Water Dynamics and Hydraulic Functions in Sandy Soils: Limitations to Sugarcane Cultivation in Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Characteristics
2.2. Soil Attributes
2.3. Saturated Soil Hydraulic Conductivity
2.4. Soil Water Retention
2.5. Unsaturated Soil Hydraulic Conductivity and Soil Water Redistribution
2.6. Soil Water Capacity Function
2.7. Theoretical and Actual Soil Water Storage and Availability
2.8. Statistical Analyses
2.9. Sugarcane Yield Modeling
3. Results
3.1. Texture and Sandy Soil Structure
3.2. Water Movement in Sandy Soil
3.3. Water Retention and Pore Distribution
3.4. Water Availability
3.5. Multivariate Relationships among Soil Physical-Hydric Attributes
3.6. Sugarcane Yield Simulations
4. Discussion
4.1. Comparisons to Previous Research
4.1.1. Soil Characteristics
4.1.2. Saturated Soil Hydraulic Conductivity
4.1.3. Soil Water Retention
4.1.4. Water Availability to Plants
4.2. Sustainability Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, M. Caracterização física do solo. In Física do Solo, 1st ed.; de Jong van Lier, Q., Ed.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brasil, 2010; pp. 1–27. [Google Scholar]
- Barbosa, L.C. Atributos Físicos do Solo e Desenvolvimento Radicular à Cana-Planta em Diferentes Sistemas De manejo. Master’s Thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola, Campinas, Brazil, 2015. [Google Scholar]
- Silva, M.L.N.; Libardi, P.L.; Gimenes, F.H.S. Soil water retention curve as affected by sample height. Rev. Bras. Ciênc. Solo 2018, 42, 1–13. [Google Scholar] [CrossRef]
- Stefanoski, D.C.; Santos, G.G.; Marchão, R.L.; Petter, F.A.; Pacheco, L.P. Uso e manejo do solo e seus impactos sobre a qualidade física. Rev. Bras. Eng. Agríc. Ambient. 2013, 17, 1301–1309. [Google Scholar] [CrossRef]
- Souza, J.L.M.; Fezer, K.F.; Gurski, B.C.; Jerszurki, D.; Pachechenik, P.E.; Evangelista, A.W.P. Atributos físicos e balanço hídrico do solo com Floresta Ombrófila Mista, em Latossolo Vermelho-Amarelo, em Telêmaco Borba—PR. Ciên. Florest. 2018, 28, 90–101. [Google Scholar] [CrossRef]
- Fidalski, J.; Tormena, C.A.; Alves, S.J.; Auler, P.A.M. Influência das frações de areia na retenção e disponibilidade de água em solos das Formações Caiuá e Paranavaí. Rev. Bras. Ciên. Solo 2013, 37, 613–621. [Google Scholar] [CrossRef]
- Machado, J.L.; Tormena, C.A.; Fidalski, J.; Scapim, C.A. Inter-relações entre as propriedades físicas e os coeficientes da curva de retenção de água de um Latossolo sob diferentes sistemas de uso. Rev. Bras. Ciênc. Solo 2008, 32, 495–502. [Google Scholar] [CrossRef]
- Cavalieri, K.M.V.; Carvalho, L.A.; Silva, A.P.; Libardi, P.L.; Tormena, C.A. Qualidade física de três solos sob colheita mecanizada de cana-de-açúcar. Rev. Bras. Ciênc. Solo 2011, 35, 1541–1549. [Google Scholar] [CrossRef]
- Parahyba, R.B.V.; Araújo, M.S.B.; Almeida, B.G.; Rolim Neto, F.C.; Sampaio, E.V.S.B.; Caldas, A.M. Water retention capacity in Arenosols and Ferralsols in a semiarid area in the state of Bahia, Brazil. An. Acad. Bras. Ciênc. 2019, 91, 1–20. [Google Scholar] [CrossRef]
- Daros, E.; Oliveria, R.A.; Zambon, J.L.C.; Bespalhok Filho, J.C.; Brasileiro, B.P.; Ido, O.T.; Ruaro, L.; Weber, H. RB036066—A sugarcane cultivar with high adaptability and yield stability to Brazilian South-Central region. Crop Breed. Appl. Biotechnol. 2018, 18, 325–329. [Google Scholar] [CrossRef]
- Berton, G.S.; de Daros, O.R.A.E.; Zambon, J.L.C.; Bespalhok Filho, J.C.; Brasileiro, B.P.; Ido, O.T.; Ruaro, L.; Weber, H. RB036091—An early-maturing sugarcane cultivar for the Central South of Brazil. Crop Breed. Appl. Biotechnol. 2020, 20, 1–5. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliverira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Nitsche, P.R.; Caramori, P.H.; Ricce, W.S.; Pinto, L.F.D. Atlas Climático do Estado do Paraná; Instituto de Desenvolvimento Rural do Paraná—IAPAR-EMATER: Londrina, Brazil, 2019. [Google Scholar]
- FranchinI, J.C.; Veliini, C.L.; Balbinot Junior, A.A.; Debiasi, H.; Watanabe, R.H. Integração Lavoura-Pecuária em Solo Arenoso e Clima Quente: Duas décadas de Experiência; Circular Técnica 118; Embrapa Soja: Londrina, Brazil, 2016; pp. 1–11. ISSN 2176-2864. Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1047856/integracao-lavoura-pecuaria-em-solo-arenoso-e-clima-quente-duas-decadas-de-experiencia (accessed on 24 April 2023).
- MINOPAR—Minerais do Paraná S/A. Atlas geológico do Estado do Paraná. 2001. Available online: https://www.mineropar.gov.pr.br (accessed on 22 March 2023).
- Costa, A.C.S.; Souza Junior, I.G.; Canton, L.C.; Gil, L.G.; Figueiredo, R. Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity. Rev. Bras. Ciênc. Solo 2020, 44, 1–18. [Google Scholar] [CrossRef]
- Thomaz, E.L.; Fidalski, J. Interill erodibility of different sandy soils increases along a catena in the Caiuá Sandstone Formation. Rev. Bras. Ciênc. Solo 2020, 44, e0190064. [Google Scholar] [CrossRef]
- Pereira, T.Y.Z. Avaliação da Vulnerabilidade e Fontes de Contaminações Difusas e Pontuais do Aquífero Caiuá. In Monograph Course Conclusion Work (GC-119); Setor de Ciências da Terra, Curso de Geologia, Unversidade Federal do Paraná: Curitiba, Paraná, Brazil, 2016; pp. 1–32. Available online: https://www.geologia.ufpr.br/portal/wp-content/uploads/2018/10/Thomaz-Zulpo-TCC.pdf (accessed on 31 March 2023).
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Manual de Métodos de Análise de Solo, 2nd ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2011; pp. 1–230. [Google Scholar]
- Gubiani, P.I.; Reinert, D.J.; Reichert, J.M. Método alternativo para a determinação da densidade de partículas do solo—Exatidão, precisão e tempo de processamento. Ciênc. Rural 2006, 36, 664–668. [Google Scholar] [CrossRef]
- Youngs, E.G. Hydraulic conductivity of saturated soils. In Soil Analysis: Physical Methods; Smith, K.A., Mullins, C.E., Eds.; Marcel Dekker: New York, NY, USA, 1991; Chapter 4; pp. 161–207. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Burdine, N.T. Relative permeability calculations from pore size distribution data. Petroleum Transactions. Amer. Instit. Min. Metall. Eng. 1953, 198, 71–78. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 3 January 2021).
- Czyz, E.A.; Dexter, A.R. Influence of soil type on the wilting of plants. Int. Agrophys. 2013, 27, 385–390. [Google Scholar] [CrossRef]
- Prevedello, C.L. Novo método para estimativa da umidade do solo na condição de capacidade de campo. Rev. Bras. Recur. Hídr. 1999, 4, 23–28. [Google Scholar] [CrossRef]
- Sisson, J.B.; Fergusson, A.H.; van Genuchten, M.T. Simple method for predicting drainage from field plots. Soil Sci. Soc. Am. J. 1980, 44, 1147–1152. [Google Scholar] [CrossRef]
- Prevedello, C.L.; Armindo, R.A. Física do Solo com Problemas Resolvidos, 2nd ed.; Celso Luiz Prevedello: Curitiba, Brazil, 2015; pp. 1–474. ISBN 978-8590757429. [Google Scholar]
- Dexter, A.R.; Bird, N.R.A. Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil Tillage Res. 2001, 57, 203–212. [Google Scholar] [CrossRef]
- Libardi, P.L. Dinâmica da Água no Sol, 2nd ed.; Editora da Universidade de São Paulo: São Paulo, Brazil, 2012; ISBN 978-8531417054. [Google Scholar]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Mangiafico, S.S. Summary and Analysis of Extension Program Evaluation in R, Version 1.18.1. 2016. Available online: https://rcompanion.org/handbook (accessed on 10 January 2021).
- Horikoshi, M.; Tang, Y. ggfortify: Data Visualization Tools for Statistical Analysis Results. 2016. Available online: https://CRAN.R-project.org/package=ggfortify (accessed on 28 January 2021).
- Viana, J.L.; de Souza, J.L.M.; Hoshide, A.K.; de Oliveira, R.A.; de Abreu, D.C.; da Silva, W.M. Estimating Sugarcane Yield in a Subtropical Climate Using Climatic Variables and Soil Water Storage. Sustainability 2023, 15, 4360. [Google Scholar] [CrossRef]
- Parahyba, R.B.V.; Almeida, B.G.; Rolim Neto, F.C.; Araújo, M.S.B. Condutividade hidráulica dos solos arenosos da região semiárida da Bacia sedimentar do Tucano no município de Glória, Bahia, Brasil. In Proceedings of the III Reunião Nordestina de Ciência do Solo: Integração e Uso do Conhecimento para Uma Agricultura Sustentável no Nordeste, Aracajú, Brazil, 12–15 September 2016; Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1058873/condutividade-hidraulica-dos-solos-arenosos-da-regiao-semiarida-da-bacia-sedimentar-do-tucano-no-municipio-de-gloria-bahia-brasil (accessed on 24 April 2023).
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Souza, J.L.M.; Gerstemberger, E.; Gurski, B.C.; Oliveira, R.A. Adjustment of water-crop production models for ratoon sugarcane. Pesqui. Agropecu. Trop. 2015, 45, 426–433. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Soil Science Division Staff. Soil Survey Manual, USDA Handbook 18; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; Government Printing Office: Washington, DC, USA, 2017; pp. 1–603. [Google Scholar]
- Fracaro, F.; Lamb, C.R.C.; Straaburge, A.S.; Lattuada, D.S.; Buttow, M.V.; Monttero, C.R.S.; Silva, S.D.A. Avaliação agronômica de genótipos de cana-de-açúcar em Via-mão/RS. In Simpósio Estadual de Aroenergia; Reunião Técnica de Agroenergia—RS, 5; Encontro de Energias Renováveis na Agricultura Familiar, 2. Pelotas; Embrapa Clima Temperado: Pelotas, Brazil, 2014; pp. 1–4. Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1005818/avaliacao-agronomica-de-genotipos-de-cana-de-acucar-em-viamaors (accessed on 4 April 2023).
- CONAB (Companhia Nacional de Abastecimento). Acompanhamento da Safra Bra-Sileira de Cana-de-Açúcar, Safra 2022/23–Terceiro Levantamento, Brasília, Distrito Federal, Brazil. Available online: https://www.conab.gov.br/info-agro/safras/cana (accessed on 4 April 2023).
- Fidalski, J. Disponibilidade de água e comportamento físico dos solos da Formação Arenito Caiuá. In V Reunião Paranaense de Ciência do Solo e II Simpósio Brasileiro de Solos Arenosos; Maringá, Livro Eletrônico; SBCS/NEPAR: Curitiba, Brazil; IAPAR: Londrina, Brazil, 2017. [Google Scholar]
- Ortiz, P.F.S.; Rolim, M.M.; Lima, J.L.P.; Pedrosa, E.M.R.; Dantas, M.S.M.; Tavares, U.E. Physical qualities of an Ultisol under sugarcane and Atlantic forest in Brazil. Geoderma Reg. 2017, 11, 62–70. [Google Scholar] [CrossRef]
- Cabral, M.C.M.; Carvalho, L.A.; Novak, E.; Schicarelli, C.D.S. Sistema de preparo de solo em área de reforma de canavial e as alterações físicas do solo. Rev. Agrar. 2015, 8, 376–386. [Google Scholar]
- Arcoverde, S.N.S.; Souza, C.M.A.; Suarez, A.H.T.; Colman, B.A.; Nagahama, H.J. Atributos físicos do solo cultivado com cana-de-açúcar em função do preparo e época de amostragem. Rev. Agric. Neotrop. 2019, 6, 41–47. [Google Scholar] [CrossRef]
- Jadczyszyn, J.; Niedzwiecki, J. Relation of Saturated Hydraulic Conductivity to Soil Losses. Pol. J. Environ. Stud. 2005, 14, 431–435. [Google Scholar]
- Cherubin, M.R.; Karlen, D.L.; Franco, A.L.; Tormena, C.A.; Cerri, C.E.; Davies, C.A.; Cerri, C.C. Soil physical quality response to sugarcane expansion in Brazil. Geoderma 2016, 267, 156–168. [Google Scholar] [CrossRef]
- Silva, P.L.F.; Oliveira, F.P.; Borba, J.O.M.; Tavares, D.D.; do Amaral, A.J.; Martins, A.F. Solos arenosos para Sistemas de integração lavoura-pecuária-floresta em Arez, Rio Grande do Norte. Rev. Verde de Agroecol. Desenvolv. Sust. 2018, 13, 581–589. [Google Scholar] [CrossRef]
- Libardi, P.L. Água no solo. In Física do Solo, 1st ed.; de Jong van Lier, Q., Ed.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2010; pp. 101–152. [Google Scholar]
- Giasson, E. Introdução ao estudo dos solos. In Fundamentos de Química do Solo, 6th ed.; Meurer, E.J., Ed.; Evangraf Publishing, Ltd.: Porto Alegre, Brazil, 2017; pp. 11–28. [Google Scholar]
- Costa, A.; Albuquerque, J.A.; Costa, A.; Pértile, P.; Silva, F.R. Water retention and availability in soils of the state of Santa Catarina-Brazil: Effect of textural classes, soil classes and lithology. Rev. Bras. Ciênc. Solo 2013, 37, 1535–1548. [Google Scholar] [CrossRef]
- Lopes, I.M.; Ziviani, M.M.; Pinto, L.A.S.; Pinheiro, E.F.M.; Weber, H.; Pereira, M.G.; Lima, E.; Campos, D.V.B. Agregação e distribuição do carbono nos agregados de Latossolo Vermelho sob diferentes níveis de palhada da cana-de-açúcar em Paranavaí (PR). Rev. Virtual Quím. 2017, 9, 1985–1995. [Google Scholar] [CrossRef]
- Auler, A.C.; Romaniw, J.; Sá, J.C.M.; Pires, L.F.; Hartman, D.C.; Inagaki, T.M.; Rosa, J.A. Improvement on soil structure and water retention after application of industrial organic waste as a crop fertilizer. J. Soils Sedim. 2020, 20, 2771–2783. [Google Scholar] [CrossRef]
- Wiecheteck, L.H.; Giarola, N.F.B.; Lima, R.P.; Tormena, C.A.; Torres, L.C.; Paula, A.L. Comparing the classical permanent wilting point concept of soil (−15,000 hPa) to biological wilting of wheat and barley plants under contrasting soil textures. Agric. Water Manag. 2020, 230, 105965. [Google Scholar] [CrossRef]
- Torres, L.C.; Keller, T.; Lima, R.P.; Tormena, C.A.; Lima, H.V.; Giarola, N.F.B. Impacts of soil type and crop species on permanent wilting of plants. Geoderma 2020, 384, 114798. [Google Scholar] [CrossRef]
- Andrade, R.S.; Stone, L.F. Estimativa da umidade na capacidade de campo em solos sob Cerrado. Rev. Bras. Eng. Agríc. Ambient. 2021, 15, 111–116. [Google Scholar] [CrossRef]
- Silva, A.P.; Tormena, C.A.; de Dias Júnior, M.S.; Imhoff, S.; Klein, V.A. Indicadores da qualidade física do solo. In Física do Solo, 1st ed.; de Jong van Lier, Q., Ed.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2010; pp. 241–281. [Google Scholar]
- Helbel Junior, C.; Fidalski, J. Parâmetros técnicos sobre o armazenamento de água no solo na Região Noroeste do Paraná. In V Reunião Paranaense de Ciência do Solo e II Simpósio Brasileiro de Solos Arenosos. Livro Eletrônico; SBCS/NEPAR: Curitiba, Brazil; IAPAR: Londrina, Brazil, 2017. [Google Scholar]
- Gurski, B.C.; Souza, J.L.M.; Gerstemberg, E.; Oliveira, R.A. Water requirements and restrictions to sugarcane in cane plants and ratoon cane cycles in Southern Brazil. Acta Agron. 2020, 69, 136–144. [Google Scholar] [CrossRef]
- Araújo, R.M. Influência das Condições Climáticas no Crescimento e Desenvolvimento da Cana-de-Açúcar na Região sul do Brasil. Ph.D. Thesis, Programa de Pós-Graduação em Agronomia (Produção Vegetal), Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, Brazil, 2019. [Google Scholar]
- Amorim, M.T.A.; Silverio, N.E.Q.; Bellinaso, H.; Gómez, A.M.R.; Greschuk, L.T.; Campos, L.R.; Demattê, J.A.M. Impact of soil types on sugarcane development monitored over time by remote sensing. Precis. Agric. 2022, 23, 1532–1552. [Google Scholar] [CrossRef]
- Liu, Z.L.; Wang, C.; Zhang, L.; Wang, X.; Huang, G.; Xu, X.; Steenhuis, T.S. A field-validated surrogate crop model for predicting root-zone moisture and salt content in regions with shallow groundwater. Hydrol. Earth Syst. Sci. 2020, 24, 4213–4237. [Google Scholar] [CrossRef]
- Perin, V.; Sentelhas, P.C.; Dias, H.B.; Santos, E.A. Sugarcane irrigation potential in Northwestern São Paulo, Brazil, by integrating Agrometeorological and GIS tools. Agric. Water Manag. 2019, 220, 50–58. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C.; Inman-Bamber, G.; Everingham, Y. Sugarcane yield future scenarios in Brazil as projected by the APSIM-Sugar model. Ind. Crops Prod. 2021, 171, 113918. [Google Scholar] [CrossRef]
- Xu, C.; Mao, J.; Li, X.; Burner, D.M.; Li, C.; Hussin, S.H.H.; Lin, X.; Liu, H.; Zhao, P.; Lu, X.; et al. Evaluating of drought tolerance in sugarcane genotypes using the membership function value of drought tolerance (MFVD). Euphytica 2023, 219, 37. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Sugarcane yield gap analysis in Brazil—A multi-model approach for determining magnitudes and causes. Sci. Total Environ. 2018, 637–638, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- de Castro Mattos, E.; Tomé, T.C.H.; Menillo, R.B.; Marin, F.R. Simulating of Future Climate Conditions on the Effect of Irrigation on Sugarcane Yield in Southern Brazil. Braz. J. Agric. 2021, 96, 446–470. [Google Scholar] [CrossRef]
- Patino, M.T.O.; de Amorim, F.R.; de Andrade, A.G.; Alam, M.J.; Solfa, F.D.G. Costs of Agronomic Practices: Profitability at Different Scales of Sugarcane Production in Brazil. Int. J. Bus. Adm. 2022, 13, 32–43. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Drying-off Periods for Irrigated Sugarcane to Maximize Sucrose Yields under Brazilian Conditions. Irrig. Drain. 2018, 67, 527–537. [Google Scholar] [CrossRef]
- da Luz, F.B.; Carvalho, M.L.; de Borba, D.A.; Schiebelbein, B.E.; de Lima, R.P.; Cherubin, M.R. Linking Soil Water Changes to Soil Physical Quality in Sugarcane Expansion Areas in Brazil. Water 2020, 12, 3156. [Google Scholar] [CrossRef]
- Dias, H.B.; Inman-Bamber, G. Sugarcane: Contribution of Process-Based Models for Understanding and Mitigating Impacts of Climate Variability and Change on Production. In Systems Modeling; Springer Nature: Singapore, 2020; Chapter 8; pp. 217–260. [Google Scholar] [CrossRef]
Soil Layer | Sand Classification 1 | Silt | Clay | Soil Density 1 | Soil Porosity 1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Coarse | Fine | Particle | Bulk | Total | Macro | Micro | |||
m | g/kg | kg/m3 | m3/m3 | |||||||
0.00–0.20 | 838 a | 770 a | 121 b | 67.6 a | 94.8 b | 2710 a | 1580 a | 0.331 a | 0.158 a | 0.173 b |
0.20–0.40 | 793 b | 685 b | 135 b | 64.3 b | 143 a | 2722 a | 1690 a | 0.316 a | 0.0906 b | 0.225 a |
0.40–0.60 | 785 b | 627 b | 167 a | 65.4 b | 150 a | 2703 a | 1650 a | 0.329 a | 0.0883 b | 0.241 a |
Average | 805 | 694 | 140 | 65.8 | 129 | 2712 | 1640 | 0.325 | 0.112 | 0.213 |
Var 2 | 571 | 3620 | 402 | 1.99 | 633 | 2216.8 | 10,600 | <0.001 | 0.00167 | 0.00107 |
Stdev 3 | 23.9 | 60.2 | 20.1 | 1.41 | 25.2 | 47.08 | 103 | 0.0205 | 0.0409 | 0.0326 |
CV 4 | 2.97% | 8.67% | 14.2% | 2.15% | 19.5% | 1.74% | 6.27% | 6.31% | 36.4% | 15.3% |
Soil Layer Depth (Meter) | Parameter 1 | Estimated Value | Error | t-Statistic | Significance (p-Value) | 95% Confidence Interval (CI95%) | Goodness of Fit (R2) |
---|---|---|---|---|---|---|---|
0 to 0.2 | (m3/m3) | 0.331 | 0.00517 | 63.9 | <0.001 | [0.321; 0.341] | 0.982 |
(m3/m3) | 0.0737 | 0.00283 | 26.0 | <0.001 | [0.0681; 0.0792] | ||
α (1/kPa) | 0.265 | 0.0275 | 9.63 | <0.001 | [0.211; 0.318] | ||
n (ad.) | 3.92 | 0.331 | 11.8 | <0.001 | [3.27; 4.57] | ||
0.2 to 0.4 | (m3/m3) | 0.316 | 0.008 | 39.1 | <0.001 | [0.300; 0.332] | 0.932 |
(m3/m3) | 0.120 | 0.004 | 26.8 | <0.001 | [0.111; 0.128] | ||
α (1/kPa) | 0.215 | 0.0282 | 7.6 | <0.001 | [0.159; 0.270] | ||
n (ad.) | 3.90 | 0.507 | 7.68 | <0.001 | [2.90; 4.89] | ||
0.4 to 0.6 | (m3/m3) | 0.329 | 0.00558 | 59.0 | <0.001 | [0.318; 0.340] | 0.969 |
(m3/m3) | 0.126 | 0.00311 | 40.4 | <0.001 | [0.120; 0.132] | ||
α (1/kPa) | 0.211 | 0.0183 | 11.6 | <0.001 | [0.175; 0.247] | ||
n (ad.) | 3.82 | 0.318 | 12.0 | <0.001 | [3.20; 4.45] |
Soil Layer Depth | Root Mean Square Error (RMSE) | Normalized RMSE | RMSE/Stdev (RSR) | Willmott’s Agreement Index (d) |
---|---|---|---|---|
(m) | (m3/m3) | (%) | (ad.) | (ad.) |
0 to 0.2 | 0.0121 | 13.4 | 0.134 | 0.995 |
0.2 to 0.4 | 0.0188 | 25.8 | 0.258 | 0.982 |
0.4 to 0.6 | 0.0130 | 17.5 | 0.175 | 0.992 |
Soil Layer | Percentage Ratio (p) of Saturated Hydraulic Conductivity (KS) | |||||||
---|---|---|---|---|---|---|---|---|
Depth (m) | 0.005 | 0.010 | 0.015 | 0.020 | 0.025 | 0.030 | 0.040 | 0.050 |
Estimated actual moisture at field capacity (m3/m3) 1 | ||||||||
0 to 0.2 | 0.157 c | 0.172 c | 0.182 b | 0.190 b | 0.196 b | 0.202 b | 0.211 b | 0.218 a |
0.2 to 0.4 | 0.184 ab | 0.195 ab | 0.203 ab | 0.209 ab | 0.214 ab | 0.218 ab | 0.225 ab | 0.230 a |
0.4 to 0.6 | 0.192 a | 0.204 a | 0.212 a | 0.218 a | 0.223 a | 0.228 a | 0.235 a | 0.240 a |
Average | 0.178 | 0.191 | 0.199 | 0.206 | 0.211 | 0.216 | 0.223 | 0.230 |
Var | 0.000404 | 0.000366 | 0.000346 | 0.000332 | 0.000323 | 0.000315 | 0.000306 | 0.000300 |
Stdev | 0.0201 | 0.0191 | 0.0186 | 0.0182 | 0.0180 | 0.0178 | 0.0175 | 0.0173 |
CV | 11.3 | 10.1 | 9.34 | 8.87 | 8.51 | 8.24 | 7.83 | 7.54 |
Root mean square error/standard deviation (RSR) (dimensionless) | ||||||||
0 to 0.2 | 1.96 | 1.57 | 1.78 | 2.15 | 2.52 | 2.87 | 3.49 | 4.02 |
0.2 to 0.4 | 2.41 | 1.88 | 1.57 | 1.37 | 1.23 | 1.15 | 1.10 | 1.15 |
0.4 to 0.6 | 5.20 | 4.00 | 3.23 | 2.66 | 2.23 | 1.89 | 1.47 | 1.35 |
Matric potential at field capacity ( in kPa) 1 | ||||||||
0 to 0.2 | 6.55 c | 5.93 c | 5.59 c | 5.35 c | 5.16 b | 5.01 b | 4.78 b | 4.60 b |
0.2 to 0.4 | 8.16 ab | 7.38 ab | 6.95 ab | 6.64 ab | 6.41 ab | 6.23 ab | 5.94 ab | 5.71 ab |
0.4 to 0.6 | 8.56 a | 7.73 a | 7.26 a | 6.94 a | 6.69 a | 6.49 a | 6.18 a | 5.94 a |
Average | 7.76 | 7.01 | 6.60 | 6.31 | 6.09 | 5.91 | 5.63 | 5.42 |
Var | 1.48 | 1.30 | 1.21 | 1.15 | 1.10 | 1.07 | 1.01 | 0.969 |
Stdev | 1.22 | 1.14 | 1.10 | 1.07 | 1.05 | 1.03 | 1.01 | 0.985 |
CV | 15.7 | 16.3 | 16.7 | 17.0 | 17.3 | 17.5 | 17.9 | 18.2 |
Time at field capacity ( in hours) 1 | ||||||||
0 to 0.2 | 0.604 c | 0.355 c | 0.259 c | 0.207 c | 0.174 c | 0.151 c | 0.120 c | 0.101 c |
0.2 to 0.4 | 1.85 b | 1.08 b | 0.791 b | 0.633 b | 0.532 b | 0.461 b | 0.367 b | 0.307 b |
0.4 to 0.6 | 2.84 a | 1.67 a | 1.22 a | 0.975 a | 0.819 a | 0.710 a | 0.566 a | 0.473 a |
Average | 1.76 | 1.04 | 0.757 | 0.605 | 0.508 | 0.441 | 0.351 | 0.294 |
Var | 0.953 | 0.328 | 0.175 | 0.112 | 0.079 | 0.060 | 0.038 | 0.027 |
Stdev | 0.976 | 0.573 | 0.419 | 0.335 | 0.281 | 0.244 | 0.194 | 0.163 |
CV | 55.3 | 55.3 | 55.3 | 55.3 | 55.4 | 55.4 | 55.4 | 55.4 |
Soil Layer Depth (Meter) | Estimated Moisture | Matric Potential | RSR (Dimensionless) 5 |
---|---|---|---|
0 to 0.2 | 0.223 b | 4.48 b | 4.29 |
0.2 to 0.4 | 0.234 ab | 5.37 ab | 1.08 |
0.4 to 0.6 | 0.244 a | 5.79 a | 1.37 |
Average | 0.234 | 5.21 | - |
Var 2 | 0.000229 | 0.879 | - |
Stdev 3 | 0.0151 | 0.938 | - |
CV 4 | 6.48 | 18.0 | - |
Soil Layer | θCC 1 | θPMP 1 | AWC1 1 | AWC2 1 | EAW1 1 | EAW2 1 | ||
---|---|---|---|---|---|---|---|---|
Depth (m) | m3/m3 | mm | ||||||
0.00–0.20 | 0.173 b | 0.218 a | 0.0650 b | 0.0735 b | 21.6 a | 30.6 a | 19.9 a | 28.9 a |
0.20–0.40 | 0.225 a | 0.230 a | 0.112 a | 0.119 a | 22.7 a | 23.6 b | 21.2 a | 22.1 b |
0.40–0.60 | 0.241 a | 0.240 a | 0.118 a | 0.126 a | 24.5 a | 24.4 b | 22.9 a | 22.9 b |
Average | 0.213 | 0.229 | 0.0983 | 0.106 | 22.9 | 26.2 | 21.3 | 24.6 |
Var 2 | 0.00107 | 0.000300 | 0.000804 | 0.000753 | 9.34 | 21.2 | 7.91 | 20.7 |
Stdev 3 | 0.0326 | 0.0173 | 0.0283 | 0.0274 | 3.06 | 4.61 | 2.81 | 4.55 |
CV 4 | 15.3 | 7.54 | 28.8 | 25.8 | 13.3 | 17.6 | 13.2 | 18.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, J.L.; de Souza, J.L.M.; Auler, A.C.; de Oliveira, R.A.; Araújo, R.M.; Hoshide, A.K.; de Abreu, D.C.; da Silva, W.M. Water Dynamics and Hydraulic Functions in Sandy Soils: Limitations to Sugarcane Cultivation in Southern Brazil. Sustainability 2023, 15, 7456. https://doi.org/10.3390/su15097456
Viana JL, de Souza JLM, Auler AC, de Oliveira RA, Araújo RM, Hoshide AK, de Abreu DC, da Silva WM. Water Dynamics and Hydraulic Functions in Sandy Soils: Limitations to Sugarcane Cultivation in Southern Brazil. Sustainability. 2023; 15(9):7456. https://doi.org/10.3390/su15097456
Chicago/Turabian StyleViana, Jessica Lima, Jorge Luiz Moretti de Souza, André Carlos Auler, Ricardo Augusto de Oliveira, Renã Moreira Araújo, Aaron Kinyu Hoshide, Daniel Carneiro de Abreu, and Wininton Mendes da Silva. 2023. "Water Dynamics and Hydraulic Functions in Sandy Soils: Limitations to Sugarcane Cultivation in Southern Brazil" Sustainability 15, no. 9: 7456. https://doi.org/10.3390/su15097456
APA StyleViana, J. L., de Souza, J. L. M., Auler, A. C., de Oliveira, R. A., Araújo, R. M., Hoshide, A. K., de Abreu, D. C., & da Silva, W. M. (2023). Water Dynamics and Hydraulic Functions in Sandy Soils: Limitations to Sugarcane Cultivation in Southern Brazil. Sustainability, 15(9), 7456. https://doi.org/10.3390/su15097456