Facile Fabrication of Fe2O3/TiO2 Composite from Titanium Slag as Adsorbent for As(V) Removal from Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Fe2O3/TiO2 Composites
2.3. Characterization Techniques
2.4. The Point of Zero Charge (pHpzc)
2.5. As(V) Adsorption Experiments
2.5.1. Effect of Sulfuric Acid Concentration on As(V) Adsorption
2.5.2. Effect of Calcination Time on As(V) Adsorption
2.5.3. Influence of pH on As(V) Adsorption
2.6. Adsorption Isotherm
2.7. Adsorption Kinetics
2.8. Recycling Test
3. Results and Discussion
3.1. Characterization
3.2. Adsorption Study
3.2.1. Effect of Sulfuric Acid Concentration on As(V) Adsorption
3.2.2. Effect of Calcining Time on As(V) Adsorption
3.2.3. Influence of pH on As(V) Adsorption
3.3. Adsorption Isotherms
3.4. Adsorption Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, Q.; Shi, X.; Ma, W.; Zhang, F.; Yu, T.; Zhao, F.; Zhao, D.; Wei, C. Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. J. Hazard. Mater. 2021, 415, 125690. [Google Scholar] [CrossRef]
- Akhlaghian, F.; Souri, B.; Mohamadi, Z. Nanostructured Fe2O3/Al2O3 Adsorbent for removal of As (V) from water. Adv. Environ. Technol. 2017, 3, 67–75. [Google Scholar]
- Priya, V.N.; Rajkumar, M.; Mobika, J.; Sibi, S.L. Adsorption of As (V) ions from aqueous solution by carboxymethyl cellulose incorporated layered double hydroxide/reduced graphene oxide nanocomposites: Isotherm and kinetic studies. Environ. Technol. Innov. 2022, 26, 102268. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Naushad, M.; Chaudhry, S.A. Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review. Process Saf. Environ. Prot. 2019, 126, 60–97. [Google Scholar] [CrossRef]
- Senn, A.-C.; Hug, S.J.; Kaegi, R.; Hering, J.G.; Voegelin, A. Arsenate co-precipitation with Fe (II) oxidation products and retention or release during precipitate aging. Water Res. 2018, 131, 334–345. [Google Scholar] [CrossRef]
- Naushad, M.; Mittal, A.; Rathore, M.; Gupta, V. Ion-exchange kinetic studies for Cd (II), Co (II), Cu (II), and Pb (II) metal ions over a composite cation exchanger. Desalin. Water Treat. 2015, 54, 2883–2890. [Google Scholar] [CrossRef]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y.; Li, K. PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms. Chem. Eng. J. 2020, 399, 125762. [Google Scholar] [CrossRef]
- Fan, H.; Ma, X.; Zhou, S.; Huang, J.; Liu, Y.; Liu, Y. Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohydr. Polym. 2019, 213, 39–49. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Nguyen, D.A.; Nguyen, T.T.; Le, B.T.; Nguyen, P.H.T.; La, D.D. Low-cost fabrication of Fe2O3/rutile nanocomposite from Ilmenite ore: A highly effective adsorbent for removal of arsenic in aqueous media. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 015014. [Google Scholar]
- Gupta, K.; Joshi, P.; Gusain, R.; Khatri, O.P. Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 2021, 445, 214100. [Google Scholar] [CrossRef]
- Nassar, N.N. Iron oxide nanoadsorbents for removal of various pollutants from wastewater: An overview. In Application of Adsorbents for Water Pollution Control; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 81–118. [Google Scholar]
- Tang, W.; Li, Q.; Gao, S.; Shang, J.K. Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J. Hazard. Mater. 2011, 192, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Aredes, S.; Klein, B.; Pawlik, M. The removal of arsenic from water using natural iron oxide minerals. J. Clean. Prod. 2013, 60, 71–76. [Google Scholar] [CrossRef]
- Prabhakar, R.; Samadder, S. Low cost and easy synthesis of aluminium oxide nanoparticles for arsenite removal from groundwater: A complete batch study. J. Mol. Liq. 2018, 250, 192–201. [Google Scholar] [CrossRef]
- Baranik, A.; Gagor, A.; Queralt, I.; Marguí, E.; Sitko, R.; Zawisza, B. Determination and speciation of ultratrace arsenic and chromium species using aluminium oxide supported on graphene oxide. Talanta 2018, 185, 264–274. [Google Scholar] [CrossRef]
- Feng, C.; Aldrich, C.; Eksteen, J.; Arrigan, D. Removal of arsenic from alkaline process waters of gold cyanidation by use of γ-Fe2O3@ ZrO2 nanosorbents. Hydrometallurgy 2017, 174, 71–77. [Google Scholar] [CrossRef]
- Sakthivel, T.S.; Das, S.; Pratt, C.J.; Seal, S. One-pot synthesis of a ceria-graphene oxide composite for the efficient removal of arsenic species. Nanoscale 2017, 9, 3367–3374. [Google Scholar] [CrossRef]
- Wu, K.; Jing, C.; Zhang, J.; Liu, T.; Yang, S.; Wang, W. Magnetic Fe3O4@CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic (III/V) from water. Appl. Surf. Sci. 2019, 466, 746–756. [Google Scholar] [CrossRef]
- Deedar, N.; Aslam, I. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J. Environ. Sci. 2009, 21, 402–408. [Google Scholar]
- Xu, Z.; Li, Q.; Gao, S.; Shang, J.K. As (III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution. Water Res. 2010, 44, 5713–5721. [Google Scholar] [CrossRef]
- Bullen, J.C.; Kenney, J.P.; Fearn, S.; Kafizas, A.; Skinner, S.; Weiss, D.J. Improved accuracy in multicomponent surface complexation models using surface-sensitive analytical techniques: Adsorption of arsenic onto a TiO2/Fe2O3 multifunctional sorbent. J. Colloid Interface Sci. 2020, 580, 834–849. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Peng, X.; Ni, F.; Li, J.; Wang, D.; Luan, Z. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J. Hazard. Mater. 2013, 246, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Babu, C.M.; Vinodh, R.; Sundaravel, B.; Abidov, A.; Peng, M.M.; Cha, W.S.; Jang, H.-T. Characterization of reduced graphene oxide supported mesoporous Fe2O3/TiO2 nanoparticles and adsorption of As (III) and As (V) from potable water. J. Taiwan Inst. Chem. Eng. 2016, 62, 199–208. [Google Scholar] [CrossRef]
- D’Arcy, M.; Weiss, D.; Bluck, M.; Vilar, R. Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2-Fe2O3 bi-composite. J. Colloid Interface Sci. 2011, 364, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Smith, Y.R.; Raj, K.J.A.; Subramanian, V.R.; Viswanathan, B. Sulfated Fe2O3-TiO2 synthesized from ilmenite ore: A visible light active photocatalyst. Colloids Surf. A Physicochem. Eng. Asp. 2010, 367, 140–147. [Google Scholar] [CrossRef]
- Anuradha, S.; Raj, K.; Vijayaraghavan, V.; Viswanathan, B. Sulphated Fe2O3-TiO2 catalysed transesterification of soybean oil to biodiesel. Indian J. Chem. 2014, 53A, 1493–1499. [Google Scholar]
- Phoohinkong, W.; Yimwan, W.; Mekprasart, W.; Pecharapa, W. Preparation of nano FeTiO3-TiO2 catalyst from ilmenite ore for catalytic degradation of methylene blue. Suranaree J. Sci. Technol. 2016, 23, 453–459. [Google Scholar]
- Zhang, L.; He, Y.; Wu, Y.; Wu, T. Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials. Mater. Sci. Eng. B 2011, 176, 1497–1504. [Google Scholar] [CrossRef]
- Su, H.; Lv, X.; Zhang, Z.; Yu, J.; Wang, T. Arsenic removal from water by photocatalytic functional Fe2O3-TiO2 porous ceramic. J. Porous Mater. 2017, 24, 1227–1235. [Google Scholar] [CrossRef]
- Gupta, K.; Saha, S.; Ghosh, U.C. Synthesis and characterization of nanostructure hydrous iron-titanium binary mixed oxide for arsenic sorption. J. Nanopart. Res. 2008, 10, 1361–1368. [Google Scholar] [CrossRef]
- Amar, I.; Sharif, A.; Ali, M.; Alshareef, S.; Altohami, F.; Abdulqadir, M.; Ahwidi, M. Removal of methylene blue from aqueous solutions using nano-magnetic adsorbent based on zinc-doped cobalt ferrite. Chem. Methodol. 2020, 4, 1–18. [Google Scholar]
- Chen, G.; Pu, J.; Chen, J.; Peng, J.; Srinivasakannan, C.; Ruan, R. Multi-scale investigation of the formation and properties of high-grade rutile TiO2 from titanium slags using microwave heating. R. Soc. Open Sci. 2018, 5, 171858. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Gu, J.; Han, Y.; Gao, Y.; Zong, Y.; Ye, Z.; Xue, J. Facile fabrication of C-TiO2 nanocomposites with enhanced photocatalytic activity for degradation of tetracycline. ACS Omega 2019, 4, 21063–21071. [Google Scholar] [CrossRef]
- Wilson, S.C.; Lockwood, P.V.; Ashley, P.M.; Tighe, M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 2010, 158, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Maghsodi, A.; Adlnasab, L. In-situ chemical deposition as a new method for the preparation of Fe3O4 nanopaeticles embedded on anodic aluminum oxide membrane (Fe3O4@ AAO): Characterization and application for arsenic removal using response surface methodology. J. Environ. Chem. Eng. 2019, 7, 103288. [Google Scholar] [CrossRef]
- Ouédraogo, I.W.; Pehlivan, E.; Tran, H.T.; Bonzi-Coulibaly, Y.L.; Zachmann, D.; Bahadir, M. Synthesis of iron oxyhydroxide-coated rice straw (IOC-RS) and its application in arsenic (V) removal from water. J. Water Health 2015, 13, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Beduk, F. Superparamagnetic nanomaterial Fe3O4-TiO2 for the removal of As (V) and As (III) from aqueous solutions. Environ. Technol. 2016, 37, 1790–1801. [Google Scholar] [CrossRef]
- Ma, L.; Tu, S. Removal of arsenic from aqueous solution by two types of nano TiO2 crystals. Environ. Chem. Lett. 2011, 9, 465–472. [Google Scholar] [CrossRef]
Equations | pKa |
---|---|
H3AsO4 (aq) + H2O (l) = H2AsO4− (aq) + H3O+ | 2.20 |
H2AsO4− (aq) + H2O (l) = HAsO42− (aq) + H3O+ | 6.97 |
HAsO42− (aq) + H2O (l) = AsO43− (aq) + H3O+ | 11.53 |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF ((mg/g) × (L/mg)1/n) | n | R2 | |
As(V) | 68.26 | 0.0721 | 0.9825 | 4.21 | 1.185 | 0.9977 |
Adsorbents | pH | qmax (mg/g) | Reference |
---|---|---|---|
Fe-Ti mixed oxide | 7 | 14.6 | [31] |
TiO2 anatase | 7 | 23.7 | [39] |
Fe2O3-TiO2 bi-composite | 5 | 12.1 | [25] |
Fe2O3/rutile | 7 | 47.1 | [10] |
Fe2O3/TiO2 | 7 | 68.26 | This work |
Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | |||||
---|---|---|---|---|---|---|
qe (mg/g) | k1 (L/min) | R2 | qe (mg/g) | qcal (mg/g) | k2 (mg/g·min) | R2 |
9.507 | 0.0177 | 0.9485 | 18.58 | 17.50 | 0.0034 | 0.9991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, C.V.; Nguyen, P.T.H.; Nguyen, D.D.; Pham, H.T.T.; Do, D.T.; La, D.D. Facile Fabrication of Fe2O3/TiO2 Composite from Titanium Slag as Adsorbent for As(V) Removal from Aqueous Media. Sustainability 2023, 15, 7253. https://doi.org/10.3390/su15097253
Tran CV, Nguyen PTH, Nguyen DD, Pham HTT, Do DT, La DD. Facile Fabrication of Fe2O3/TiO2 Composite from Titanium Slag as Adsorbent for As(V) Removal from Aqueous Media. Sustainability. 2023; 15(9):7253. https://doi.org/10.3390/su15097253
Chicago/Turabian StyleTran, Chinh Van, Phuong Thi Hoai Nguyen, Dinh Duc Nguyen, Hanh T. T. Pham, Dinh Trung Do, and Duong Duc La. 2023. "Facile Fabrication of Fe2O3/TiO2 Composite from Titanium Slag as Adsorbent for As(V) Removal from Aqueous Media" Sustainability 15, no. 9: 7253. https://doi.org/10.3390/su15097253
APA StyleTran, C. V., Nguyen, P. T. H., Nguyen, D. D., Pham, H. T. T., Do, D. T., & La, D. D. (2023). Facile Fabrication of Fe2O3/TiO2 Composite from Titanium Slag as Adsorbent for As(V) Removal from Aqueous Media. Sustainability, 15(9), 7253. https://doi.org/10.3390/su15097253