A Review of Sustainable Pillars and their Fulfillment in Agriculture, Aquaculture, and Aquaponic Production
Abstract
:1. Introduction
2. Literature Research Methodology
- What are the specifics of the traditional sustainable dimensions?
- Is there a need to amplify this definition, based on food production systems?
- How sustainable are traditional food production systems (agriculture, aquaculture)?
- How sustainable is an aquaponic production system in comparison to traditional production systems?
3. The Concept of Sustainability and the Sustainable Pillars
3.1. Economic Sustainability
3.1.1. Generalities
3.1.2. Economic Sustainable Food Production and Consumption
3.2. Social Sustainability
3.2.1. Generalities
3.2.2. Social Responsibility in Food Production
3.3. Environmental Sustainability
3.3.1. Generalities
3.3.2. Environmentally Friendly Food Production
3.4. Cultural Sustainability
3.4.1. Generalities
3.4.2. Cultural Heritage in Food Production
3.5. Technological Sustainability
3.5.1. Generalities
3.5.2. Sustainable Technology Innovation in Food Production
4. Sustainability in Food Production
4.1. Sustainability in Agriculture Food Production
4.1.1. Recent Agricultural Food Production
4.1.2. Impact of the Sustainable Pillars in Agriculture
4.2. Sustainability in Aquaculture Food Production
4.2.1. Industrial Aquaculture Production
4.2.2. Sustainable Optimization Potential of Aquaculture
4.3. Sustainability of Aquaponic Systems
4.3.1. Aquaponic System Development
4.3.2. Wastewater Use in Aquaponic Food Production
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramakrishna, S.; Jose, R. Addressing sustainability gaps. Sci. Total Environ. 2022, 806, 151208. [Google Scholar] [CrossRef]
- Ruggerio, C.A. Sustainability and sustainable development: A review of principles and definitions. Sci. Total Environ. 2021, 786, 147481. [Google Scholar] [CrossRef] [PubMed]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531. [Google Scholar] [CrossRef]
- Norouzi, N. Sustainable Fourth Industrial Revolution. In Handbook of Research on Changing Dynamics in Responsible and Sustainable Business in the Post-COVID-19 Era; Popescu, C., Ed.; IGI Global: Hershey, PA, USA, 2022; pp. 58–77. [Google Scholar] [CrossRef]
- Ragheb, A.; Aly, R.; Ahmed, G. Toward sustainable urban development of historical cities: Case study of Fouh City, Egypt. Ain Shams Eng. J. 2022, 13, 101520. [Google Scholar] [CrossRef]
- Bigliardi, B.; Filippelli, S. A review of the literature on innovation in the agrofood industry: Sustainability, smartness and health. Eur. J. Innov. Manag. 2022, 25, 589–611. [Google Scholar] [CrossRef]
- Larbi-Siaw, O.; Xuhua, H.; Owusu, E.; Owusu-Agyeman, A.; Fulgence, E.B.; Akwasi Frimpong, S. Eco-innovation, sustainable business performance and market turbulence moderation in emerging economies. Technol. Soc. 2022, 68, 101899. [Google Scholar] [CrossRef]
- Daly, H.E. Sustainable Development—Definitions, Principles, Policies. In The Future of Sustainability; Keiner, M., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 39–53. [Google Scholar] [CrossRef]
- Villamil, C.; Schulte, J.; Hallstedt, S. Sustainability risk and portfolio management—A strategic scenario method for sustainable product development. Bus. Strategy Environ. 2022, 31, 1042–1057. [Google Scholar] [CrossRef]
- Pinto, J.T.M.; Morales, M.E.; Fedoruk, M.; Kovaleva, M.; Diemer, A. Servitization in Support of Sustainable Cities: What Are Steel’s Contributions and Challenges? Sustainability 2019, 11, 855. [Google Scholar] [CrossRef]
- García-Oliveira, P.; Fraga-Corral, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Solutions for the sustainability of the food production and consumption system. Crit. Rev. Food Sci. Nutr. 2022, 62, 1765–1781. [Google Scholar] [CrossRef]
- Khan, H.; Weili, L.; Khan, I. Environmental innovation, trade openness and quality institutions: An integrated investigation about environmental sustainability. Environ. Dev. Sustain. 2022, 24, 3832–3862. [Google Scholar] [CrossRef]
- Fanzo, J.; Rudie, C.; Sigman, I.; Grinspoon, S.; Benton, T.G.; Brown, M.E.; Covic, N.; Fitch, K.; Golden, C.D.; Grace, D.; et al. Sustainable Food Systems and Nutrition in the 21st Century: A report from the 22nd Annual Harvard Nutrition Obesity Symposium. Am. J. Clin. Nutr. 2021, 115, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Mooney, P. Too big to Feed: Exploring the Impacts of Mega-mergers, Consolidation and Concentration of Power in the Agri-food Sector. 2017. Available online: https://agris.fao.org/agris-search/search.do?recordID=XF2018001356 (accessed on 22 September 2022).
- Gillespie, S.; Haddad, L.; Mannar, V.; Menon, P.; Nisbett, N. The politics of reducing malnutrition: Building commitment and accelerating progress. Matern. Child Nutr. 2013, 382, 552–569. [Google Scholar] [CrossRef] [PubMed]
- Fraundorfer, M. Global Food Production. In Global Governance in the Age of the Anthropocene; Fraundorfer, M., Ed.; Springer Nature: Basel, Switzerland, 2022; pp. 161–171. [Google Scholar]
- Mahony, J.; van Sinderen, D. Virome studies of food production systems: Time for ‘farm to fork’ analyses. Curr. Opin. Biotechnol. 2022, 73, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Wu, Y. Combined role of green productivity growth, economic globalization, and eco-innovation in achieving ecological sustainability for OECD economies. J. Environ. Manag. 2022, 302, 113980. [Google Scholar] [CrossRef]
- Jasti, N.V.K.; Jha, N.K.; Chaganti, P.K.; Kota, S. Sustainable production system: Literature review and trends. Manag. Environ. Qual. 2022, 33, 692–717. [Google Scholar] [CrossRef]
- Yu, Q.; Xiang, M.; Sun, Z.; Wu, W. The complexity of measuring cropland use intensity: An empirical study. Agric. Syst. 2021, 192, 103180. [Google Scholar] [CrossRef]
- Hu, X.; Gong, H.; Hollowell, P.; Liao, M.; Li, Z.; Ruane, S.; Liu, H.; Pambou, E.; Mahmoudi, N.; Dalgliesh, R.M.; et al. What happens when pesticides are solubilised in binary ionic/zwitterionic-nonionic mixed micelles? J. Colloid Interface Sci. 2021, 586, 190–199. [Google Scholar] [CrossRef]
- Bezner Kerr, R.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can agroecology improve food security and nutrition? A review. Glob. Food Secur. 2021, 29, 100540. [Google Scholar] [CrossRef]
- Naderi, R.; Nikabadi, M.S.; Tabriz, A.A.; Pishvaee, M.S. Supply chain sustainability improvement using exergy analysis. Comput. Ind. Eng. 2021, 154, 107142. [Google Scholar] [CrossRef]
- Jablonski, B.B.R.; Hadrich, J.; Bauman, A.; Sullins, M.; Thilmany, D. The profitability implications of sales through local food markets for beginning farmers and ranchers. Agric. Financ. Rev. 2022, 82, 559–576. [Google Scholar] [CrossRef]
- Buscaroli, E.; Braschi, I.; Cirillo, C.; Fargue-Lelièvre, A.; Modarelli, G.C.; Pennisi, G.; Righini, I.; Specht, K.; Orsini, F. Reviewing chemical and biological risks in urban agriculture: A comprehensive framework for a food safety assessment of city region food systems. Food Control 2021, 126, 108085. [Google Scholar] [CrossRef]
- Cappelli, L.; D’Ascenzo, F.; Ruggieri, R.; Gorelova, I. Is Buying Local Food a Sustainable Practice? A Scoping Review of Consumers’ Preference for Local Food. Sustainability 2022, 14, 772. [Google Scholar] [CrossRef]
- Gugerell, C.; Sato, T.; Hvitsand, C.; Toriyama, D.; Suzuki, N.; Penker, M. Know the Farmer That Feeds You: A Cross-Country Analysis of Spatial-Relational Proximities and the Attractiveness of Community Supported Agriculture. Agriculture 2021, 11, 1006. [Google Scholar] [CrossRef]
- Carlowitz, H.C.V. Sylvicultura Oeconomica, Oder Haußwirthliche Nachricht und Naturmäßige Anweisung Zur Wilden Baum-Zucht; Bayerische Staatsbibliothek: München, Germany, 1713. [Google Scholar]
- Weyand, A.; Thiede, S.; Mangers, J.; Plapper, P.; Ketenci, A.; Wolf, M.; Panagiotopoulou, V.C.; Stavropoulos, P.; Köppe, G.; Gries, T.; et al. Sustainability and Circular Economy in Learning Factories—Case Studies. In Proceedings of the 12th Conference on Learning Factories (CLF 2022), Singapore, 11–13 April 2022. [Google Scholar] [CrossRef]
- Bradu, P.; Biswas, A.; Nair, C.; Sreevalsakumar, S.; Patil, M.; Kannampuzha, S.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; et al. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environ. Sci. Pollut. Res. 2022, 1–32. [Google Scholar] [CrossRef] [PubMed]
- WCED. Report of the World Commission on Environment and Development; United Nations Digital Library: New York, NY, USA, 1987.
- Brinkmann, R. Defining Sustainability. In The Palgrave Handbook of Global Sustainability; Macmillan, P., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Jayarathna, C.P.; Agdas, D.; Dawes, L. Exploring sustainable logistics practices toward a circular economy: A value creation perspective. Bus. Strategy Environ. 2023, 32, 704–720. [Google Scholar] [CrossRef]
- Olabi, A.G.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [Google Scholar] [CrossRef]
- Roy, J.; Some, S.; Das, N.; Pathak, M. Demand side climate change mitigation actions and SDGs: Literature review with systematic evidence search. Environ. Res. Lett. 2021, 16, 043003. [Google Scholar] [CrossRef]
- Muri, H.; Sandstad Næss, J.; Iordan, C.M. Potential contribution from bioenergy with CCS to SDG13: An Earth system modelling perspective. In EGU General Assembly Conference Abstracts; EGU2020-19428; European Geosciences Union (EGU): Vienna, Austria, 2020. [Google Scholar] [CrossRef]
- Elkington, J. Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development. Calif. Manag. Rev. 1994, 36, 90–100. [Google Scholar] [CrossRef]
- Barbu, M.C.R.; Popescu, M.C.; Burcea, G.B.; Costin, D.E.; Popa, M.G.; Păsărin, L.D.; Turcu, I. Sustainability and Social Responsibility of Romanian Sport Organizations. Sustainability 2022, 14, 643. [Google Scholar] [CrossRef]
- Nikolakis, W.; Olaru, D.; Kallmuenzer, A. What motivates environmental and social sustainability in family firms? A cross-cultural survey. Bus. Strategy Environ. 2022, 31, 2351–2364. [Google Scholar] [CrossRef]
- Lopolito, A.; Falcone, P.M.; Sica, E. The role of proximity in sustainability transitions: A technological niche evolution analysis. Res. Policy 2022, 51, 104464. [Google Scholar] [CrossRef]
- Di Simone, L.; Petracci, B.; Piva, M. Economic Sustainability, Innovation, and the ESG Factors: An Empirical Investigation. Sustainability 2022, 14, 2270. [Google Scholar] [CrossRef]
- Meseguer-Sánchez, V.; Gálvez-Sánchez, F.J.; López-Martínez, G.; Molina-Moreno, V. Corporate Social Responsibility and Sustainability. A Bibliometric Analysis of Their Interrelations. Sustainability 2021, 13, 1636. [Google Scholar] [CrossRef]
- Sarkar, B.; Ullah, M.; Sarkar, M. Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 2022, 332, 129813. [Google Scholar] [CrossRef]
- Yadav, D.; Kumari, R.; Kumar, N.; Sarkar, B. Reduction of waste and carbon emission through the selection of items with cross-price elasticity of demand to form a sustainable supply chain with preservation technology. J. Clean. Prod. 2021, 297, 126298. [Google Scholar] [CrossRef]
- Zia, A.; Alzahrani, M.; Alomari, A.; AlGhamdi, F. Investigating the Drivers of Sustainable Consumption and Their Impact on Online Purchase Intentions for Agricultural Products. Sustainability 2022, 14, 6563. [Google Scholar] [CrossRef]
- Sepehri, A.; Mishra, U.; Sarkar, B. A sustainable production-inventory model with imperfect quality under preservation technology and quality improvement investment. J. Clean. Prod. 2021, 310, 127332. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lai, S.B.; Wen, C.T. The Influence of Green Innovation Performance on Corporate Advantage in Taiwan. J. Bus. Ethics 2006, 67, 331–339. [Google Scholar] [CrossRef]
- Le, T.T.; Ferasso, M. How green investment drives sustainable business performance for food manufacturing small- and medium-sized enterprises? Evidence from an emerging economy. Corp. Soc. Responsab. Environ. Manag. 2022, 29, 1034–1049. [Google Scholar] [CrossRef]
- Ong, T.S.; Lee, A.S.; The, B.H.; Magsi, H.B. Environmental Innovation, Environmental Performance and Financial Performance: Evidence from Malaysian Environmental Proactive Firms. Sustainability 2019, 11, 3494. [Google Scholar] [CrossRef]
- Abbey, L.; Okoli, C.; Martin-Clarke, D.; Ijenyo, M.; Abbey, J.; Anku, K.; Ofoe, R.; Leke-Aladekoba, A.; Gunupuru, L.R.; Iheshiulo, E.M.A.; et al. The Role of Nanomaterials in Plant Production and Fortification for Food and Nutrition Security. In Emerging Challenges in Agriculture and Food Science; B P International: Hong Kong, China, 2022; Volume 4, pp. 18–54. [Google Scholar] [CrossRef]
- Marinova, D.; Bogueva, D. Food and Environmental Emergency. In Food in a Planetary Emergency; Springer: Singapore, 2022; pp. 37–55. [Google Scholar] [CrossRef]
- Munir, N.; Hasnain, M.; Roessner, U.; Abideen, Z. Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2150–2196. [Google Scholar] [CrossRef]
- Fernández-Lobato, F.; López-Sánchez, Y.; Baccar, R.; Fendri, M.; Vera, D. Life cycle assessment of the most representative virgin olive oil production systems in Tunisia. Sustain. Prod. Consum. 2022, 32, 908–923. [Google Scholar] [CrossRef]
- Fernando, Y.; Halili, M.; Tseng, M.L.; Tseng, J.W.; Lim, M.K. Sustainable social supply chain practices and firm social performance: Framework and empirical evidence. Sustain. Prod. Consum. 2022, 32, 160–172. [Google Scholar] [CrossRef]
- Carroll, A.B. A Three-Dimensional Conceptual Model of Corporate Performance. Acad. Manag. Rev. 1979, 4, 497–505. [Google Scholar] [CrossRef]
- Nicolescu, M.M.; Vărzaru, A.A. Ethics and Disclosure of Accounting, Financial and Social Information Within Listed Companies. Evidence From the Bucharest Stock Exchange. In Proceedings of the 6th BASIQ International Conference on New Trends in Sustainable Business and Consumption, Messina, Italy, 4–6 June 2020; Pamfilie, R., Dinu, V., Tăchiciu, L., Pleșea, D., Vasiliu, C., Eds.; ASE: Bucharest, Romania, 2020; pp. 73–80. [Google Scholar]
- Alaoui, A.; Barão, L.; Ferreira, C.S.S.; Hessel, R. An Overview of Sustainability Assessment Frameworks in Agriculture. Land 2022, 11, 537. [Google Scholar] [CrossRef]
- Fröberg, A.; Lundvall, S. Sustainable Development Perspectives in Physical Education Teacher Education Course Syllabi: An Analysis of Learning Outcomes. Sustainability 2022, 14, 5955. [Google Scholar] [CrossRef]
- Latruffe, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of sustainability in agriculture: A review of indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar] [CrossRef]
- Litvaj, I.; Drbúl, M.; Bůžek, M. Sustainability in Small and Medium Enterprises, Sustainable Development in the Slovak Republic, and Sustainability and Quality Management in Small and Medium Enterprises. Sustainability 2023, 15, 2039. [Google Scholar] [CrossRef]
- Teixeira, H.M.; Schulte, R.P.O.; Anten, N.P.R.; Bosco, L.C.; Baartman, J.E.M.; Moinet, G.Y.K.; Reidsma, P. How to quantify the impacts of diversification on sustainability? A review of indicators in coffee systems. Agron. Sustain. Dev. 2022, 42, 62. [Google Scholar] [CrossRef]
- Ait Sidhoum, A.; Vrachioli, M. Agriculture and Sustainability. In The Palgrave Handbook of Global Sustainability; Macmillan, P., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–23. [Google Scholar] [CrossRef]
- Reytar, K.; Hanson, C.; Henninger, N. Indicators of Sustainable Agriculture: A Scoping Study; Working Paper—Installment 6 of Creating a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2014; pp. 1–20. Available online: http://www.worldresourcesreport.org (accessed on 2 November 2022).
- Scown, M.W.; Brady, M.V.; Nicholas, K.A. Billions in Misspent EU Agricultural Subsidies Could Support the Sustainable Development Goals. One Earth 2020, 3, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Bezáková, M.; Bezák, P. Which sustainability objectives are difficult to achieve? The mid-term evaluation of predicted scenarios in remote mountain agricultural landscapes in Slovakia. Land Use Policy 2022, 115, 106020. [Google Scholar] [CrossRef]
- Beaudoin, C.; Joncoux, S.; Jasmin, J.F.; Berberi, A.; McPhee, C.; Schillo, R.S.; Nguyen, M.V. A research agenda for evaluating living labs as an open innovation model for environmental and agricultural sustainability. Environ. Chall. 2022, 7, 100505. [Google Scholar] [CrossRef]
- Cui, L.; Weng, S.; Nadeem, A.M.; Rafique, M.Z.; Shahzad, U. Exploring the role of renewable energy, urbanization and structural change for environmental sustainability: Comparative analysis for practical implications. Renew. Energy 2022, 184, 215–224. [Google Scholar] [CrossRef]
- Van den Brink, P.J.; Boxall, A.B.A.; Maltby, L.; Brooks, B.W.; Rudd, M.A.; Backhaus, T.; Spurgeon, D.; Verougstraete, V.; Ajao, C.; Ankley, G.T.; et al. Toward sustainable environmental quality: Priority research questions for Europe. Environ. Toxicol. Chem. 2018, 37, 2281–2295. [Google Scholar] [CrossRef]
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; de Vries, W.; Weiss, F.; et al. Impacts of European livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Sharma, S.; Kundu, A.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Sustainable environmental management and related biofuel technologies. J. Environ. Manag. 2020, 273, 111096. [Google Scholar] [CrossRef]
- Arif, M.S.; Riaz, M.; Shahzad, S.M.; Yasmeen, T.; Ashraf, M.; Siddique, M.; Mubarik, M.S.; Bragazza, L.; Buttler, A. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. Sci. Total Environ. 2018, 619–620, 517–527. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Keizer, J.J.; Santos, L.M.B.; Serpa, D.; Silva, V.; Cerqueira, M.; Ferreira, A.J.D.; Abrantes, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agric. Ecosyst. Environ. 2018, 256, 184–193. [Google Scholar] [CrossRef]
- Granco, G.; Caldas, M.; Bergtold, J.; Heier Stamm, J.L.; Mather, M.; Sanderson, M.; Daniels, M.; Sheshukov, A.; Haukos, D.; Ramsey, S. Local environment and individuals’ beliefs: The dynamics shaping public support for sustainability policy in an agricultural landscape. J. Environ. Manag. 2022, 301, 113776. [Google Scholar] [CrossRef]
- de Araújo, A.F.; Andrés Marques, I.; Ribeiro Candeias, T. Tourists’ Willingness to Pay for Environmental and Sociocultural Sustainability in Destinations: Underlying Factors and the Effect of Age. In Transcending Borders in Tourism Through Innovation and Cultural Heritage; Katsoni, V., Şerban, A.C., Eds.; Springer: Cham, Switzerland, 2022; pp. 33–56. [Google Scholar] [CrossRef]
- Hawkes, J. The Fourth Pillar of Sustainability: Culture’s Essential Role in Public Planning; Cultural Development Network and Part of University Press: Melbourne, Australia, 2001; Available online: http://www.culturaldevelopment.net.au/community/Downloads/HawkesJon (accessed on 5 November 2022).
- Loach, K.; Rowley, J. Cultural sustainability: A perspective from independent libraries in the United Kingdom and the United States. J. Librariansh. Inf. Sci. 2022, 54, 80–94. [Google Scholar] [CrossRef]
- Gonçalves, A.; Dorsch, L.L.; Figueiredo, M. Digital Tourism: An Alternative View on Cultural Intangible Heritage and Sustainability in Tavira, Portugal. Sustainability 2022, 14, 2912. [Google Scholar] [CrossRef]
- United Nations Educational Scientific and Cultural Organization. Policy Document for the Integration of a Sustainable Development Perspective into the Processes of the World Heritage Convention. General Assembly of States Parties to the World Heritage Convention at Its 20th session 2015. Available online: https://whc.unesco.org/en/sustainabledevelopment/ (accessed on 5 November 2022).
- Alba, E. Fundamentos para la gestión del Patrimonio cultural. In El Desarrollo Territorial Valenciano. Reflexiones en Torno a Sus claves; PUV: Berlin, Germany, 2014; pp. 169–193. Available online: http://hdl.handle.net/10550/35407 (accessed on 5 November 2022).
- Gretzel, U.; Sigala, M.; Xiang, Z.; Koo, C. Smart tourism: Foundations and developments. Electron. Mark. 2015, 25, 179–188. [Google Scholar] [CrossRef]
- Ilieva, R.T.; Cohen, N.; Israel, M.; Specht, K.; Fox-Kämper, R.; Fargue-Lelièvre, A.; Poniży, L.; Schoen, V.; Caputo, S.; Kirby, K.K.; et al. The Socio-Cultural Benefits of Urban Agriculture: A Review of the Literature. Land 2022, 11, 622. [Google Scholar] [CrossRef]
- Scholte, S.S.K.; van Teeffelen, A.J.A.; Verburg, P.H. Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods. Ecol. Econ. 2015, 114, 67–78. [Google Scholar] [CrossRef]
- Reynolds, K.; Cohen, N. Beyond the Kale: Urban Agriculture and Social Justice Activism in New York City; University of Georgia Press: Athens, GA, USA, 2016. [Google Scholar]
- Raihan, A.; Tuspekova, A. Role of economic growth, renewable energy, and technological innovation to achieve environmental sustainability in Kazakhstan. Curr. Res. Environ. Sustain. 2022, 4, 100165. [Google Scholar] [CrossRef]
- Ullah, M.; Biswajit Sarkar, B. Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 2020, 219, 360–374. [Google Scholar] [CrossRef]
- Dey, B.K.; Bhuniya, S.; Sarkar, B. Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Syst. Appl. 2021, 184, 115464. [Google Scholar] [CrossRef]
- Hansmeier, H.; Schiller, K.; Rogge, K.S. Towards methodological diversity in sustainability transitions research? Comparing recent developments (2016–2019) with the past (before 2016). Environ. Innov. Soc. Transit. 2021, 38, 169–174. [Google Scholar] [CrossRef]
- Köhler, J.; Geels, F.W.; Kern, F.; Markard, J.; Onsongo, E.; Wieczorek, A.; Alkemade, F.; Avelino, F.; Bergek, A.; Boons, F.; et al. An agenda for sustainability transitions research: State of the art and future directions. Environ. Innov. Soc. Transit. 2019, 31, 1–32. [Google Scholar] [CrossRef]
- von Kutzschenbach, M.; Daub, C.H. Digital Transformation for Sustainability: A Necessary Technical and Mental Revolution. In New Trends in Business Information Systems and Technology; Studies in Systems, Decision and Control; Dornberger, R., Ed.; Springer: Cham, Switzerland, 2021; Volume 294, pp. 179–192. [Google Scholar] [CrossRef]
- Alraja, M.N.; Imran, R.; Khashab, B.M.; Shah, M. Technological Innovation, Sustainable Green Practices and SMEs Sustainable Performance in Times of Crisis (COVID-19 pandemic). Inf. Syst. Front. 2022, 24, 1081–1105. [Google Scholar] [CrossRef]
- Zhu, Q.; Zou, F.; Zhang, P. The role of innovation for performance improvement through corporate social responsibility practices among small and medium-sized suppliers in China. Corp. Soc. Responsib. Environ. Manag. 2019, 26, 341–350. [Google Scholar] [CrossRef]
- El-Haddadeh, R. Digital Innovation Dynamics Influence on Organisational Adoption: The Case of Cloud Computing Services. Inf. Syst. Front. 2020, 22, 985–999. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Khan, S.; Suman, R. Sustainability 4.0 and its applications in the field of manufacturing. Internet Things Cyber-Phys. Syst. 2020, 2, 82–90. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Andronie, M.; Iatagan, M.; Geamănu, M.; Ștefănescu, R.; Dijmărescu, I. Deep Learning-Assisted Smart Process Planning, Robotic Wireless Sensor Networks, and Geospatial Big Data Management Algorithms in the Internet of Manufacturing Things. ISPRS Int. J. Geo-Inf. 2022, 11, 277. [Google Scholar] [CrossRef]
- Chourasia, S.; Tyagi, A.; Pandey, S.M.; Walia, R.S.; Murtaza, Q. Sustainability of Industry 6.0 in Global Perspective: Benefits and Challenges. MAPAN 2022, 37, 443–452. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Liang, X.; O’Callaghan, E.; Goh, H.; Othman, M.H.D.; Avtar, R.; Kusworo, T.D. Transformation of Solid Waste Management in China: Moving towards Sustainability through Digitalization-Based Circular Economy. Sustainability 2022, 14, 2374. [Google Scholar] [CrossRef]
- Saraniemi, S.; Harrikari, T.; Fiorentino, V.; Romakkaniemi, M.; Laura Tiitinen, L. Silenced Coffee Rooms—The Changes in Social Capital within Social Workers’ Work Communities during the First Wave of the COVID-19 Pandemic. Challenges 2022, 13, 8. [Google Scholar] [CrossRef]
- Vicuña, S.M. Sustainable Cities, Rescue of Original Construction Methods and Use of Technology. A literary Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1006, 012013. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; FAO: Rome, Italy, 2018; p. 60. [Google Scholar]
- An, C.; Sun, C.; Li, N.; Zhan, S.; Gao, F.; Zeng, Z.; Cui, B.; Wang, Y.; Li, X.; Jiang, J.; et al. Nanomaterials and nanotechnology for the delivery of agrochemicals: Strategies towards sustainable agriculture. J. Nanobiotechnol. 2022, 20, 11. [Google Scholar] [CrossRef]
- Zscheischler, J.; Brunsch, R.; Rogga, S.; Scholz, R.W. Perceived risks and vulnerabilities of employing digitalization and digital data in agriculture—Socially robust orientations from a transdisciplinary process. J. Clean. Prod. 2022, 358, 132034. [Google Scholar] [CrossRef]
- Omran, I.I.; Al-Saati, N.H.; Al-Saati, H.H.; Hashim, K.S.; Al-Saati, Z.N. Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA). Water Pract. Technol. 2021, 16, 648–660. [Google Scholar] [CrossRef]
- Salvador, R.; Carlos Francisco, A.; Moro Piekarski, C.; Mendes Luz, L. Life Cycle Assessment (LCA) as a tool for business strategy. Indep. J. Manag. Prod. 2014, 5, 733–751. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture. Okla. Coop. Ext. Serv. 2006, 454, 1–16. [Google Scholar]
- Yang, X.; Khan, I. Dynamics among economic growth, urbanization, and environmental sustainability in IEA countries: The role of industry value-added. Environ. Sci. Pollut. Res. 2022, 29, 4116–4127. [Google Scholar] [CrossRef] [PubMed]
- Pinho, S.M.; de Lima, J.P.; David, L.H.; Emerenciano, M.G.C.; Goddek, S.; Verdegem, M.C.J.; Keesman, K.J.; Portella, M.C. FLOCponics: The integration of biofloc technology with plant production. Rev. Aquac. 2022, 14, 647–675. [Google Scholar] [CrossRef]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Urban versus conventional agriculture, taxonomy of resource profiles: A review. Agron. Sustain. Dev. 2016, 36, 1–19. [Google Scholar] [CrossRef]
- Armanda, D.T.; Guinée, J.B.; Tukker, A. The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability—A review. Glob. Food Secur. 2019, 22, 13–24. [Google Scholar] [CrossRef]
- Scown, M.W.; Winkler, K.J.; Nicholas, K.A. Aligning research with policy and practice for sustainable agricultural land systems in Europe. PNAS 2019, 116, 4911–4916. [Google Scholar] [CrossRef]
- Workie, E.; Mackolil, J.; Nyika, J.; Ramadas, S. Deciphering the impact of COVID-19 pandemic on food security, agriculture, and livelihoods: A review of the evidence from developing countries. Curr. Res. Environ. Sustain. 2020, 2, 100014. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, D.M.; Satapathy, K.C.; Panda, B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci. Total Environ. 2022, 803, 149990. [Google Scholar] [CrossRef] [PubMed]
- Chandini, R.K.; Kumar, R.; Om, P. The Impact of Chemical Fertilizers on our Environment and Ecosystem. In Research Trends in Environmental Sciences, 2nd ed.; AkiNik Publications: New Delhi, India, 2019; pp. 71–86. Available online: https://www.researchgate.net/publication/331132826 (accessed on 28 November 2022).
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Pereira, A.E.S.; Oliveira, J.L.; Savassa, M.S.; Rogério, C.B.; Medeiros, G.A.; Fraceto, L.F. Lignin nanoparticles: New insights for a sustainable agriculture. J. Clean. Prod. 2022, 345, 131145. [Google Scholar] [CrossRef]
- Schwarzmueller, F.; Kastner, T. Agricultural trade and its impacts on cropland use and the global loss of species habitat. Sustain. Sci. 2022, 17, 2363–2377. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Jocelyn Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, P.P.; Nayak, R.; Jena, M.; Pradhan, B. Convoluted role of cyanobacteria as biofertilizer: An insight of sustainable agriculture. Vegetos 2022, 1–13. [Google Scholar] [CrossRef]
- Lowry, G.V.; Avellan, A.; Gilbertson, L.M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 2019, 14, 517–522. [Google Scholar] [CrossRef]
- Marta Nunes da Silva, M.; Machado, J.; Osorio, J.; Duarte, R.; Santos, C.S. Non-Essential Elements and Their Role in Sustainable Agriculture. Agronomy 2022, 12, 888. [Google Scholar] [CrossRef]
- El Chami, D.; Daccache, A.; El Moujabber, M. How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef]
- Ikerd, J.E. The need for a system approach to sustainable agriculture. Agric. Ecosyst. Environ. 1993, 46, 147–160. [Google Scholar] [CrossRef]
- Tomich, T.P.; Brodt, S.; Ferris, H.; Galt, R.; Horwath, W.R.; Kebreab, E.; Leveau, J.H.J.; Liptzin, D.; Lubell, M.; Merel, P.; et al. Agroecology: A Review from a Global-Change Perspective. Annu. Rev. Environ. Resour. 2011, 36, 193–222. [Google Scholar] [CrossRef]
- Mohanan, V.P.; Mahanta, N.R.; Kushwaha, A.; Goswami, L. Chapter 3—Leveraging the potential of aquaponics for urban sustainability. Emerg. Trends Approaching Zero Waste 2022, 59–78. [Google Scholar] [CrossRef]
- Thierfelder, C.; Baudron, F.; Setimela, P.; Nyagumbo, I.; Mupangwa, W.; Mhlanga, B.; Lee, N.; Bruno Gérard, B. Complementary practices supporting conservation agriculture in southern Africa. A review. Agron. Sustain. Dev. 2018, 38, 16. [Google Scholar] [CrossRef]
- Babla, M.; Katwal, U.; Yong, M.T.; Jahandari, S.; Rahme, M.; Chen, Z.H.; Tao, Z. Value-added products as soil conditioners for sustainable agriculture. Resour. Conserv. Recycl. 2022, 178, 106079. [Google Scholar] [CrossRef]
- Alaoui, A.; Barão, L.; Ferreira, C.S.S.; Schwilch, G.; Basch, G.; Garcia-Orenes, F.; Morugan, A.; Mataix-Solera, J.; Kosmas, C.; Glavan, M.; et al. Visual assessment of the impact of agricultural management practices on soil quality. Agron. J. 2020, 112, 2608–2623. [Google Scholar] [CrossRef]
- Ball, B.C.; Guimarães, R.M.L.; Cloy, J.M.; Hargreaves, P.R.; Shepherd, T.G.; McKenzie, B.M. Visual soil evaluation: A summary of some applications and potential developments for agriculture. Soil Tillage Res. 2017, 173, 114–124. [Google Scholar] [CrossRef]
- Kanter, D.R.; Musumba, M.; Wood, S.L.R.; Palm, C.; Antle, J.; Balvanera, P.; Dale, V.H.; Havlik, P.; Kline, K.L.; Scholes, R.J.; et al. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. 2018, 163, 73–88. [Google Scholar] [CrossRef]
- Reshma Shinde, R.; Sarkar, P.K.; Thombare, N.; Naik, S.K. Soil Conservation: Today’s Need for Sustainable Development. Agric. Food: E-Newsl. 2019, 1, 11163. Available online: https://www.researchgate.net/profile/Pradip-Sarkar-12/publication/332780118_AGRICULTURE_FOOD_e-Newsletter_Soil_Conservation_Today’s_Need_for_Sustainable_Development/links/5cc92504299bf120978b9429/AGRICULTURE-FOOD-e-Newsletter-Soil-Conservation-Todays-Need-for-Sustainable-Development.pdf (accessed on 5 January 2023).
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Gayatri, S.; Gasso-Tortajada, V.; Vaarst, M. Assessing Sustainability of Smallholder Beef Cattle Farming in Indonesia: A Case Study Using the FAO SAFA Framework. J. Sustain. Dev. 2016, 9, 1315–1755. [Google Scholar] [CrossRef]
- Ahmed, N.; Azra, M.N. Aquaculture Production and Value Chains in the COVID-19 Pandemic. Curr. Environ. Health Rep. 2022, 9, 423–435. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Tidwell, J.H. Characterization and Categories of Aquaculture Production Systems. In Aquaculture Production Systems; Wiley: Hoboken, NJ, USA, 2012; pp. 64–78. [Google Scholar] [CrossRef]
- Ahmed, N.; Ward, J.D.; Thompson, S.; Saint, C.P.; Diana, J.S. Blue-Green Water Nexus in Aquaculture for Resilience to Climate Change. Rev. Fish. Sci. Aquac. 2018, 26, 139–154. [Google Scholar] [CrossRef]
- Ragasa, C.; Charo-Karisa, H.; Rurangwa, E.; Tran, N.; Shikuku, K.M. Sustainable aquaculture development in sub-Saharan Africa. Nat. Food 2020, 3, 92–94. [Google Scholar] [CrossRef]
- Kannan Mohan, K.; Rajan, D.K.; Muralisankar, T.; Ganesan, A.R.; Sathishkumar, P.; Revathi, N. Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture 2022, 553, 738095. [Google Scholar] [CrossRef]
- Jiang, Q.; Bhattarai, N.; Pahlow, M.; Xu, Z. Environmental sustainability and footprints of global aquaculture. Resour. Conserv. Recycl. 2022, 180, 106183. [Google Scholar] [CrossRef]
- Mateusz Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black Soldier Fly Full-Fat Larvae Meal Is More Profitable Than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development. Animals 2021, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Khieokhajonkhet, A.; Uanlam, P.; Ruttarattanamongkol, K.; Aeksiri, N.; Tatsapong, P.; Kaneko, G. Replacement of fish meal by black soldier fly larvae meal in diet for goldfish Carassius auratus: Growth performance, hematology, histology, total carotenoids, and coloration. Aquaculture 2022, 561, 738618. [Google Scholar] [CrossRef]
- Verdegem, M.; Yossa, R.; Chary, K.; Schrama, J.W.; Beveridge, M.C.M.; Marwaha, N. Sustainable and Accessible Fish Feeds for Small-Scale Fish Farmers; CGIAR Research Program on Fish Agri-Food Systems: Penang, Malaysia, 2021. [Google Scholar]
- Gyalog, G.; Cubillos Tovar, J.P.; Békefi, E. Freshwater Aquaculture Development in EU and Latin-America: Insight on Production Trends and Resource Endowments. Sustainability 2022, 14, 6443. [Google Scholar] [CrossRef]
- Bajpai, P. Water Footprint. In Fourth Generation Biofuels; Springer Briefs in Applied Sciences and Technology; Springer: Singapore, 2022; pp. 69–75. [Google Scholar] [CrossRef]
- Teoh, G.H.; Jawad, Z.A.; Ooi, B.S.; Chang, Y.S.; Low, S.C. Surface-templating of rough interface to efficiently recover aquaculture wastewater using membrane distillation. Desalination 2022, 522, 115419. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhao, H.; Li, Z.; Tang, X.; Li, Y.; Chen, S.; Zhu, Z.; Wang, T.; Strokal, M.; Kroeze, C. Nitrogen budgets for freshwater aquaculture and mariculture in a large tropical island—A case study for Hainan Island 1998–2018. Mar. Environ. Res. 2022, 177, 105642. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual—Setting the Global Standard; Earthscan: London, UK, 2011; Available online: https://waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2.pdf (accessed on 13 October 2022).
- Lu, J.; Guo, Y.; Muhmood, A.; Lv, Z.; Zeng, B.; Qiu, Y.; Zhang, L.; Wang, P.; Ren, L. Food Waste Management Employing UV-Induced Black Soldier Flies: Metabolomic Analysis of Bioactive Components, Antioxidant Properties, and Antibacterial Potential. Int. J. Environ. Res. Public Health 2022, 19, 6614. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Hossain, E.; Prodhan, M.H.; Rahman, T.; Nielsen, M.; Khan, A. Profit and loss dynamics of aquaculture farming. Aquaculture 2022, 561, 738619. [Google Scholar] [CrossRef]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Pinho, S.M.; David, L.H.; Garcia, F.; Keesman, K.J.; Portella, M.C.; Goddek, S. South American fish species suitable for aquaponics: A review. Aquac. Int. 2021, 29, 1427–1449. [Google Scholar] [CrossRef]
- Inosako, K.; Troyo Diéguez, E.; Saito, T.; Lucero Vega, G. Manual Técnico para Cultivo a Cielo Abierto usando Agua Residual de Acuaponia. In Manual Técnico Sobre Acuaponía Combinada con Cultivo a Cielo Abierto Adaptado en Zonas Áridas, 1st ed.; Larrinaga Mayoral, J.Á., Racotta Dimitrov, I., Yamada, S., Eds.; Imprenta Fukui, S.A.: Tottori, Japan, 2020; pp. 21–37. [Google Scholar]
- Adabembe, B.A.; Fasinmirin, J.T.; Olanrewaju, O.O.; Faloye, O.T. Hydro-physical, Hydrophobicity and Chemical Characterization of Drip Irrigated Soil Using Aquaculture Wastewater under Sweet Pepper/Okra Intercrop. Commun. Soil Sci. Plant Anal. 2021, 53, 2460–2475. [Google Scholar] [CrossRef]
- Chen, L.; Feng, Q.; Li, C.; Wei, Y.; Zhao, Y.; Feng, Y.; Zheng, H.; Li, F.; Li, H. Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions. Sci. Rep. 2017, 7, 11193. [Google Scholar] [CrossRef]
- König, B.; Janker, J.; Reinhardt, T.; Villarroel, M.; Junge, R. Analysis of aquaponics as an emerging technological innovation system. J. Clean. Prod. 2018, 180, 232–243. [Google Scholar] [CrossRef]
- Gayam, K.K.; Jain, A.; Gehlot, A.; Singh, R.; Akram, S.V.; Singh, A.; Anand, D.; Delgado Noya, I. Imperative Role of Automation and Wireless Technologies in Aquaponics Farming. Wirel. Commun. Mob. Comput. 2022, 2022, 8290255. [Google Scholar] [CrossRef]
- David, L.H.; Pinho, S.M.; Agostinho, F.; Costa, J.I.; Portella, M.C.; Keesman, K.J.; Garcia, F. Sustainability of urban aquaponics farms: An emergy point of view. J. Clean. Prod. 2022, 331, 129896. [Google Scholar] [CrossRef]
- Joyce, A.; Goddek, S.; Kotzen, B.; Wuertz, S. Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 19–34. [Google Scholar] [CrossRef]
- Krastanova, M.; Sirakov, I.; Ivanova-Kirilova, S.; Yarkov, D.; Orozova, P. Aquaponic systems: Biological and technological parameters. Biotechnol. Biotechnol. Equip. 2022, 36, 305–316. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef]
- Yue, Q.; Guo, P.; Wu, H.; Wang, Y.; Zhang, C. Towards sustainable circular agriculture: An integrated optimization framework for crop-livestock-biogas-crop recycling system management under uncertainty. Agric. Syst. 2022, 196, 103347. [Google Scholar] [CrossRef]
- Reyes Yanes, A.; Martinez, P.; Ahmad, R. Towards automated aquaponics: A review on monitoring, IoT, and smart systems. J. Clean. Prod. 2020, 263, 121571. [Google Scholar] [CrossRef]
- van der Goot, A.J.; Pelgrom, P.J.M.; Berghout, J.A.M.; Geerts, M.E.J.; Jankowiak, L.; Hardt, N.A.; Keijer, J.; Schutyser, M.A.I.; Nikiforidis, C.V.; Boom, R.M. Concepts for further sustainable production of foods. J. Food Eng. 2016, 168, 42–51. [Google Scholar] [CrossRef]
- Gallo, N.; Natali, M.L.; Quarta, A.; Gaballo, A.; Terzi, A.; Sibillano, T.; Giannini, C.; De Benedetto, G.E.; Lunetti, P.; Capobianco, L.; et al. Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers 2022, 14, 1865. [Google Scholar] [CrossRef] [PubMed]
- Sunny, A.R.; Islam, M.M.; Rahman, M.; Miah, M.Y.; Mostafiz, M.; Islam, N.; Hossain, M.Z.; Chowdhury, M.A.; Islam, M.A.; Keus, H.J. Cost effective aquaponics for food security and income of farming households in coastal Bangladesh. Egypt. J. Aquat. Res. 2019, 45, 89–97. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Proksch, G.; Baganz, D. CITYFOOD: Research Design for an International, Transdisciplinary Collaboration. Technol. Archit. Des. 2020, 4, 35–43. [Google Scholar] [CrossRef]
- Rharrhour, H.; Wariaghli, F.; Goddek, S.; Sadik, M.; El Moujtahid, A.; Nhhala, H.; Yahyaoui, A. Towards sustainable food productions in Morocco: Aquaponics. E3S Web Conf. 2022, 337, 03004. [Google Scholar] [CrossRef]
- Zappernick, N.; Nedunuri, K.V.; Islam, K.R.; Khanal, S.; Worley, T.; Laki, S.L.; Shah, A. Techno-economic analysis of a recirculating tilapia-lettuce aquaponics system. J. Clean. Prod. 2022, 365, 132753. [Google Scholar] [CrossRef]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef]
- Vesna Miličić, V.; Thorarinsdottir, R.; Dos Santos, M.; Hančič, M.T. Commercial Aquaponics Approaching the European Market: To Consumers’ Perceptions of Aquaponics Products in Europe. Water 2017, 9, 80. [Google Scholar] [CrossRef]
- Trevisani, S.; Bogunovic, I. Diachronic Mapping of Soil Organic Matter in Eastern Croatia Croplands. Land 2022, 11, 861. [Google Scholar] [CrossRef]
- Jayasiri, M.M.J.G.C.N.; Yadav, S.; Dayawansa, N.D.K.; Propper, C.R.; Kumar, V.; Singleton, G.R. Spatio-temporal analysis of water quality for pesticides and other agricultural pollutants in Deduru Oya river basin of Sri Lanka. J. Clean. Prod. 2022, 330, 129897. [Google Scholar] [CrossRef]
- Chen, L.; Qian, Y.; Jia, Q.; Weng, R.; Zhang, X.; Li, Y.; Qiu, J. A large geographic-scale characterization of organochlorine pesticides (OCPs) in surface sediments and multiple aquatic foods of inland freshwater aquaculture ponds in China: Co-occurrence, source and risk assessment. Environ. Pollut. 2022, 308, 119716. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Networking for food production. Nat. Sustain. 2022, 5, 731–732. [Google Scholar] [CrossRef]
- Abisha, R.; Krishnani, K.K.; Sukhdhane, K.; Verma, A.K.; Brahmane, M.; Chadha, N.K. Sustainable development of climate-resilient aquaculture and culture-based fisheries through adaptation of abiotic stresses: A review. J. Water Clim. Chang. 2022, 13, 2671–2689. [Google Scholar] [CrossRef]
- Maré, T.F.; Zahonogo, P.; Savadog, K. Factors affecting sustainable agricultural intensification in Burkina Faso. Int. J. Agric. Sustain. 2022, 20, 1225–1236. [Google Scholar] [CrossRef]
- Scuderi, A.; Bellia, C.; Foti, V.T.; Sturiale, L.; Timpanaro, G. Evaluation of consumers’ purchasing process for organic food products. AIMS Agric. Food 2019, 4, 251–265. [Google Scholar] [CrossRef]
- Reganold, J.; Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Hernández-Ochoa, I.M.; Gaiser, T.; Kersebaum, K.C.; Webber, H.; Seidel, S.J.; Grahmann, K.; Ewert, F. Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review. Agron. Sustain. Dev. 2022, 42, 74. [Google Scholar] [CrossRef]
- Romaneckas, K.; Balandaitė, J.; Sinkevičienė, A.; Kimbirauskienė, R.; Jasinskas, A.; Ginelevičius, U.; Romaneckas, A.; Petlickaitė, R. Short-Term Impact of Multi-Cropping on Some Soil Physical Properties and Respiration. Agronomy 2022, 12, 141. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, J.; Russoniello, C.J.; Zheng, T.; Wu, M.L.; Yu, X. Impacts of Coastal Shrimp Ponds on Saltwater Intrusion and Submarine Groundwater Discharge. Water Resour. Res. 2022, 58, e2021WR031866. [Google Scholar] [CrossRef]
- Kumar, A.; Dubey, S.K.; Sendhil, R.; Mishra, A.K.; Sah, U.; Suna, T.; Chand, R. Smart and Sustainable Food Production Technologies. In Smart and Sustainable Food Technologies; Sehgal, S., Singh, B., Sharma, V., Eds.; Springer: Singapore, 2022; pp. 3–24. [Google Scholar] [CrossRef]
- Pinho, S.M.; Valladão Flores, R.M.; David, L.H.; Emerenciano, M.G.C.; Quagrainie, K.K.; Portella, M.C. Economic comparison between conventional aquaponics and FLOCponics systems. Aquaculture 2022, 552, 737987. [Google Scholar] [CrossRef]
- Focker, M.; van Asselt, E.D.; Berendsen, B.J.A.; van de Schans, M.G.M.; van Leeuwen, S.P.J.; Visser, S.M.; van der Fels-Klerx, H.J. Review of food safety hazards in circular food systems in Europe. Food Res. Int. 2022, 158, 111505. [Google Scholar] [CrossRef]
- Rosales-Torres, S.; Beramendi-Orosco, L.E.; McClung de Tapia, E.; Acosta-Ochoa, G. Palynological analysis of an archaeological chinampa in Xochimilco (Basin of Mexico). Construction technology and agricultural production. J. Archaeol. Sci. Rep. 2022, 44, 103532. [Google Scholar] [CrossRef]
- Kiss, B.; Sekulova, F.; Hörschelmann, K.; Salk, C.F.; Takahashi, W.; Wamsler, C. Citizen participation in the governance of nature-based solutions. Environ. Policy Gov. 2022, 32, 247–272. [Google Scholar] [CrossRef]
- Bashir, S.; Mohan, A. An Institutional Approach to Manure Recycling. In Manure Technology and Sustainable Development; Jawaid, M., Khan, A., Eds.; Sustainable Materials and Technology; Springer: Singapore, 2023; pp. 305–320. [Google Scholar] [CrossRef]
- Ayamga, M.; Lawani, A.; Akaba, S.; Birindwa, A. Developing Institutions and Inter-Organizational Synergies through Digitalization and Youth Engagement in African Agriculture: The Case of “Africa Goes Digital”. Land 2023, 12, 199. [Google Scholar] [CrossRef]
Pillar | Characteristics |
---|---|
Economic |
|
Social |
|
Environment |
|
Culture |
|
Technology |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoor, M.; Arenas-Salazar, A.P.; Torres-Pacheco, I.; Guevara-González, R.G.; Rico-García, E. A Review of Sustainable Pillars and their Fulfillment in Agriculture, Aquaculture, and Aquaponic Production. Sustainability 2023, 15, 7638. https://doi.org/10.3390/su15097638
Schoor M, Arenas-Salazar AP, Torres-Pacheco I, Guevara-González RG, Rico-García E. A Review of Sustainable Pillars and their Fulfillment in Agriculture, Aquaculture, and Aquaponic Production. Sustainability. 2023; 15(9):7638. https://doi.org/10.3390/su15097638
Chicago/Turabian StyleSchoor, Mark, Ana Patricia Arenas-Salazar, Irineo Torres-Pacheco, Ramón Gerardo Guevara-González, and Enrique Rico-García. 2023. "A Review of Sustainable Pillars and their Fulfillment in Agriculture, Aquaculture, and Aquaponic Production" Sustainability 15, no. 9: 7638. https://doi.org/10.3390/su15097638
APA StyleSchoor, M., Arenas-Salazar, A. P., Torres-Pacheco, I., Guevara-González, R. G., & Rico-García, E. (2023). A Review of Sustainable Pillars and their Fulfillment in Agriculture, Aquaculture, and Aquaponic Production. Sustainability, 15(9), 7638. https://doi.org/10.3390/su15097638