Scheduling and Controlling Production in an Internet of Things Environment for Industry 4.0: An Analysis and Systematic Review of Scientific Metrological Data
Abstract
:1. Introduction
1.1. Background Information
1.2. Research Objectives
- Existing research status of JSSC.
- Hotspots and frontiers of research in the JSSC field.
- Research gaps in the JSSC field.
2. Research Method
2.1. Bibliometric Analysis
2.2. Scientometric Analysis
3. Results and Discussion
3.1. Data Acquisition
3.2. Keyword Co-Occurrence Analysis
3.3. Keywords Timeline
3.4. Keyword Burst Analysis
3.5. Author Co-Occurrence Analysis
3.6. Author Co-Citation Network
3.7. Document Co-Citation Network and Clustering
4. Current Research
4.1. Exact Method
4.1.1. Lagrange Relaxation
4.1.2. Branch-and-Bound Method
4.2. Approximate Method
4.2.1. Intelligent Optimization Algorithm
“Simulated Annealing Algorithm” (Individual Inspiration)
Tabu Search (Individual Inspiration)
Genetic Algorithm (Population-Based Algorithm)
Ant Colony Optimization (ACO) Algorithm (Population-Based Algorithm)
Particle Swarm Optimization (PSO)
Differential Evolution Algorithm (Population-Based Algorithm)
4.3. Production Control
4.3.1. Regulated by Orders
Contract-Controlled System
4.3.2. Regulated by Inventory
CONWIP (Constant Work-in-Progress)-SLC System (Pull-Based)
Kanban-SLC System
Periodic-Review System
4.3.3. Flow-Scheduled Systems (FS)
PBC System
MRP System
OPT System
4.3.4. Hybrid Systems
4.4. Integrated Scheduling and Control System
4.4.1. Top-Down Approaches
4.4.2. Bottom-Up Approaches
4.4.3. State-Space Scheduling
5. Discussion and Future Trends
5.1. Overview
5.2. Future Scope
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peraković, D.; Periša, M.; Zorić, P. Challenges and Issues of ICT in Industry 4.0. In Design, Simulation, Manufacturing: The Innovation Exchange; Springer: Berlin, Germany, 2019; pp. 259–269. [Google Scholar]
- Graves, S.C. A Review of Production Scheduling. Oper. Res. 1981, 29, 646–675. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Inf. 2014, 8, 802–823. [Google Scholar] [CrossRef]
- Bakhmat, N.; Kolosiva, O.; Demchenko, O.; Ivashchenko, I.; Strelchuk, V. Application of international scientometric databases in the process of training competitive research and teaching staff: Opportunities of Web of Science (WoS), Scopus, Google Scholar. J. Theor. Appl. Inf. Technol. 2022, 100, 4914–4924. [Google Scholar]
- Yalcinkaya, M.; Singh, V. Patterns and trends in Building Information Modeling (BIM) research: A Latent Semantic Analysis. Autom. Constr. 2015, 59, 68–80. [Google Scholar] [CrossRef]
- Zhong, B.; Wu, H.; Li, H.; Sepasgozar, S.; Luo, H.; He, L. A scientometric analysis and critical review of construction related ontology research. Autom. Constr. 2019, 101, 17–31. [Google Scholar] [CrossRef]
- Martinez, P.; Al-Hussein, M.; Ahmad, R. A scientometric analysis and critical review of computer vision applications for construction. Autom. Constr. 2019, 107, 102947. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Ji, X.; Yun, C.; Wang, M.; Luo, X. The knowledge domain and emerging trends in phytoremediation: A scientometric analysis with CiteSpace. Environ. Sci. Pollut. Res. 2020, 27, 15515–15536. [Google Scholar] [CrossRef]
- Fang, Y. Visualizing the structure and the evolving of digital medicine: A scientometrics review. Scientometrics 2015, 105, 5–21. [Google Scholar] [CrossRef]
- Wang, W.; Lu, C. Visualization analysis of big data research based on Citespace. Soft Comput. 2019, 24, 8173–8186. [Google Scholar] [CrossRef]
- Caldeira, R.H.; Gnanavelbabu, A.; Vaidyanathan, T. An effective backtracking search algorithm for multi-objective flexible job shop scheduling considering new job arrivals and energy consumption. Comput. Ind. Eng. 2020, 149, 106863. [Google Scholar] [CrossRef]
- Satake, T.; Morikawa, K.; Nakamura, N. Neural network approach for minimizing the makespan of the general job-shop. Int. J. Prod. Econ. 1994, 33, 67–74. [Google Scholar] [CrossRef]
- Liu, B.; De Giovanni, P. Green process innovation through Industry 4.0 technologies and supply chain coordination. In Annals of Operations Research; Springer: Berlin, Germany, 2019; pp. 1–36. [Google Scholar]
- Vrchota, J.; Pech, M.; Rolínek, L.; Bednář, J. Sustainability outcomes of green processes in relation to industry 4.0 in manufacturing: Systematic review. Sustainability 2020, 12, 5968. [Google Scholar] [CrossRef]
- De Giovanni, P.; Cariola, A. Process innovation through industry 4.0 technologies, lean practices and green supply chains. Res. Transp. Econ. 2021, 90, 100869. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Tiwari, S.; Petraite, M.; Mubarik, M.; Rasi, R.Z.R.M. How Industry 4.0 technologies and open innovation can improve green innovation performance? Manag. Environ. Qual. Int. J. 2021, 32, 1007–1022. [Google Scholar] [CrossRef]
- Morariu, O.; Morariu, C.; Borangiu, T. Shop-floor resource virtualization layer with private cloud support. J. Intell. Manuf. 2014, 27, 447–462. [Google Scholar] [CrossRef]
- Waschneck, B.; Reichstaller, A.; Belzner, L.; Altenmüller, T.; Bauernhansl, T.; Knapp, A.; Kyek, A. Optimization of global production scheduling with deep reinforcement learning. Procedia CIRP 2018, 72, 1264–1269. [Google Scholar] [CrossRef]
- Masoni, R.; Ferrise, F.; Bordegoni, M.; Gattullo, M.; Uva, A.E.; Fiorentino, M.; Carrabba, E.; Di Donato, M. Supporting remote maintenance in industry 4.0 through augmented reality. Procedia Manuf. 2017, 11, 1296–1302. [Google Scholar] [CrossRef]
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 19869. [Google Scholar] [CrossRef]
- Li, J.; Yang, H. A Research on Development of Construction Industrialization Based on BIM Technology under the Background of Industry 4.0. MATEC Web Conf. 2017, 100, 02046, EDP Sciences. [Google Scholar] [CrossRef]
- Bryndin, E. Directions of development of industry 4.0, digital technology and social economy. Am. J. Inf. Sci. Technol. 2018, 2, 9–17. [Google Scholar] [CrossRef]
- Kalsoom, T.; Ramzan, N.; Ahmed, S.; Ur-Rehman, M. Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0. Sensors 2020, 20, 6783. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, K.P.; Kariya, A.D.; Botchu, R.; Jain, V.K.; Vaishya, R. Significant capabilities of SMART sensor technology and their applications for Industry 4.0 in trauma and orthopaedics. Sens. Int. 2022, 3, 100163. [Google Scholar] [CrossRef]
- Bragança, S.; Costa, E.; Castellucci, I.; Arezes, P.M. A brief overview of the use of collaborative robots in industry 4.0: Human role and safety. In Occupational and Environmental Safety and Health; Springer: Berlin, Germany, 2019; pp. 641–650. [Google Scholar]
- Bahrin, M.A.K.; Othman, M.F.; Azli, N.H.N.; Talib, M.F. Industry 4.0: A review on industrial automation and robotic. J. Teknol. 2016, 78, 137–143. [Google Scholar] [CrossRef]
- Kozlovska, M.; Klosova, D.; Strukova, Z. Impact of Industry 4.0 Platform on the Formation of Construction 4.0 Concept: A Literature Review. Sustainability 2021, 13, 2683. [Google Scholar] [CrossRef]
- Hu, Z.-Z.; Tian, P.-L.; Li, S.-W.; Zhang, J.-P. BIM-based integrated delivery technologies for intelligent MEP management in the operation and maintenance phase. Adv. Eng. Softw. 2018, 115, 1–16. [Google Scholar] [CrossRef]
- Yu, Q.; Li, K.; Luo, H. A BIM-based Dynamic Model for Site Material Supply. Procedia Eng. 2016, 164, 526–533. [Google Scholar] [CrossRef]
- May, K.W.; Kc, C.; Ochoa, J.J.; Gu, N.; Walsh, J.; Smith, R.T.; Thomas, B.H. The Identification, Development, and Evaluation of BIM-ARDM: A BIM-Based AR Defect Management System for Construction Inspections. Buildings 2022, 12, 140. [Google Scholar] [CrossRef]
- Chen, L.; Luo, H. A BIM-based construction quality management model and its applications. Autom. Constr. 2014, 46, 64–73. [Google Scholar] [CrossRef]
- Karimireddy, T.; Zhang, S. Guaranteed timely delivery of control packets for reliable industrial wireless networks in industry 4.0 Era. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), IEEE, Milan, Italy, 4–7 July 2017; pp. 456–461. [Google Scholar] [CrossRef]
- Li, M.; Ming, P.; Xing, D.; Liu, C. A multi-optimization model for the design of hydrogen supply chains. E3S Web Conf. 2020, 194, 02028, EDP Sciences. [Google Scholar] [CrossRef]
- Muñoz, E.; Capón-García, E.; Moreno-Benito, M.; Espuña, A.; Puigjaner, L. Scheduling and control decision-making under an integrated information environment. Comput. Chem. Eng. 2011, 35, 774–786. [Google Scholar] [CrossRef]
- Chen, C. The citespace manual. Coll. Comput. Inform. 2014, 1, 1–84. [Google Scholar]
- Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA Annu. Symp. Proc. AMIA Symp. 2005, 2005, 724–728. [Google Scholar] [PubMed]
- Tao, X.; Wang, F.; Li, X. A Visualized Analysis of Game-Based Learning Research from 2013 to 2017. In Proceedings of the 2018 International Joint Conference on Information, Media and Engineering (ICIME), IEEE, Osaka, Japan, 12–14 December 2018; pp. 192–196. [Google Scholar] [CrossRef]
- Wan, J.; Chen, B.; Imran, M.; Tao, F.; Li, D.; Liu, C.; Ahmad, S. Toward dynamic resources management for IoT-based manufacturing. IEEE Commun. Mag. 2018, 56, 52–59. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, Z.; Xi, L. Preventive maintenance optimization for a multi-component system under changing job shop schedule. Reliab. Eng. Syst. Saf. 2012, 101, 14–20. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M. Schedulability Analysis and Optimal Scheduling of Dual-Arm Cluster Tools With Residency Time Constraint and Activity Time Variation. IEEE Trans. Autom. Sci. Eng. 2011, 9, 203–209. [Google Scholar] [CrossRef]
- Xing, K.; Han, L.; Zhou, M.; Wang, F. Deadlock-Free Genetic Scheduling Algorithm for Automated Manufacturing Systems Based on Deadlock Control Policy. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 42, 603–615. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, N.; Zhou, M. Real-Time Scheduling of Single-Arm Cluster Tools Subject to Residency Time Constraints and Bounded Activity Time Variation. IEEE Trans. Autom. Sci. Eng. 2012, 9, 564–577. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Liu, W.; Dunford, M. Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Song, J.; Zhang, H.; Dong, W. A review of emerging trends in global PPP research: Analysis and visualization. Scientometrics 2016, 107, 1111–1147. [Google Scholar] [CrossRef]
- Tang, L.; Xuan, H.; Liu, J. A new Lagrangian relaxation algorithm for hybrid flowshop scheduling to minimize total weighted completion time. Comput. Oper. Res. 2006, 33, 3344–3359. [Google Scholar] [CrossRef]
- Tang, L.; Luh, P.B.; Liu, J.; Fang, L. Steel-making process scheduling using Lagrangian relaxation. Int. J. Prod. Res. 2002, 40, 55–70. [Google Scholar] [CrossRef]
- Tang, L.; Wang, G.; Liu, J.; Liu, J. A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous-casting production. Nav. Res. Logist. (NRL) 2011, 58, 370–388. [Google Scholar] [CrossRef]
- Crauwels, H.; Hariri, A.; Potts, C.N.; Van Wassenhove, L.N. Branch and bound algorithms for single-machine scheduling with batch set-up times to minimize total weighted completion time. Ann Oper. Res. 1998, 83, 59–76. [Google Scholar] [CrossRef]
- Abdul-Razaq, T.S. Machine Scheduling Problems: A Branch and Bound Approach; Keele University: Keele, UK, 1987. [Google Scholar]
- Zhang, W.; Li, C.; Yang, W.; Gen, M. Hybrid evolutionary algorithm with sequence difference-based differential evolution for multi-objective fuzzy flow-shop scheduling problem. Int. J. Internet Manuf. Serv. 2022, 8, 308. [Google Scholar] [CrossRef]
- Abdul-Razaq, T.; Potts, C.; Van Wassenhove, L. A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discret. Appl. Math. 1990, 26, 235–253. [Google Scholar] [CrossRef]
- Matsuo, H.; Suh, C.J.; Sullivan, R.S. A controlled search simulated annealing method for the single machine weighted tardiness problem. Ann. Oper. Res. 1989, 21, 85–108. [Google Scholar] [CrossRef]
- van Laarhoven, P.J.M.; Aarts, E.H.L.; Lenstra, J.K. Job Shop Scheduling by Simulated Annealing. Oper. Res. 1992, 40, 113–125. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bhowmik, S. Job shop scheduling using simulated annealing. In Proceedings of the First International Conference on Computation and Communication Advancement, Kolkata, India, 12–13 October 2013; Volume 1, pp. 69–73. [Google Scholar]
- Suresh, R.; Mohanasundaram, K. Pareto archived simulated annealing for job shop scheduling with multiple objectives. Int. J. Adv. Manuf. Technol. 2005, 29, 184–196. [Google Scholar] [CrossRef]
- Akram, K.; Kamal, K.; Zeb, A. Fast simulated annealing hybridized with quenching for solving job shop scheduling problem. Appl. Soft Comput. 2016, 49, 510–523. [Google Scholar] [CrossRef]
- Nowicki, E.; Smutnicki, C. An Advanced Tabu Search Algorithm for the Job Shop Problem. J. Sched. 2005, 8, 145–159. [Google Scholar] [CrossRef]
- Shrouf, F.; Ordieres-Meré, J.; García-Sánchez, Á.; Ortega-Mier, M. Optimizing the production scheduling of a single machine to minimize total energy consumption costs. J. Clean. Prod. 2014, 67, 197–207. [Google Scholar] [CrossRef]
- Wang, X.; Ong, S.K.; Nee, A. A comprehensive survey of ubiquitous manufacturing research. Int. J. Prod. Res. 2017, 56, 1–25. [Google Scholar] [CrossRef]
- Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-efficient scheduling in manufacturing companies: A review and research framework. Eur. J. Oper. Res. 2015, 248. [Google Scholar] [CrossRef]
- Biel, K.; Glock, C.H. Systematic literature review of decision support models for energy-efficient production planning. Comput. Ind. Eng. 2016, 101, 243–259. [Google Scholar] [CrossRef]
- Luo, H.; Du, B.; Huang, G.Q.; Chen, H.; Li, X. Hybrid flow shop scheduling considering machine electricity consumption cost. Int. J. Prod. Econ. 2013, 146, 423–439. [Google Scholar] [CrossRef]
- Li, M.; Wang, G.-G. A review of green shop scheduling problem. Inf. Sci. 2022, 589, 478–496. [Google Scholar] [CrossRef]
- Zhang, R.; Chiong, R. Solving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. J. Clean. Prod. 2016, 112, 3361–3375. [Google Scholar] [CrossRef]
- Giret, A.; Trentesaux, D.; Prabhu, V. Sustainability in manufacturing operations scheduling: A state of the art review. J. Manuf. Syst. 2015, 37, 126–140. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Aktas, E.; Besikci, U. Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. Eur. J. Oper. Res. 2016, 248, 772–788. [Google Scholar] [CrossRef]
- Cui, W.; Sun, H.; Xia, B. Integrating production scheduling, maintenance planning and energy controlling for the sustainable manufacturing systems under TOU tariff. J. Oper. Res. Soc. 2019, 71, 1760–1779. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Wu, T.; Sutherland, J.W. An energy-responsive optimization method for machine tool selection and operation sequence in flexible machining job shops. J. Clean. Prod. 2015, 87, 245–254. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Zhang, Y.; Ren, S.; Liu, Y. Infinitely repeated game based real-time scheduling for low-carbon flexible job shop considering multi-time periods. J. Clean. Prod. 2019, 247, 119093. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- An, Y.; Chen, X.; Zhang, J.; Li, Y. A hybrid multi-objective evolutionary algorithm to integrate optimization of the production scheduling and imperfect cutting tool maintenance considering total energy consumption. J. Clean. Prod. 2020, 268, 121540. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0: A review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Abedini, A.; Li, W.; Badurdeen, F.; Jawahir, I.S. A metric-based framework for sustainable production scheduling. J. Manuf. Syst. 2020, 54, 174–185. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0. J. Intell. Manuf. 2017, 30, 1809–1830. [Google Scholar] [CrossRef]
- Gong, X.; De Pessemier, T.; Joseph, W.; Martens, L. A generic method for energy-efficient and energy-cost-effective production at the unit process level. J. Clean. Prod. 2016, 113, 508–522. [Google Scholar] [CrossRef]
- Mokhtari, H.; Hasani, A. An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Comput. Chem. Eng. 2017, 104, 339–352. [Google Scholar] [CrossRef]
- Ghaleb, M.; Zolfagharinia, H.; Taghipour, S. Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties in job arrivals and machine breakdowns. Comput. Oper. Res. 2020, 123, 105031. [Google Scholar] [CrossRef]
- Fang, K.; Uhan, N.; Zhao, F.; Sutherland, J. A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J. Manuf. Syst. 2011, 30, 234–240. [Google Scholar] [CrossRef]
- Trentesaux, D.; Prabhu, V. Sustainability in Manufacturing Operations Scheduling: Stakes, Approaches and Trends. In Innovative and Knowledge-Based Production Management in a Global-Local World. APMS 2014. IFIP Advances in Information and Communication Technology; Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D., Eds.; Advances in Production Management Systems; Springer: Berlin/Heidelberg, Germany, 2014; Volume 439. [Google Scholar] [CrossRef]
- Dai, M.; Tang, D.; Giret, A.; Salido, M.A.; Li, W. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robot. Comput. Manuf. 2013, 29, 418–429. [Google Scholar] [CrossRef]
- Prabhu, V.V.; Trentesaux, D.; Taisch, M. Energy-aware manufacturing operations. Int. J. Prod. Res. 2015, 53, 6994–7004. [Google Scholar] [CrossRef]
- Bruzzone, A.; Anghinolfi, D.; Paolucci, M.; Tonelli, F. Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Ann. 2012, 61, 459–462. [Google Scholar] [CrossRef]
- Pach, C.; Berger, T.; Sallez, Y.; Trentesaux, D. Reactive control of overall power consumption in flexible manufacturing systems scheduling: A Potential Fields model. Control. Eng. Pr. 2015, 44, 193–208. [Google Scholar] [CrossRef]
- Duflou, J.R.; Sutherland, J.W.; Dornfeld, D.; Herrmann, C.; Jeswiet, J.; Kara, S.; Hauschild, M.Z.; Kellens, K. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Ann. 2012, 61, 587–609. [Google Scholar] [CrossRef]
- Chu, Y.; You, F. Moving horizon approach of integrating scheduling and control for sequential batch processes. AIChE J. 2014, 60, 1654–1671. [Google Scholar] [CrossRef]
- Fang, K.; Uhan, N.A.; Zhao, F.; Sutherland, J.W. Flow shop scheduling with peak power consumption constraints. Ann. Oper. Res. 2013, 206, 115–145. [Google Scholar] [CrossRef]
- Duerden, C.; Shark, L.-K.; Hall, G.; Howe, J. Genetic algorithm for energy consumption variance minimisation in manufacturing production lines through schedule manipulation. In Transactions on Engineering Technologies: World Congress on Engineering and Computer Science 2014; Springer: Dutch, The Netherlands, 2015; pp. 1–13. [Google Scholar]
- Sony, M. Design of cyber physical system architecture for industry 4.0 through lean six sigma: Conceptual foundations and research issues. Prod. Manuf. Res. 2020, 8, 158–181. [Google Scholar] [CrossRef]
- Kucharska, E.; Grobler-Dębska, K.; Rączka, K. Almm-based methods for optimization makespan flow-shop problem with defects. In Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology–ISAT 2016–Part I; Springer International Publishing: New York, NY, USA, 2017; pp. 41–53. [Google Scholar]
- He, Y.; Liu, B.; Zhang, X.; Gao, H.; Liu, X. A modeling method of task-oriented energy consumption for machining manufacturing system. J. Clean. Prod. 2011, 23, 167–174. [Google Scholar] [CrossRef]
- Nguyen, S.; Mei, Y.; Xue, B.; Zhang, M. A hybrid genetic programming algorithm for automated design of dispatching rules. Evol. Comput. 2019, 27, 467–496. [Google Scholar] [CrossRef] [PubMed]
- Trentesaux, D.; Pach, C.; Bekrar, A.; Sallez, Y.; Berger, T.; Bonte, T.; Leitão, P.; Barbosa, J. Benchmarking flexible job-shop scheduling and control systems. Control Eng. Pract. 2013, 21, 1204–1225. [Google Scholar] [CrossRef]
- Duerden, C.J.; Shark, L.-K.; Hall, G.; Howe, J.M. Minimisation of energy consumption variance for multi-process manufacturing lines through genetic algorithm manipulation of production schedule. Eng. Lett. 2015, 23, 40–48. [Google Scholar]
- Chu, Y.; You, F.; Wassick, J.M.; Agarwal, A. Integrated planning and scheduling under production uncertainties: Bi-level model formulation and hybrid solution method. Comput. Chem. Eng. 2015, 72, 255–272. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, H.; Lohse, N.; Petrovic, S.; Gindy, N. An investigation into minimising total energy consumption and total weighted tardiness in job shops. J. Clean. Prod. 2014, 65, 87–96. [Google Scholar] [CrossRef]
- Nie, Y.; Biegler, L.T.; Wassick, J.M.; Villa, C.M. Extended Discrete-Time Resource Task Network Formulation for the Reactive Scheduling of a Mixed Batch/Continuous Process. Ind. Eng. Chem. Res. 2014, 53, 17112–17123. [Google Scholar] [CrossRef]
- Chu, Y.; You, F. Efficient Decomposition Method for Integrating Production Sequencing and Dynamic Optimization for a Multi-Product CSTR. Chem. Eng. Trans. 2014, 39, 715–720. [Google Scholar]
- Zhang, C.; Li, P.; Guan, Z.; Rao, Y. A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem. Comput. Oper. Res. 2007, 34, 3229–3242. [Google Scholar] [CrossRef]
- Sonawane, M.P.A.; Ragha, L. Hybrid genetic algorithm and TABU search algorithm to solve class time table scheduling problem. Int. J. Res. Stud. Comput. Sci. Eng. 2014, 1, 19–26. [Google Scholar]
- Huang, J.; Süer, G.A. A dispatching rule-based genetic algorithm for multi-objective job shop scheduling using fuzzy satisfaction levels. Comput. Ind. Eng. 2014, 86, 29–42. [Google Scholar] [CrossRef]
- Yan, H.-S.; Wan, X.-Q.; Xiong, F.-L. Integrated production planning and scheduling for a mixed batch job-shop based on alternant iterative genetic algorithm. J. Oper. Res. Soc. 2015, 66, 1250–1258. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; Mendes, J.J.D.M.; Resende, M.G. A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 2005, 167, 77–95. [Google Scholar] [CrossRef]
- Figielska, E. A genetic algorithm and a simulated annealing algorithm combined with column generation technique for solving the problem of scheduling in the hybrid flowshop with additional resources. Comput. Ind. Eng. 2009, 56, 142–151. [Google Scholar] [CrossRef]
- Muthiah, A.; Rajkumar, R. A comparison of artificial bee colony algorithm and genetic algorithm to minimize the makespan for job shop scheduling. Procedia Eng. 2014, 97, 1745–1754. [Google Scholar]
- Wong, C.; Chan, F.; Chung, S.H. A genetic algorithm approach for production scheduling with mould maintenance consideration. Int. J. Prod. Res. 2012, 50, 5683–5697. [Google Scholar] [CrossRef]
- Maimon, O.Z.; Braha, D. A genetic algorithm approach to scheduling PCBs on a single machine. Int. J. Prod. Res. 1998, 36, 761–784. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. The Ant System: An Autocatalytic Optimizing Process. Technical Report 91-016 1991. Available online: https://www.semanticscholar.org/paper/Ant-System%3A-An-Autocatalytic-Optimizing-Process-Dorigo-Maniezzo/9649211474dcfc3a9fd75e5208ffd21d9dcb9794 (accessed on 5 January 2023).
- Liao, C.-J.; Juan, H.-C. An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups. Comput. Oper. Res. 2007, 34, 1899–1909. [Google Scholar] [CrossRef]
- Lin, B.; Lu, C.; Shyu, S.; Tsai, C. Development of new features of ant colony optimization for flowshop scheduling. Int. J. Prod. Econ. 2008, 112, 742–755. [Google Scholar] [CrossRef]
- Yagmahan, B.; Yenisey, M.M. A multi-objective ant colony system algorithm for flow shop scheduling problem. Expert Syst. Appl. 2010, 37, 1361–1368. [Google Scholar] [CrossRef]
- Saidi-Mehrabad, M.; Dehnavi-Arani, S.; Evazabadian, F.; Mahmoodian, V. An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Comput. Ind. Eng. 2015, 86, 2–13. [Google Scholar] [CrossRef]
- Neto, R.T.; Filho, M.G. Literature review regarding Ant Colony Optimization applied to scheduling problems: Guidelines for implementation and directions for future research. Eng. Appl. Artif. Intell. 2013, 26, 150–161. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Citeseer, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Bai, J.-J.; Gong, Y.-G.; Wang, N.-S.; Tang, D.-B. An Improved PSO Algorithm for Flexible Job Shop Scheduling with Lot-Splitting. In Proceedings of the 2009 International Workshop on Intelligent Systems and Applications, IEEE, Wuhan, China, 23–24 May 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Moslehi, G.; Mahnam, M. A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search. Int. J. Prod. Econ. 2011, 129, 14–22. [Google Scholar] [CrossRef]
- Liu, H.; Abraham, A.; Wang, Z. A Multi-swarm Approach to Multi-objective Flexible Job-shop Scheduling Problems. Fundam. Inform. 2009, 95, 465–489. [Google Scholar] [CrossRef]
- Mostaghim, S.; Teich, J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS’03 (Cat. No.03EX706), IEEE, Indianapolis, IN, USA, 26 April 2004; pp. 26–33. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Bandyopadhyay, S.; Pal, S.K. Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients. Inf. Sci. 2007, 177, 5033–5049. [Google Scholar] [CrossRef]
- Shao, X.; Liu, W.; Liu, Q.; Zhang, C. Hybrid discrete particle swarm optimization for multi-objective flexible job-shop scheduling problem. Int. J. Adv. Manuf. Technol. 2013, 67, 2885–2901. [Google Scholar] [CrossRef]
- Xia, W.; Wu, Z. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput. Ind. Eng. 2005, 48, 409–425. [Google Scholar] [CrossRef]
- Deng, G.; Gu, X. A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion. Comput. Oper. Res. 2012, 39, 2152–2160. [Google Scholar] [CrossRef]
- Tasgetiren, M.F.; Pan, Q.-K.; Suganthan, P.; Buyukdagli, O. A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem. Comput. Oper. Res. 2013, 40, 1729–1743. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, M.; Gu, W. An effective differential evolution algorithm for permutation flow shop scheduling problem. Appl. Math. Comput. 2014, 248, 143–159. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, M.; Liu, S. Iterated Greedy Algorithms for Flow-Shop Scheduling Problems: A Tutorial. IEEE Trans. Autom. Sci. Eng. 2021, 19, 1941–1959. [Google Scholar] [CrossRef]
- Molina da Silva, F.; Tavares Neto, R. Applying an Iterated Greedy Algorithm to Production Programming on Manufacturing Environment Controlled by the PBC Ordering System. In International Workshop on Hybrid Metaheuristics; Springer: Cham, Switzerland, 2019; pp. 191–199. [Google Scholar]
- Minella, G.; Ruiz, R.; Ciavotta, M. Restarted Iterated Pareto Greedy algorithm for multi-objective flowshop scheduling problems. Comput. Oper. Res. 2011, 38, 1521–1533. [Google Scholar] [CrossRef]
- Pan, Q.-K.; Ruiz, R. An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega 2014, 44, 41–50. [Google Scholar] [CrossRef]
- Kahraman, C.; Engin, O.; Kaya, I.; Öztürk, R.E. Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach. Appl. Soft Comput. 2010, 10, 1293–1300. [Google Scholar] [CrossRef]
- Lu, H.; Yang, J. An improved clonal selection algorithm for job shop scheduling. In Proceedings of the 2009 International Symposium on Intelligent Ubiquitous Computing and Education, IEEE, Chengdu, China, 15–16 May 2009; pp. 34–37. [Google Scholar]
- Atay, Y.; Kodaz, H. Optimization of job shop scheduling problems using modified clonal selection algorithm. Turk. J. Electr. Eng. Comput. Sci. 2014, 22, 1528–1539. [Google Scholar] [CrossRef]
- Ong, Z.X.; Tay, J.C.; Kwoh, C.K. Applying the Clonal Selection Principle to Find Flexible Job-Shop Schedules. In Proceedings of the International Conference on Artificial Immune Systems, ICARIS 2005, Banff, AB, Canada, 14–17 August 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 442–455. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Rivera, D.C.; Cortés, N.C. Job shop scheduling using the clonal selection principle. In Adaptive Computing in Design and Manufacture VI; Springer: London, UK, 2004; pp. 113–124. [Google Scholar]
- Hong, L. Stretching Technique-Based Clonal Selection Algorithm for Flexible Job-shop Scheduling. In Proceedings of the 2009 International Conference on Computational Intelligence and Natural Computing, IEEE, Wuhan, China, 6–7 June 2009; Volume 2, pp. 111–114. [Google Scholar] [CrossRef]
- Hu, J.; Li, T.; Yin, J. A hybrid clonal selection algorithm for solving job-shop scheduling problems. In Proceedings of the Fourth International Workshop on Advanced Computational Intelligence, IEEE, Wuhan, China, 19–21 October 2011; pp. 735–741. [Google Scholar] [CrossRef]
- Lou, G.; Cai, Z. Improved hybrid immune clonal selection genetic algorithm and its application in hybrid shop scheduling. Clust. Comput. 2018, 22, 3419–3429. [Google Scholar] [CrossRef]
- Yazdani, M.; Amiri, M.; Zandieh, M. Flexible job-shop scheduling with parallel variable neighborhood search algorithm. Expert Syst. Appl. 2010, 37, 678–687. [Google Scholar] [CrossRef]
- Roshanaei, V.; Naderi, B.; Jolai, F.; Khalili, M. A variable neighborhood search for job shop scheduling with set-up times to minimize makespan. Futur. Gener. Comput. Syst. 2009, 25, 654–661. [Google Scholar] [CrossRef]
- Adibi, M.A.; Shahrabi, J. A clustering-based modified variable neighborhood search algorithm for a dynamic job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2013, 70, 1955–1961. [Google Scholar] [CrossRef]
- Phanden, R.K.; Ferreira, J.C.E. Biogeographical and Variable Neighborhood Search Algorithm for Optimization of Flexible Job Shop Scheduling. In Advances in Industrial and Production Engineering; Springer: Singapore, 2019; pp. 489–503. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, L.; Li, X.; Li, P. Variable Neighborhood Genetic Algorithm for the Flexible Job Shop Scheduling Problems. In Proceedings of the International Conference on Intelligent Robotics and Applications, Wuhan, China, 15–17 October 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 503–512. [Google Scholar] [CrossRef]
- Wang, C.; Ji, Z.; Wang, Y. Multi-objective flexible job shop scheduling problem using variable neighborhood evolutionary algorithm. Mod. Phys. Lett. B 2017, 31, 1740072. [Google Scholar] [CrossRef]
- Naderi, B.; Azab, A. Production scheduling for reconfigurable assembly systems: Mathematical modeling and algorithms. Comput. Ind. Eng. 2021, 162, 107741. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, Y.; Li, Z.; Ji, H.; Liu, J. Scheduling optimization of a wheel hub production line based on flexible scheduling. Int. J. Ind. Eng. 2020, 27, 694–711. [Google Scholar]
- Zandieh, M.; Gholami, M. An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. Int. J. Prod. Res. 2009, 47, 6999–7027. [Google Scholar] [CrossRef]
- Laha, D. Heuristics and metaheuristics for solving scheduling problems. In Handbook of Computational Intelligence in Manufacturing and Production Management; IGI Global: Hershey, PA, USA, 2008; pp. 1–18. [Google Scholar]
- Alisantoso, D.; Khoo, L.P.; Jiang, P.Y. An immune algorithm approach to the scheduling of a flexible PCB flow shop. Int. J. Adv. Manuf. Technol. 2003, 22, 819–827. [Google Scholar] [CrossRef]
- Tavakkoli-Moghaddam, R.; Rahimi-Vahed, A.-R.; Mirzaei, A.H. Solving a Bi-Criteria Permutation Flow Shop Problem Using Immune Algorithm. In Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling, IEEE, Honolulu, HI, USA, 1–5 April 2007; pp. 49–56. [Google Scholar] [CrossRef]
- Li, J.; Guo, L.; Li, Y.; Liu, C.; Wang, L.; Hu, H. Enhancing Whale Optimization Algorithm with Chaotic Theory for Permutation Flow Shop Scheduling Problem. Int. J. Comput. Intell. Syst. 2021, 14, 651. [Google Scholar] [CrossRef]
- Laili, Y.; Tao, F.; Zhang, L.; Cheng, Y.; Luo, Y.; Sarker, B.R. A Ranking Chaos Algorithm for dual scheduling of cloud service and computing resource in private cloud. Comput. Ind. 2013, 64, 448–463. [Google Scholar] [CrossRef]
- Tavazoei, M.S.; Haeri, M. An optimization algorithm based on chaotic behavior and fractal nature. J. Comput. Appl. Math. 2007, 206, 1070–1081. [Google Scholar] [CrossRef]
- Lu, H.-J.; Zhang, H.-M.; Ma, L.-H. A new optimization algorithm based on chaos. J. Zhejiang Univ. A 2006, 7, 539–542. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, H.; Tang, D.; Zhou, T.; Gui, Y. Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems. Robot. Comput. Manuf. 2022, 78, 102412. [Google Scholar] [CrossRef]
- Johnson, D.; Chen, G.; Lu, Y. Multi-Agent Reinforcement Learning for Real-Time Dynamic Production Scheduling in a Robot Assembly Cell. IEEE Robot. Autom. Lett. 2022, 7, 7684–7691. [Google Scholar] [CrossRef]
- Zhiyao, Z.; Fang, L.; Ping, Z. Research on Multi-Agent based Optimization in Smart Production Line. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), IEEE, Chengdu, China, 11–14 December 2020; pp. 2318–2322. [Google Scholar]
- Kim, Y.G.; Lee, S.; Son, J.; Bae, H.; Chung, B.D. Multi-agent system and reinforcement learning approach for distributed intelligence in a flexible smart manufacturing system. J. Manuf. Syst. 2020, 57, 440–450. [Google Scholar] [CrossRef]
- Mezgebe, T.T.; El Haouzi, H.B.; Demesure, G.; Pannequin, R.; Thomas, A. Multi-agent systems negotiation to deal with dynamic scheduling in disturbed industrial context. J. Intell. Manuf. 2019, 31, 1367–1382. [Google Scholar] [CrossRef]
- Tan, J.; Braubach, L.; Jander, K.; Xu, R.; Chen, K. A novel multi-agent scheduling mechanism for adaptation of production plans in case of supply chain disruptions. AI Commun. 2020, 33, 1–12. [Google Scholar] [CrossRef]
- Song, W. Suppliers Scheduling and Management of Smart Phone Manufacturing Based on the Mechanism of Multi-Agent Collaborative Feedback and Evolutionary. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), IEEE, Chengdu, China, 6–9 December 2019; pp. 1137–1141. [Google Scholar] [CrossRef]
- Liu, Y.-K.; Zhang, X.-S.; Zhang, L.; Tao, F.; Wang, L. A multi-agent architecture for scheduling in platform-based smart manufacturing systems. Front. Inf. Technol. Electron. Eng. 2019, 20, 1465–1492. [Google Scholar] [CrossRef]
- Yin, J.; Chen, B.J. Design and Implementation of the Supervisory Control Expert System for Dynamic Scheduling. Adv. Mater. Res. 2011, 211–212, 700–704. [Google Scholar] [CrossRef]
- Moynihan, G.P.; Bowers, J.H.; Fonseca, D.J.; Ray, P.S. A knowledge-based approach to maintenance project planning. Expert Syst. 2002, 19, 88–98. [Google Scholar] [CrossRef]
- Ta-Hui, Y.; Lin, I.; Chia-Fen, H. A decision support system for wafer probe card production scheduling. Int. J. Ind. Eng. 2020, 27, 140–152. [Google Scholar]
- Liu, R.; Piplani, R.; Toro, C. Deep reinforcement learning for dynamic scheduling of a flexible job shop. Int. J. Prod. Res. 2022, 60, 4049–4069. [Google Scholar] [CrossRef]
- Zdravković, M.; Panetto, H.; Weichhart, G. AI-enabled Enterprise Information Systems for Manufacturing. Enterp. Inf. Syst. 2021, 16, 668–720. [Google Scholar] [CrossRef]
- Lee, C.; Lee, S. A Practical Deep Reinforcement Learning Approach to Semiconductor Equipment Scheduling. In Proceedings of the 2021 22nd IEEE International Conference on Industrial Technology (ICIT), IEEE, Valencia, Spain, 10–12 March 2021; Volume 1, pp. 979–985. [Google Scholar] [CrossRef]
- Biswas, A.; Roy, D.G. Metamorphosis of Industrial IoT using Deep Leaning. In Deep Learning for Security and Privacy Preservation in IoT; Springer: Berlin, Germany, 2021; pp. 1–30. [Google Scholar]
- Morariu, C.; Morariu, O.; Răileanu, S.; Borangiu, T. Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems. Comput. Ind. 2020, 120, 103244. [Google Scholar] [CrossRef]
- Metaxiotis, K.; Psarras, J. Neural networks in production scheduling: Intelligent solutions and future promises. Appl. Artif. Intell. 2003, 17, 361–373. [Google Scholar] [CrossRef]
- Lee, K.-C.; Paik, T.-Y. A Neural Network Approach to Cost Minimizatin in a Production Scheduling Setting. In Artificial Neural Networks in Real-Life Applications; IGI Global: Hershey, PA, USA, 2006; pp. 297–313. [Google Scholar]
- Tang, L.; Liu, W.; Liu, J. A neural network model and algorithm for the hybrid flow shop scheduling problem in a dynamic environment. J. Intell. Manuf. 2005, 16, 361–370. [Google Scholar] [CrossRef]
- Golmohammadi, D. A neural network decision-making model for job-shop scheduling. Int. J. Prod. Res. 2013, 51, 5142–5157. [Google Scholar] [CrossRef]
- Papadopoulou, T.; Mousavi, A. Dynamic job-shop lean scheduling and CONWIP shop-floor control using software agents. In Proceedings of the IET International Conference on Agile Manufacturing, IET, Durham, UK, 9–11 July 2007; pp. 134–141. [Google Scholar] [CrossRef]
- Yang, K.K. Managing a flow line with single-kanban, dual-kanban or CONWIP. Prod. Oper. Manag. 2000, 9, 349–366. [Google Scholar] [CrossRef]
- Krishnamurthy, A. Analytical Performance Models for Material Control Strategies in Manufacturing Systems; The University of Wisconsin-Madison: Madison, WI, USA, 2002. [Google Scholar]
- Li, J.-W. Simulation study of coordinating layout change and quality improvement for adapting job shop manufacturing to CONWIP control. Int. J. Prod. Res. 2008, 48, 879–900. [Google Scholar] [CrossRef]
- Ryan, S.M.; Vorasayan, J. Allocating work in process in a multiple-product CONWIP system with lost sales. Int. J. Prod. Res. 2005, 43, 223–246. [Google Scholar] [CrossRef]
- Slomp, J.; Bokhorst, J.; Germs, R. A lean production control system for high-variety/low-volume environments: A case study implementation. Prod. Plan. Control 2009, 20, 586–595. [Google Scholar] [CrossRef]
- Arbulu, R.; Ballard, G.; Harper, N. Kanban in construction. In Proceedings of the IGLC-11, Virginia Tech, Blacksburgh, VA, USA, 22–24 July 2003; pp. 16–17. [Google Scholar]
- Kumar, C.S.; Panneerselvam, R. Literature review of JIT-KANBAN system. Int. J. Adv. Manuf. Technol. 2007, 32, 393–408. [Google Scholar] [CrossRef]
- Singh, N.; Shek, K.H.; Meloche, D. The development of a kanban system: A case study. Int. J. Oper. Prod. Manag. 1990, 10, 28–36. [Google Scholar] [CrossRef]
- Gupta, M.; Snyder, D. Comparing TOC with MRP and JIT: A literature review. Int. J. Prod. Res. 2009, 47, 3705–3739. [Google Scholar] [CrossRef]
- Naufal, A.; Jaffar, A.; Yusoff, N.; Hayati, N. Development of Kanban System at Local Manufacturing Company in Malaysia–Case Study. Procedia Eng. 2012, 41, 1721–1726. [Google Scholar] [CrossRef]
- Chai, L.L.S. E-based inter-enterprise supply chain Kanban for demand and order fulfilment management. In Proceedings of the 2008 IEEE International Conference on Emerging Technologies and Factory Automation, IEEE, Hamburg, Germany, 15–18 September 2008; pp. 33–35. [Google Scholar] [CrossRef]
- Maddah, B.; Jaber, M.Y.; Abboud, N. Periodic review (s, S) inventory model with permissible delay in payments. J. Oper. Res. Soc. 2004, 55, 147–159. [Google Scholar] [CrossRef]
- Li, Z.; Xu, S.H.; Hayya, J. A periodic-review inventory system with supply interruptions. Probab. Eng. Inf. Sci. 2004, 18, 33–53. [Google Scholar] [CrossRef]
- Tagaras, G.; Vlachos, D. A Periodic Review Inventory System with Emergency Replenishments. Manag. Sci. 2001, 47, 415–429. [Google Scholar] [CrossRef]
- Benders, J.; Riezebos, J. Period batch control: Classic, not outdated. Prod. Plan. Control 2002, 13, 497–506. [Google Scholar] [CrossRef]
- MacCarthy, B.L.; Fernandes, F.C.F. A multi-dimensional classification of production systems for the design and selection of production planning and control systems. Prod. Plan. Control 2000, 11, 481–496. [Google Scholar] [CrossRef]
- Tesic, Z.; Stevanov, B.; Jovanovic, V. Period Batch Control—A Production Planning System Applied to Virtual Manufacturing Cells. Int. J. Simul. Model. 2016, 15, 288–301. [Google Scholar] [CrossRef]
- Stevanov, B.; Gračanin, D.; Kesić, I.; Ristić, S. An application of period batch control principles and computational independent models for supporting the overhaul process of the railway braking devices. Int. J. Ind. Eng. Manag. 2013, 4, 95. [Google Scholar]
- Riezebos, J. Shop floor planning and control in team-based work processes. Int. J. Ind. Eng. Manag. 2013, 4, 51–56. [Google Scholar]
- Acosta, A.P.V.; Mascle, C.; Baptiste, P. Applicability of Demand-Driven MRP in a complex manufacturing environment. Int. J. Prod. Res. 2019, 58, 4233–4245. [Google Scholar] [CrossRef]
- Arnold, J. Introduction to Materials Management; Pearson Prentice Hall: Hoboken, NJ, USA, 2008. [Google Scholar]
- Fernandes, N.O.; Carmo-Silva, S.D. Generic POLCA—A production and materials flow control mechanism for quick response manufacturing. Int. J. Prod. Econ. 2006, 104, 74–84. [Google Scholar] [CrossRef]
- Goldratt, E.M. Computerized shop floor scheduling. Int. J. Prod. Res. 1988, 26, 443–455. [Google Scholar] [CrossRef]
- Spencer, M.S.; Cox, J.F. Optimum production technology (OPT) and the theory of constraints (TOC): Analysis and genealogy. Int. J. Prod. Res. 1995, 33, 1495–1504. [Google Scholar] [CrossRef]
- Croci, F.; Pozzetti, A. OPT scheduling performances: A case study. Prod. Plan. Control 2000, 11, 82–89. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Suri, R. Planning and implementing POLCA: A card-based control system for high variety or custom engineered products. Prod. Plan. Control 2009, 20, 596–610. [Google Scholar] [CrossRef]
- Suri, R. QRM and POLCA: A Winning Combination for Manufacturing Enterprises in the 21st Century; Center for Quick Response Manufacturing: Madison, WI, USA, 2003. [Google Scholar]
- Lödding, H. POLCA Control. In Handbook of Manufacturing Control; Springer: Berlin, Germany, 2013; pp. 419–433. [Google Scholar]
- Braglia, M.; Castellano, D.; Frosolini, M. Optimization of POLCA-controlled production systems with a simulation-driven genetic algorithm. Int. J. Adv. Manuf. Technol. 2013, 70, 385–395. [Google Scholar] [CrossRef]
- Santos, N.C.D.S.; Gomes, D.R.; Júnior, J.A.D.S.; Bachega, S.J.; Tavares, D.M. Simulation-based optimization of the polca ordering system. Indep. J. Manag. Prod. 2021, 12, 672–690. [Google Scholar] [CrossRef]
- Chinet, F.S.; Filho, M.G. POLCA System: Literature review, classification, and analysis. Gestão Produção 2014, 21, 532–542. [Google Scholar] [CrossRef]
- Başak, Ö.; Albayrak, Y.E. Petri net based decision system modeling in real-time scheduling and control of flexible automotive manufacturing systems. Comput. Ind. Eng. 2015, 86, 116–126. [Google Scholar] [CrossRef]
- Correa, F.R. Cyber-physical systems for construction industry. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS), IEEE, St. Petersburg, Russia, 15–18 May 2018; pp. 392–397. [Google Scholar]
- Honarmand, M.; Zakariazadeh, A.; Jadid, S. Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid. Energy Convers. Manag. 2014, 86, 745–755. [Google Scholar] [CrossRef]
- Hajiaghaei-Keshteli, M.; Aminnayeri, M.; Ghomi, S.F. Integrated scheduling of production and rail transportation. Comput. Ind. Eng. 2014, 74, 240–256. [Google Scholar] [CrossRef]
- Ahn, S.; Lee, S.; Bahn, H. A smart elevator scheduler that considers dynamic changes of energy cost and user traffic. Integr. Comput. Eng. 2017, 24, 187–202. [Google Scholar] [CrossRef]
- Baldea, M.; Harjunkoski, I. Integrated production scheduling and process control: A systematic review. Comput. Chem. Eng. 2014, 71, 377–390. [Google Scholar] [CrossRef]
- Mitra, K.; Gudi, R.D.; Patwardhan, S.C.; Sardar, G. Resiliency Issues in Integration of Scheduling and Control. Ind. Eng. Chem. Res. 2009, 49, 222–235. [Google Scholar] [CrossRef]
- Zhuge, J.; Ierapetritou, M.G. Integration of Scheduling and Control with Closed Loop Implementation. Ind. Eng. Chem. Res. 2012, 51, 8550–8565. [Google Scholar] [CrossRef]
- Flores-Tlacuahuac, A.; Grossmann, I.E. Simultaneous Cyclic Scheduling and Control of a Multiproduct CSTR. Ind. Eng. Chem. Res. 2006, 45, 6698–6712. [Google Scholar] [CrossRef]
- Terrazas-Moreno, S.; Flores-Tlacuahuac, A.; Grossmann, I.E. Lagrangean heuristic for the scheduling and control of polymerization reactors. AIChE J. 2007, 54, 163–182. [Google Scholar] [CrossRef]
- Baldea, M.; Touretzky, C.R. Nonlinear model predictive control of energy-integrated process systems. Syst. Control Lett. 2013, 62, 723–731. [Google Scholar] [CrossRef]
- Baldea, M.; Daoutidis, P. A general analysis and control framework for process systems with inventory recycling. Int. J. Robust Nonlinear Control 2013, 24, 2852–2866. [Google Scholar] [CrossRef]
- Kumar, A.; Daoutidis, P. Nonlinear dynamics and control of process systems with recycle. J. Process. Control 2002, 12, 475–484. [Google Scholar] [CrossRef]
- Baldea, M.; Daoutidis, P. Dynamics and Nonlinear Control of Integrated Process Systems; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Skogestad, S. Control structure design for complete chemical plants. Comput. Chem. Eng. 2004, 28, 219–234. [Google Scholar] [CrossRef]
- Kadam, J.V.; Marquardt, W. Integration of Economical Optimization and Control for Intentionally Transient Process Operation. In Assessment and Future Directions of Nonlinear Model Predictive Control; Springer: Berlin/Heidelberg, Germany, 2007; pp. 419–434. [Google Scholar] [CrossRef]
- Engell, S. Feedback control for optimal process operation. J. Process. Control 2007, 17, 203–219. [Google Scholar] [CrossRef]
- Reaidy, P.J.; Gunasekaran, A.; Spalanzani, A. Bottom-up approach based on Internet of Things for order fulfillment in a collaborative warehousing environment. Int. J. Prod. Econ. 2015, 159, 29–40. [Google Scholar] [CrossRef]
- Gallestey, E.; Stothert, A.; Castagnoli, D.; Ferrari-Trecate, G.; Morari, M. Using model predictive control and hybrid systems for optimal scheduling of industrial processes. Automatisierungstechnik 2003, 51, 285–293. [Google Scholar] [CrossRef]
- Poncet, A.; Stothert, A. Scheduling of Industrial Production Processes. US Patent App. 11/586,713, 19 April 2007. [Google Scholar]
- Nee, A.Y.C.; Ong, S.K.; Chryssolouris, G.; Mourtzis, D. Augmented reality applications in design and manufacturing. CIRP Ann. 2012, 61, 657–679. [Google Scholar] [CrossRef]
- Yu, C.; Xu, X.; Lu, Y. Computer-integrated manufacturing, cyber-physical systems and cloud manufacturing–concepts and relationships. Manuf. Lett. 2015, 6, 5–9. [Google Scholar] [CrossRef]
- Siddiqui, M.A.H.; Akhtar, S.; Chattopadhyaya, S.; Sharma, S.; Li, C.; Dwivedi, S.P.; Antosz, K.; Machado, J. Technical Risk Assessment for the Safe Design of a Man-Rider Chair Lift System. Machines 2022, 10, 769. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Lan, S.; Xu, C.; Dai, Q.; Huang, G.Q. Visualization of RFID-enabled shopfloor logistics Big Data in Cloud Manufacturing. Int. J. Adv. Manuf. Technol. 2015, 84, 5–16. [Google Scholar] [CrossRef]
- Caspari, A.; Tsay, C.; Mhamdi, A.; Baldea, M.; Mitsos, A. The integration of scheduling and control: Top-down vs. bottom-up. J. Process. Control 2020, 91, 50–62. [Google Scholar] [CrossRef]
- Lv, Z.; Guo, J.; Lv, H. Safety Poka Yoke in Zero-Defect Manufacturing Based on Digital Twins. IEEE Trans. Ind. Inform. 2022, 19, 1176–1184. [Google Scholar] [CrossRef]
- Duan, Y.; Zhao, Y.; Hu, J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustain. Energy Grids Netw. 2023, 34, 101004. [Google Scholar] [CrossRef]
- Xu, W.; Qu, S.; Zhang, C. Fast Terminal Sliding Mode Current Control With Adaptive Extended State Disturbance Observer for PMSM System. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 11, 418–431. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J. Safe consensus control of cooperative-competitive multi-agent systems via differential privacy. Kybernetika 2022, 58, 426–439. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Q.; Li, H.; Wang, H.; Yan, L.; Liu, G. A Structural Evolution-Based Anomaly Detection Method for Generalized Evolving Social Networks. Comput. J. 2020, 65, 1189–1199. [Google Scholar] [CrossRef]
- Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.S.; Dustdar, S.; Liu, J. Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2022, 19, 480–490. [Google Scholar] [CrossRef]
- Tian, J.; Hou, M.; Bian, H.; Li, J. Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems. Complex Intell. Syst. 2022, 1–49. [Google Scholar] [CrossRef]
- Xie, B.; Li, S.; Li, M.; Liu, C.H.; Huang, G.; Wang, G. SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 1–17. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, S.; Evans, S.; Zhang, Z.; Xia, X.; Guo, Y. Automobile recycling for remanufacturing in China: A systematic review on recycling legislations, models and methods. Sustain. Prod. Consum. 2023, 36, 369–385. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Kumar, V.; Li, C.; Singh, S. Lean, green, and smart manufacturing: An ingenious framework for enhancing the sustainability of operations management on the shop floor in industry 4.0. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023, 1–18. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyay, S.; Sharma, S.; Singh, G.; Singh, J.; Chohan, J.; Kumar, R.; Singh, M. Development of an agile model using total productive maintenance to enhance industrial sustainability in industry 4.0. AIP Conf. Proc. 2023, 2558, 020003. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Li, C.; Singh, S.; Saleem, W.; Salah, B.; Mohamed, A. Recent Progression Developments on Process Optimization Approach for Inherent Issues in Production Shop Floor Management for Industry 4.0. Processes 2022, 10, 1587. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Saraswat, S.; Sharma, S.; Li, C.; Rajkumar, S. Development of a Data-Driven Decision-Making System Using Lean and Smart Manufacturing Concept in Industry 4.0: A Case Study. Math. Probl. Eng. 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Saraswat, S.; Sharma, S.; Li, C.; Rajkumar, S.; Georgise, F.B. A Novel Smart Production Management System for the Enhancement of Industrial Sustainability in Industry 4.0. Math. Probl. Eng. 2022, 2022, 1–24. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Singh, J.; Pimenov, D.Y.; Giasin, K. An Innovative Agile Model of Smart Lean–Green Approach for Sustainability Enhancement in Industry 4.0. J. Open Innov. Technol. Mark. Complex. 2021, 7, 215. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Li, C.; Singh, S.; Hussan, W.U.; Salah, B.; Saleem, W.; Mohamed, A. A Sustainable Productive Method for Enhancing Operational Excellence in Shop Floor Management for Industry 4.0 Using Hybrid Integration of Lean and Smart Manufacturing: An Ingenious Case Study. Sustainability 2022, 14, 7452. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Li, C.; Di Bona, G. A Sustainable Methodology Using Lean and Smart Manufacturing for the Cleaner Production of Shop Floor Management in Industry 4.0. Mathematics 2022, 10, 347. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Bhadauria, A.; Sharma, S.; Li, C.; Pimenov, D.Y.; Giasin, K.; Singh, S.; Gautam, G.D. An Agile System to Enhance Productivity through a Modified Value Stream Mapping Approach in Industry 4.0: A Novel Approach. Sustainability 2021, 13, 11997. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
Category | Name of Methods | Exact or Approximate | Feature | Advantage | Disadvantage | Application | References | Quantity of Methods (%) |
---|---|---|---|---|---|---|---|---|
Enumerative methods | Decomposition method | Exact | The optimization problem transformed into a mathematical planning problem | Obtain the exact solution when the problem size is small | The solution time grows exponentially when the problem is an NP-Hard problem | Scheduling problem | [45,46,47] | 1.13% |
Lagrangian relaxation method | Exact | 14.29% | ||||||
Mixed integer linear program | Exact | 0.40% | ||||||
Integer linear program | Exact | 0.49% | ||||||
Branch and bound | Exact | Subdividing a problem into several subproblems and cutting out meaningless branches | Obtain the optimal solution and fast average solution speed | Takes up a lot of memory space | Integer planning problems, production schedule problems, site selection | [48,49,50,51] | 0.20% | |
Local search | Greed algorithm | Approximate | The global optimal solution can be obtained by local optimal selection | Small code size, high operational efficiency, low space complexity | Cannot guarantee that the final solution obtained is optimal, cannot be used to solve maximum or minimum problems | Combinatorial optimization problems | [124,125,126,127,128] | 2.24% |
Clone selection algorithm | Approximate | Distributed, adaptive learning, and parallel computation | Fast convergence and algorithmic diversity | Premature convergence and lack of cross-operation problems | Constrained optimization, dynamic optimization, time uncertainty scheduling problem | [129,130,131,132,133,134,135] | 0.08% | |
Variable neighborhood | Approximate | Changing the neighborhood structure | Versatility, robustness, few parameters | Long solution times for complex problems | Scheduling issues, vehicle path issues, color quantification, continuous optimization problems | [136,137,138,139,140,141] | 3.48% | |
Tabu search | Approximate | Avoid loops in the search process, only advancing and not retreat | Easy to obtain excellent solutions | Initial value sensitive | Displacement issues, scheduling issues | [57,98,99] | 9.76% | |
Simulated annealing | Approximate | Multiobjective optimization | Flexible, wide application, high operating efficiency | Longer optimization process | Neural networks, image processing, VLSI (very large-scale integrated circuit) optimal design, production scheduling | [52,53,54,55,56] | 4.33% | |
Differential evolution algorithm | Approximate | Group difference-based, heuristic, randomized search algorithm | Fewer undefined parameters, less likely to fall into local optimum, fast convergence | Search stagnates when the population is small | Data mining, pattern recognition, digital filter design, artificial neural networks | [121,122,123] | 2.85% | |
Artificial intelligence | Genetic algorithm | Approximate | Simulating natural evolution to search for optimal solutions | Fast random search capability, scalability | Poor local search capability, easy to fall into “premature” | Combinatorial optimization, data mining, image processing, production scheduling | [100,101,102,103,104,105,106] | 28.70% |
Ant colony algorithm | Approximate | Self-organization, positive feedback, global optimization | Excellent computing power and operational efficiency | Slow initial convergence | Multiobjective optimization, data classification, data clustering, pattern recognition | [107,108,109,110,111,112] | 1.46% | |
Particle swarm optimization | Approximate | Swarm intelligence, random search | Highly versatile algorithm, adjust few parameters, simple principle, easy to implement, fast convergence speed | Not enough search accuracy | Neural network training, image processing field, electric power system field, the field of mechanical design | [113,114,115,116,117,118,119,120] | 9.36% | |
Immune algorithm | Approximate | Swarm intelligence search algorithm, global convergence | Ensures population diversity, overcomes the ‘early maturity’ problem, and allows for a globally optimal solution | Easy to fall into local search, bad group diversity | Nonlinear optimization, combinatorial optimization, control engineering, robotics, fault diagnosis, image processing | [142,143,144,145,146,147] | 1.80% | |
Chaotic algorithm | Approximate | Randomness, traversal, regularity | High efficiency, confidentiality, and ease of use | Uneven traversal, high search density at boundaries, long search time | Image data encryption, secure communications, control systems, and optimization | [148,149,150,151] | 1.23% | |
Multiagent system | Approximate | Autonomy, interaction with other agents and people, time continuity, self-adaptability, mobility | Scalability and design flexibility and simplicity, reduces system complexity | Gossip problem, delay in information exchange | Large-scale complex problems | [152,153,154,155,156,157,158,159] | 5.13% | |
Expert system | Approximate | The combination of “knowledge base” and “inference machine” | High efficiency, flexibility, transparency | Narrow field of knowledge and possible disparity of opinion | Speech understanding, image analysis, system monitoring, chemical structure analysis, signal interpretation, etc. | [160,161,162] | 1.68% | |
Neural network | Approximate | Massively parallel processing, distributed storage, elastic topology, highly redundant and nonlinear operations | Self-learning, self-organizing, fast-solving speed, robustness | Requires large amounts of data, black box | Pattern recognition, intelligent control, combinatorial optimization, prediction | [163,164,165,166,167,168,169,170,171] | 6.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Kong, T.L.; Zhang, Z.; Metwally, A.S.M.; Sharma, S.; Sharma, K.P.; Eldin, S.M.; Zimon, D. Scheduling and Controlling Production in an Internet of Things Environment for Industry 4.0: An Analysis and Systematic Review of Scientific Metrological Data. Sustainability 2023, 15, 7600. https://doi.org/10.3390/su15097600
Tan L, Kong TL, Zhang Z, Metwally ASM, Sharma S, Sharma KP, Eldin SM, Zimon D. Scheduling and Controlling Production in an Internet of Things Environment for Industry 4.0: An Analysis and Systematic Review of Scientific Metrological Data. Sustainability. 2023; 15(9):7600. https://doi.org/10.3390/su15097600
Chicago/Turabian StyleTan, Lingye, Tiong Lee Kong, Ziyang Zhang, Ahmed Sayed M. Metwally, Shubham Sharma, Kanta Prasad Sharma, Sayed M. Eldin, and Dominik Zimon. 2023. "Scheduling and Controlling Production in an Internet of Things Environment for Industry 4.0: An Analysis and Systematic Review of Scientific Metrological Data" Sustainability 15, no. 9: 7600. https://doi.org/10.3390/su15097600
APA StyleTan, L., Kong, T. L., Zhang, Z., Metwally, A. S. M., Sharma, S., Sharma, K. P., Eldin, S. M., & Zimon, D. (2023). Scheduling and Controlling Production in an Internet of Things Environment for Industry 4.0: An Analysis and Systematic Review of Scientific Metrological Data. Sustainability, 15(9), 7600. https://doi.org/10.3390/su15097600