Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams
Abstract
:1. Introduction
2. Numerical Approach
2.1. Hydrokinetic Turbine Configuration
2.2. Computational Modeling
3. Remaining Energy Downstream of Dams
4. Results and Discussion
4.1. Numerical Validation
4.2. Performance of the Diffuser-Augmented Hydro Turbine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandeira, Y.A.; Rodrigues, L.D.; Vaz, J.R.P.; Lins, E.F. Cavitation and structural analysis on a flanged diffuser applied to hydrokinetic turbines. Matéria (Rio de Janeiro) 2023, 27. [Google Scholar] [CrossRef]
- Limacher, E.J.; Rezek, T.J.; Camacho, R.G.R.; Vaz, J.R. On rotor hub design for shrouded hydrokinetic turbines. Ocean Eng. 2021, 240, 109940. [Google Scholar] [CrossRef]
- Silva, P.A.; Vaz, D.A.R.; Britto, V.; de Oliveira, T.F.; Vaz, J.R.; Junior, A.C.B. A new approach for the design of diffuser-augmented hydro turbines using the blade element momentum. Energy Convers. Manag. 2018, 165, 801–814. [Google Scholar] [CrossRef]
- Vaz, J.R.; Okulov, V.L.; Wood, D.H. Finite blade functions and blade element optimization for diffuser-augmented wind turbines. Renew. Energy 2021, 165, 812–822. [Google Scholar] [CrossRef]
- Vaz, J.R.; Wood, D.H. Aerodynamic optimization of the blades of diffuser-augmented wind turbines. Energy Convers. Manag. 2016, 123, 35–45. [Google Scholar] [CrossRef]
- do Rio Vaz, D.A.T.D.; Mesquita, A.L.A.; Vaz, J.R.P.; Blanco, C.J.C.; Pinho, J.T. An extension of the Blade Element Momentum method applied to Diffuser Augmented Wind Turbines. Energy Convers. Manag. 2014, 87, 1116–1123. [Google Scholar] [CrossRef]
- Shives, M.; Crawford, C. Developing an empirical model for ducted tidal turbine performance using numerical simulation results. Proc. Inst. Mech. Eng. Part A J. Power Energy 2012, 226, 112–125. [Google Scholar] [CrossRef]
- Gaden, D.L.; Bibeau, E.L. A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model. Renew. Energy 2010, 35, 1152–1158. [Google Scholar] [CrossRef]
- Holanda, P.d.S.; Blanco, C.J.C.; Mesquita, A.L.A.; Brasil Junior, A.C.P.; de Figueiredo, N.M.; Macêdo, E.N.; Secretan, Y. Assessment of hydrokinetic energy resources downstream of hydropower plants. Renew. Energy 2017, 101, 1203–1214. [Google Scholar] [CrossRef]
- Vaz, J.R.; Wood, D.H. Effect of the diffuser efficiency on wind turbine performance. Renew. Energy 2018, 126, 969–977. [Google Scholar] [CrossRef]
- Silva, P.A.S.F.; Shinomiya, L.D.; de Oliveira, T.F.; Vaz, J.R.P.; Mesquita, A.L.A.; Brasil Junior, A.C.P. Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM. Appl. Energy 2017, 185, 1281–1291. [Google Scholar] [CrossRef]
- Picanço, H.P.; Kleber Ferreira de Lima, A.; Dias do Rio Vaz, D.A.T.; Lins, E.F.; Pinheiro Vaz, J.R. Cavitation inception on hydrokinetic turbine blades shrouded by diffuser. Sustainability 2022, 14, 7067. [Google Scholar] [CrossRef]
- do Rio Vaz, D.A.T.D.; Vaz, J.R.P.; Mesquita, A.L.A.; Pinho, J.T.; Brasil Junior, A.C.P. Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake. Renew. Energy 2013, 55, 296–304. [Google Scholar] [CrossRef]
- Gemaque, M.L.; Vaz, J.R.; Saavedra, O.R. Optimization of hydrokinetic swept blades. Sustainability 2022, 14, 13968. [Google Scholar] [CrossRef]
- Abe, K.; Ohya, Y. An investigation of flow fields around flanged diffusers using CFD. J. Wind. Eng. Ind. Aerodyn. 2004, 92, 315–330. [Google Scholar] [CrossRef]
- Abe, K.; Nishida, M.; Sakurai, A.; Ohya, Y.; Kihara, H.; Wada, E.; Sato, K. Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser. J. Wind. Eng. Ind. Aerodyn. 2005, 93, 951–970. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge Univ. Press: Cambridge, UK, 2011. [Google Scholar]
- Davidson, P.A. Turbulence: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD; D C W Industries: Maharashtra, India, 2006. [Google Scholar]
- Durbin, P.A. Some Recent Developments in Turbulence Closure Modeling. Annu. Rev. Fluid Mech. 2018, 50, 77–103. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Markatos, N. Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 2015, 39, 693–732. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Silva, P.A.S.F.; Oliveira, T.F.; Brasil Junior, A.C.P.; Vaz, J.R.P. Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic turbine. Anais da Academia Brasileira de Ciências 2016, 88, 2441–2456. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS CFX-Solver Theory Guide, Release 14.0; Ansys Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Mavriplis, D.J. Mesh generation and adaptivity for complex geometries and flows (Chapter 7). In Handbook of Computational Fluid Mechanics; Peyret, R., Ed.; Academic Press: London, UK, 1996; pp. 417–459. [Google Scholar] [CrossRef]
- Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S.; Larwood, S.M. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns; Technical Report; National Renewable Energy Lab.: Golden, CO, USA, 2001. [Google Scholar] [CrossRef]
- Laws, N.D.; Epps, B.P. Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev. 2016, 57, 1245–1259. [Google Scholar] [CrossRef]
- do Rio Vaz, D.A.T.D.; Vaz, J.R.P.; Silva, P.A.S.F. An approach for the optimization of diffuser-augmented hydrokinetic blades free of cavitation. Energy Sustain. Dev. 2018, 45, 142–149. [Google Scholar] [CrossRef]
- John, I.H.; Vaz, J.R.; Wood, D. Aerodynamic performance and blockage investigation of a cambered multi-bladed windmill. J. Physics Conf. Ser. 2020, 1618, 042003. [Google Scholar] [CrossRef]
- John, I.H.; Wood, D.H.; Vaz, J.R. Helical vortex theory and blade element analysis of multi-bladed windmills. Wind Energy 2023, 26, 228–246. [Google Scholar] [CrossRef]
- Posa, A.; Broglia, R. Characterization of the turbulent wake of an axial-flow hydrokinetic turbine via large-eddy simulation. Comput. Fluids 2021, 216, 104815. [Google Scholar] [CrossRef]
- Bontempo, R.; Manna, M. Effects of the duct thrust on the performance of ducted wind turbines. Energy 2016, 99, 274–287. [Google Scholar] [CrossRef]
- Vaz, J.R.; Wood, D. Blade element analysis and design of horizontal-axis turbines. Small Wind. Hydrokinetic Turbines 2021, 169, 157. [Google Scholar]
Parameters | Values |
---|---|
Turbine diameter | 10 m |
Hub diameter | 1.2 m |
Number of blades | 3 |
Water velocity | 0.9–3 m/s |
Water density | 997.0 kg/m |
Rotational speed | 8–33.92 RPM |
Airfoil profile | NACA -618 |
Mesh | Number of Nodes | Power [] | ||
---|---|---|---|---|
Mesh 1 | 2.47 | 5.45 | 3.43 | 2.81 |
Mesh 2 | 3.78 | 1.36 | 0.85 | 2.76 |
Mesh 3 | 5.62 | 0.42 | 0.26 | 4.96 |
Mesh 4 | 6.35 | 0.45 | 0.09 | 5.66 |
Mesh 5 | 7.63 | 0.48 | 0.08 | 5.83 |
Mesh 6 | 8.30 | 0.48 | 0.08 | 5.94 |
Period | Turbine Only [MWh] | Turbine plus Diffuser [MWh] |
---|---|---|
2008 to 2013 | 216.34 | 337.23 |
for a typical year | 38.75 | 60.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaz, J.R.P.; de Lima, A.K.F.; Lins, E.F. Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams. Sustainability 2023, 15, 7671. https://doi.org/10.3390/su15097671
Vaz JRP, de Lima AKF, Lins EF. Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams. Sustainability. 2023; 15(9):7671. https://doi.org/10.3390/su15097671
Chicago/Turabian StyleVaz, Jerson R. P., Adry K. F. de Lima, and Erb F. Lins. 2023. "Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams" Sustainability 15, no. 9: 7671. https://doi.org/10.3390/su15097671
APA StyleVaz, J. R. P., de Lima, A. K. F., & Lins, E. F. (2023). Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams. Sustainability, 15(9), 7671. https://doi.org/10.3390/su15097671