | ||||
6 | 780.74 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhao, L.; Hu, X.; Zhao, X.; Wang, H. A Reliability-Based Traffic Equilibrium Model with Boundedly Rational Travelers Considering Acceptable Arrival Thresholds. Sustainability 2023, 15, 6988. https://doi.org/10.3390/su15086988
Wang L, Zhao L, Hu X, Zhao X, Wang H. A Reliability-Based Traffic Equilibrium Model with Boundedly Rational Travelers Considering Acceptable Arrival Thresholds. Sustainability. 2023; 15(8):6988. https://doi.org/10.3390/su15086988
Chicago/Turabian StyleWang, Liang, Lei Zhao, Xiaojian Hu, Xinyong Zhao, and Huan Wang. 2023. "A Reliability-Based Traffic Equilibrium Model with Boundedly Rational Travelers Considering Acceptable Arrival Thresholds" Sustainability 15, no. 8: 6988. https://doi.org/10.3390/su15086988
APA StyleWang, L., Zhao, L., Hu, X., Zhao, X., & Wang, H. (2023). A Reliability-Based Traffic Equilibrium Model with Boundedly Rational Travelers Considering Acceptable Arrival Thresholds. Sustainability, 15(8), 6988. https://doi.org/10.3390/su15086988