Relative Humidity, Soil Phosphorus, and Stand Structure Diversity Determine Aboveground Biomass along the Elevation Gradient in Various Forest Ecosystems of Pakistan
Abstract
:1. Introduction
Hypothesized Model
2. Materials and Methods
2.1. Study Area
2.2. Forest Inventory
2.3. Statistical Analysis Predictor and Predicted Variable
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Effect of Relative Humidity and Soil on AGB in Individual Forest Type
4.2. Direct and Indirect Effects in Single and Multi-Species Forest Type
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; van der Sande, M.T.; Arets, E.J.; Ascarrunz, N.; Enquist, B.J.; Finegan, B.; Licona, J.C.; Martínez-Ramos, M.; Mazzei, L.; Meave, J.A. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Ecol. Ecol. Biogeogr. 2017, 26, 1423–1434. [Google Scholar] [CrossRef]
- Wang, W.; Lei, X.; Ma, Z.; Kneeshaw, D.D.; Peng, C. Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. For. Sci. 2011, 57, 506–515. [Google Scholar]
- ur Rahman, A.; Khan, S.M.; Ahmad, Z.; Alamri, S.; Hashem, M.; Ilyas, M.; Aksoy, A.; Dülgeroğlu, C.; Khan, G.; Ali, S. -Impact of multiple environmental factors on species abundance in various forest layers using an integrative modeling approach. Glob. Ecol. Conserv. 2021, 29, e01712. [Google Scholar] [CrossRef]
- Ahmad, Z.; Khan, S.M.; Abd_Allah, E.F.; Alqarawi, A.A.; Hashem, A. Weed species composition and distribution pattern in the maize crop under the influence of edaphic factors and farming practices: A case study from Mardan, Pakistan. Saudi J. Biol. Sci. 2016, 23, 741–748. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Zhu, D.; Wang, W.; Liu, H.; Li, J.; Shi, N.; Ma, L.; Fu, S. Fine root biomass and morphology in a temperate forest are influenced more by the nitrogen treatment approach than the rate. Ecol. Indic. 2021, 130, 108031. [Google Scholar] [CrossRef]
- Yan, Y.; Jarvie, S.; Liu, Q.; Zhang, Q. Effects of fragmentation on grassland plant diversity depend on the habitat specialization of species. Biol. Conserv. 2022, 275, 109773. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Zhang, A.; Song, B.; Hill, R.L. Effect of grazing exclusion on nitrous oxide emissions during freeze-thaw cycles in a typical steppe of Inner Mongolia. Agric. Ecosyst. Environ. 2021, 307, 107217. [Google Scholar] [CrossRef]
- Currie, D.J.; Mittelbach, G.G.; Cornell, H.V.; Field, R.; Guégan, J.F.; Hawkins, B.A.; Kaufman, D.M.; Kerr, J.T.; Oberdorff, T.; O’Brien, E. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 2004, 7, 1121–1134. [Google Scholar] [CrossRef]
- Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef]
- O’Brien, E.M. Biological relativity to water–energy dynamics. J. Biogeogr. 2006, 33, 1868–1888. [Google Scholar] [CrossRef]
- Gillman, L.N.; Wright, S.D. Species richness and evolutionary speed: The influence of temperature, water and area. J. Biogeogr. 2014, 41, 39–51. [Google Scholar] [CrossRef]
- Poorter, L.; van der Sande, M.T.; Thompson, J.; Arets, E.J.; Alarcón, A.; Álvarez-Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 2015, 24, 1314–1328. [Google Scholar] [CrossRef]
- Ali, A.; Yan, E.-R. Consequences of phylogenetic conservativeness and functional trait similarity on aboveground biomass vary across subtropical forest strata. For. Ecol. Manag. 2018, 429, 28–35. [Google Scholar] [CrossRef]
- Paquette, A.; Messier, C. The effect of biodiversity on tree productivity: From temperate to boreal forests. Glob. Ecol. Biogeogr. 2011, 20, 170–180. [Google Scholar] [CrossRef]
- Ali, A.; Sanaei, A.; Li, M.; Nalivan, O.A.; Pour, M.J.; Valipour, A.; Karami, J.; Aminpour, M.; Kaboli, H.; Askari, Y. Big-trees–Energy mechanism underlies forest diversity and aboveground biomass. For. Ecol. Manag. 2020, 461, 117968. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.M.; Ahmad, Z.; Ullah, Z.; Iqbal, M. Floristic composition and ecological gradient analyses of the Liakot Forests in the Kalam region of District Swat, Pakistan. J. For. Res. 2019, 30, 1407–1416. [Google Scholar] [CrossRef]
- Li, J.; Charles, L.S.; Yang, Z.; Du, G.; Fu, S. Differential mechanisms drive species loss under artificial shade and fertilization in the alpine meadow of the Tibetan Plateau. Front. Plant Sci. 2022, 13, 63. [Google Scholar] [CrossRef]
- Ahmad, Z.; Khan, S.M.; Afza, R.; Ullah, A.; Zeb, S.A.; Issayeva, K.S.; Bekzatqyzy, I.S. Angiosperms distribution under the influence of microclimatic factors across a polluted ecosystem. J. Hazard. Mater. Adv. 2023, 9, 100223. [Google Scholar] [CrossRef]
- Ali, A.; Yan, E.-R. Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest. Ecol. Indic. 2017, 83, 158–168. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Pokharel, P.; Liu, L.; Qiao, J.; Wang, Y.; An, S.; Chang, S.X. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate. Soil Biol. Biochem. 2022, 174, 108814. [Google Scholar] [CrossRef]
- Yang, Y.; Dou, Y.; Wang, B.; Xue, Z.; Wang, Y.; An, S.; Chang, S.X. Deciphering factors driving soil microbial life-history strategies in restored grasslands. iMeta 2023, 2, e66. [Google Scholar] [CrossRef]
- Toledo, M.; Peña-Claros, M.; Bongers, F.; Alarcón, A.; Balcázar, J.; Chuviña, J.; Leaño, C.; Licona, J.C.; Poorter, L. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. J. Ecol. 2012, 100, 253–263. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol. Lett. 2007, 10, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Szwagrzyk, J.; Gazda, A. Above-ground standing biomass and tree species diversity in natural stands of Central Europe. J. Veg. Sci. 2007, 18, 555–562. [Google Scholar] [CrossRef]
- Ali, A.; Yan, E.-R.; Chen, H.Y.; Chang, S.X.; Zhao, Y.-T.; Yang, X.-D.; Xu, M.-S. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 2016, 13, 4627–4635. [Google Scholar] [CrossRef]
- Ali, A.; Yan, E.-R. The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. For. Ecol. Manag. 2017, 401, 125–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 2015, 103, 1245–1252. [Google Scholar] [CrossRef]
- Zhao, L.; Du, M.; Du, W.; Guo, J.; Liao, Z.; Kang, X.; Liu, Q. Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park. Int. J. Environ. Res. Public Health 2022, 19, 9887. [Google Scholar] [CrossRef]
- Dănescu, A.; Albrecht, A.T.; Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 2016, 182, 319–333. [Google Scholar] [CrossRef]
- Ali, A.; Mattsson, E. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka. Sci. Total Environ. 2017, 575, 6–11. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, S.; Ali, A.; Gazol, A.; Ruiz-Benito, P.; Wang, X.; Lin, F.; Ye, J.; Hao, Z.; Loreau, M. Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Ann. For. Sci. 2018, 75, 67. [Google Scholar] [CrossRef]
- Lefcheck, J.S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Enright, N.; Miller, B.; Akhter, R. Desert vegetation and vegetation-environment relationships in Kirthar National Park, Sindh, Pakistan. J. Arid. Environ. 2005, 61, 397–418. [Google Scholar] [CrossRef]
- Masud, R. Master Plan for Margalla Hills National Park, Islamabad, Pakistan 1979 to 1984; National Council for Conservation of Wildlife: Islamabad, Pakistan, 1977; Available online: https://portals.iucn.org/library/node/19127 (accessed on 24 February 2023).
- Hazrat, A.; Shah, J.; Nisar, M. Medicinal plants of Sheringal Valley, Dir Upper, KPK, Pakistan. FUUAST J. Biol. 2011, 1, 131–133. [Google Scholar]
- Khan, A.N. Impact of landslide hazards on housing and related socio-economic characteristics in Murree (Pakistan). Pak. Econ. Soc. Rev. 2001, 1, 57–74. [Google Scholar]
- Urooj, R. Status, distribution and dynamics of Chilgoza Pine (Pinus gerardiana Wall) Forest in Suleiman Mountain Range, Pakistan. Middle East J. Bus. 2019, 14, 17–19. [Google Scholar] [CrossRef]
- Khan, W.; Khan, S.M.; Ahmad, H.; Ahmad, Z.; Page, S. Vegetation mapping and multivariate approach to indicator species of a forest ecosystem: A case study from the Thandiani sub Forests Division (TsFD) in the Western Himalayas. Ecol. Indic. 2016, 71, 336–351. [Google Scholar] [CrossRef]
- Ahmad, Z.; Khan, S.M.; Ali, M.I.; Fatima, N.; Ali, S. Pollution indicandum and marble waste polluted ecosystem; role of selected indicator plants in phytoremediation and determination of pollution zones. J. Clean. Prod. 2019, 236, 117709. [Google Scholar] [CrossRef]
- Staudhammer, C.L.; LeMay, V.M. Introduction and evaluation of possible indices of stand structural diversity. Can. J. For. Res. 2001, 31, 1105–1115. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, R.H. Handbook of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2012. [Google Scholar]
- Ullah, F.; Gilani, H.; Sanaei, A.; Hussain, K.; Ali, A. Stand structure determines aboveground biomass across temperate forest types and species mixture along a local-scale elevational gradient. For. Ecol. Manag. 2021, 486, 118984. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Kerkhoff, A.J.; Enquist, B.J. Drivers of terrestrial plant production across broad geographical gradients. Glob. Ecol. Biogeogr. 2018, 27, 166–174. [Google Scholar] [CrossRef]
- Ali, A. Forest stand structure and functioning: Current knowledge and future challenges. Ecol. Indic. 2019, 98, 665–677. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Cheng, D.; Kerkhoff, A.J.; Enquist, B.J. Convergence of terrestrial plant production across global climate gradients. Nature 2014, 512, 39–43. [Google Scholar] [CrossRef]
- Leuschner, C.; Moser, G.; Bertsch, C.; Röderstein, M.; Hertel, D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 2007, 8, 219–230. [Google Scholar] [CrossRef]
- Moser, G.; Hertel, D.; Leuschner, C. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: A transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 2007, 10, 924–935. [Google Scholar] [CrossRef]
- Raich, J.W.; Russell, A.E.; Vitousek, P.M. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai ‘i. Ecology 1997, 78, 707–721. [Google Scholar]
- Kitayama, K.; Aiba, S.I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J. Ecol. 2002, 90, 37–51. [Google Scholar] [CrossRef]
- Grubb, P. Control of forest growth and distribution on wet tropical mountains: With special reference to mineral nutrition. Annu. Rev. Ecol. Syst. 1977, 8, 83–107. [Google Scholar] [CrossRef]
- Tanner, E.; Vitousek, P.M.; Cuevas, E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 1998, 79, 10–22. [Google Scholar] [CrossRef]
- Ding, Y.; Zang, R. Determinants of aboveground biomass in forests across three climatic zones in China. For. Ecol. Manag. 2021, 482, 118805. [Google Scholar] [CrossRef]
- van der Sande, M.T.; Arets, E.J.; Peña-Claros, M.; Hoosbeek, M.R.; Cáceres-Siani, Y.; van der Hout, P.; Poorter, L. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. 2018, 32, 461–474. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R.; Taylor, P.; Alvarez-Clare, S.; Bustamante, M.M.; Chuyong, G.; Dobrowski, S.Z.; Grierson, P.; Harms, K.E.; Houlton, B.Z. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis. Ecol. Lett. 2011, 14, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Culmsee, H.; Leuschner, C.; Moser, G.; Pitopang, R. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J. Biogeogr. 2010, 37, 960–974. [Google Scholar] [CrossRef]
- Sundqvist, M.K.; Sanders, N.J.; Wardle, D.A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 261–280. [Google Scholar] [CrossRef]
- Waide, R.B.; Zimmerman, J.K.; Scatena, F. Controls of primary productivity: Lessons from the Luquillo Mountains in Puerto Rico. Ecology 1998, 79, 31–37. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Y.N.; Sun, Y.; Wang, H.; Gao, Y.; Li, S.; Guo, L.; Gao, L. External sodium acetate improved Cr (VI) stabilization in a Cr-spiked soil during chemical-microbial reduction processes: Insights into Cr (VI) reduction performance, microbial community and metabolic functions. Ecotoxicol. Environ. Saf. 2023, 251, 114566. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, S.M.; Ahmad, Z.; Hussain, M.; Shah, S.N.; Kamran, S.; Manan, F.; Haq, Z.U.; Ullah, S. Vegetation classification of the margalla foothills, islamabad under the influence of edaphic factors and anthropogenic activities using modern ecological tools. Pak. J. Bot. 2021, 53, 1831–1843. [Google Scholar] [CrossRef]
- Galicia, L.; López-Blanco, J.; Zarco-Arista, A.; Filips, V.; Garcıa-Oliva, F. The relationship between solar radiation interception and soil water content in a tropical deciduous forest in Mexico. Catena 1999, 36, 153–164. [Google Scholar] [CrossRef]
- Chu, C.; Lutz, J.A.; Král, K.; Vrška, T.; Yin, X.; Myers, J.A.; Abiem, I.; Alonso, A.; Bourg, N.; Burslem, D.F. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 2019, 22, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.; Joly, C.A.; Martinelli, L.A. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For. Ecol. Manag. 2010, 260, 679–691. [Google Scholar] [CrossRef]
- Grubb, P.J. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biol. Rev. 1977, 52, 107–145. [Google Scholar] [CrossRef]
- Bruijnzeel, L.; Veneklaas, E.J. Climatic conditions and tropical montane forest productivity: The fog has not lifted yet. Ecology 1998, 79, 3–9. [Google Scholar] [CrossRef]
- Paoli, G.D.; Curran, L.M.; Slik, J. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 2008, 155, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Forrester, D.I. Linking forest growth with stand structure: Tree size inequality, tree growth or resource partitioning and the asymmetry of competition. For. Ecol. Manag. 2019, 447, 139–157. [Google Scholar] [CrossRef]
- Mumshad, M.; Ahmad, I.; Khan, S.M.; Rehman, K.; Islam, M.; Sakhi, S.; Khan, S.U.; Afridi, S.G.; Shams, S.; Azam, S.; et al. Phyto-ecological studies and distribution pattern of plant species and communities of Dhirkot, Azad Jammu and Kashmir, Pakistan. PLoS ONE 2021, 16, e0257493. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.M.; Ahmad, Z.; Ullah, Z.; Afza, R.; Abbas, Z.; Abdullah, A.; Hussain, M. Plant diversity and communities pattern with special emphasis on the indicator species of a dry temperate forest: A case study from Liakot area of the Hindu Kush mountains, Pakistan. Trop. Ecol. 2023, 64, 37–52. [Google Scholar] [CrossRef]
- Ali, S.; Khan, S.M.; Siddiq, Z.; Ahmad, Z.; Ahmad, K.S.; Abdullah, A.; Hashem, A.; Al-Arjani, A.B.; Abd_Allah, E.F. Carbon sequestration potential of reserve forests present in the protected Margalla Hills National Park. J. King Saud Univ. Sci. 2022, 34, 101978. [Google Scholar] [CrossRef]
S/No | Forest Type | Stand Type | Coordinates | Elevation m.a.s.l | Mean Annual Temperature (°C) | Mean Annual Precipitation (mm) | Dominant Species |
---|---|---|---|---|---|---|---|
1 | Sub-tropical thorn Forest | Conserved natural forest | 670 10| to 670 55| E longitudes to 250 13| to 260 12| N latitude | 56–302 | 33.8 | 245.3 | Prosopis glandulosa Torr., Prosopis juliflora (Sw.) DC., Acacia modesta Wall., Ziziphus nummularia (Burm.f.) Wight & Arn., Salvadora oleoides Decne., Combretum molle R.Br. ex G.Don |
2 | Sub-tropical broad-leaved forest | Conserved natural forest | 33,040′–33,044′ N longitude to 33,055′–73,020′ E latitude | 555–1117 | 27.8 | 1572.1 | Acacia modesta Wall., Cassia fistula L., Justicia adhatoda L., Carissa spinarum L., Mallotus philippensis (Lam.) Müll.Arg., Dodonaea viscosa (L.) Jacq., Bauhinia variegata L., Albizia lebbeck (L.) Benth., Celtis australis L. |
3 | Moist temperate mix forest | Old age mix forest | 33°52′ to 33°59′ N and 73°24′ to 73°31′ E | 1249–2892 | 17.8 | 1596.1 | Pinus wallichiana A.B.Jacks., Diospyros virginiana L., Aesculus indica (Wall. ex Cambess.) Hook., Populus alba L., Cedrus deodara (Roxb. ex D.Don) G.Don, Castanea dentata (Marshall) Borkh., Abies pindrow (Royle ex D.Don) Royle, Quercus dilatata A.Kern. |
4 | Dry temperate conifer forest | Old age conifer forest | 350–280 N latitude to 720–200 E longitude | 1040–2566 | 23.4 | 1371.8 | Pinus roxburghii Sarg., Abies pindreow (Royle ex D.Don) Royle, Pinus wallichiana A.B.Jacks., Picea smithiana (Wall.) Boiss., Cedrus deodara (Roxb. ex D.Don) G.Don |
5 | Dry temperate pure Pinus gerardiana forest | Old age pure Pinus gerardiana forest | 310–36 N latitude and 690–59 E longitude | 1841–2282 | 25.9 | 299.0 | Pinus gerardiana Wall. ex D.Don |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Khan, S.M.; Ahmad, Z.; Abdullah, A.; Kazi, N.; Nawaz, I.; Almutairi, K.F.; Avila-Quezada, G.D.; Abd_Allah, E.F. Relative Humidity, Soil Phosphorus, and Stand Structure Diversity Determine Aboveground Biomass along the Elevation Gradient in Various Forest Ecosystems of Pakistan. Sustainability 2023, 15, 7523. https://doi.org/10.3390/su15097523
Ali S, Khan SM, Ahmad Z, Abdullah A, Kazi N, Nawaz I, Almutairi KF, Avila-Quezada GD, Abd_Allah EF. Relative Humidity, Soil Phosphorus, and Stand Structure Diversity Determine Aboveground Biomass along the Elevation Gradient in Various Forest Ecosystems of Pakistan. Sustainability. 2023; 15(9):7523. https://doi.org/10.3390/su15097523
Chicago/Turabian StyleAli, Shahab, Shujaul Mulk Khan, Zeeshan Ahmad, Abdullah Abdullah, Naeemullah Kazi, Ismat Nawaz, Khalid F. Almutairi, Graciela Dolores Avila-Quezada, and Elsayed Fathi Abd_Allah. 2023. "Relative Humidity, Soil Phosphorus, and Stand Structure Diversity Determine Aboveground Biomass along the Elevation Gradient in Various Forest Ecosystems of Pakistan" Sustainability 15, no. 9: 7523. https://doi.org/10.3390/su15097523
APA StyleAli, S., Khan, S. M., Ahmad, Z., Abdullah, A., Kazi, N., Nawaz, I., Almutairi, K. F., Avila-Quezada, G. D., & Abd_Allah, E. F. (2023). Relative Humidity, Soil Phosphorus, and Stand Structure Diversity Determine Aboveground Biomass along the Elevation Gradient in Various Forest Ecosystems of Pakistan. Sustainability, 15(9), 7523. https://doi.org/10.3390/su15097523