Environmental Factors Affecting the Efficiency of Water Reservoir Restoration Using Microbiological Biotechnology
Abstract
:1. Introduction
A Brief Overview of the Application Area of the Microbiological Remediation Method for Lakes
2. Materials and Methods
2.1. Water Monitoring
2.2. Environmental Parameters of Investigated Water Reservoirs
3. Results and Discussion
3.1. Reduction in Soft Organic Sediment Fractions (SOSF)
3.2. Changes in Water Transparency and Turbidity
3.3. Changes in the Concentration of Dissolved Oxygen (DO) in a Water Column
4. Conclusions
- After the application of directional biopreparations, a reduction in soft organic fractions in the bottom sediments of all reservoirs was observed in the following growing season. Sediment reduction studies showed a highly satisfactory decomposition process. In most cases, a twofold or greater reduction was observed compared to the season before rehabilitation measures began.
- Morphological changes in the soft organic sediment fractions were observed after the application of biopreparations for water body restoration. The gradual softening of these fractions helped them to become more hydrated and more easily transported by flowing water.
- Significant eutrophication and intense algal blooms during the growing season characterised the waters of all rehabilitated reservoirs before the treatment. An improvement in water transparency was shown in the subsequent season after microbial bioremediation.
- In all studied reservoirs, an improvement in the oxygen profile in both the bottom and surface layers was observed after the application of the microbial restoration method.
- The use of biopreparations for the reclamation of water bodies is an alternative to mechanical methods, which are extremely expensive and invasive to the aquatic environment. Biopreparation technology can be particularly suitable for large water bodies, where technical methods are almost impossible to implement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
Sediment layer before and after restoration of reservoir group area * | 6 | 0 | 2.201398 | 0.027709 |
Sosnowiec 1 and Sosnowiec 2 | 6 | 1.5 | 1.886913 | 0.059173 |
Rybnik 1 and Rybnik 2 | 6 | 1 | 1.991741 | 0.0464 |
Żory 1 and Żory 2 | 5 | 0 | 2.0226 | 0.043115 |
Mysłakowice 1 and Mysłakowice 2 | 6 | 1 | 1.991741 | 0.0464 |
Warszawa 1 and Warszawa 2 | 30 | 0 | 4.782139 | 0.000002 |
Ożar. Maz. 1 and Ożar. Maz. 2 | 24 | 0 | 4.285714 | 0.000018 |
Krobia 1 and Krobia 2 | 18 | 0 | 3.723555 | 0.000196 |
Strz. Opol. 1 and Strz. Opol. 2 | 24 | 0 | 4.285714 | 0.000018 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
Transparency before and after restoration of reservoir group area ** | 6 | 0 | 2.201398 | 0.027709 |
Głowno 1 and Głowno 2 | 6 | 1 | 1.991741 | 0.046400 |
Rybnik 1 and Rybnik 2 | 6 | 1 | 1.991741 | 0.0464 |
Gryfice 1 and Gryfice 2 | 6 | 2 | 1.782084 | 0.074736 |
Mysłakowice 1 and Mysłakowice 2 | 6 | 6 | 0.943456 | 0.345448 |
Brodnica 1 and Brodnica 2 | 6 | 10 | 0.104828 | 0.916512 |
Starachowice 1 and Starachowice 2 | 6 | 1 | 1.991741 | 0.0464 |
Oleśnica 1 and Oleśnica 2 | 5 | 1 | 1.75292 | 0.079617 |
Iłża 1 and Iłża 2 | 6 | 5 | 1.153113 | 0.248865 |
Warszawa 1 and Warszawa 2 | 30 | 38 | 4.000542 | 0.000063 |
Ożar. Maz. 1 and Ożar. Maz. 2 | 24 | 27 | 3.514286 | 0.000441 |
Krobia 1 and Krobia 2 | 17 | 0 | 3.621365 | 0.000293 |
Strz. Opol. 1 and Strz. Opol. 2 | 24 | 0 | 4.285714 | 0.000018 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
DO near bottom (and water turbidity) before and after restoration of reservoir group area *** | 6 | 0 | 2.201398 | 0.027709 |
Warszawa 1 and Warszawa 2 | 30 | 0 | 4.782139 | 0.000002 |
Ożar. Maz. 1 and Ożar. Maz. 2 | 24 | 0 | 4.285714 | 0.000018 |
Krobia 1 and Krobia 2 | 18 | 0 | 3.723555 | 0.000196 |
Strz. Opol. 1 and Strz. Opol. 2 | 24 | 0 | 4.285714 | 0.000018 |
Pair of Variables | Wilcoxon Paired t-Test | |||
---|---|---|---|---|
N Significant | T | Z | p | |
DO surface before and after restoration of reservoir group area **** | 6 | 0 | 2.201398 | 0.027709 |
Głowno 1 and Głowno 2 | 6 | 5 | 1.153113 | 0.248865 |
Jędrzejów 1 and Jędrzejów 2 | 6 | 1 | 1.991741 | 0.046400 |
Ożanna 1 and Ożanna 2 | 6 | 5 | 1.153113 | 0.248865 |
Studziennice 1 and Studziennice 2 | 6 | 1 | 1.991741 | 0.046400 |
Warszawa 1 and Warszawa 2 | 30 | 0 | 4.782139 | 0.000002 |
Ożar. Maz. 1 and Ożar. Maz. 2 | 24 | 0 | 4.285714 | 0.000018 |
Krobia 1 and Krobia 2 | 18 | 0 | 3.723555 | 0.000196 |
Strz. Opol. 1 and Strz. Opol. 2 | 24 | 0 | 4.285714 | 0.000018 |
References
- Yusoff, F.M.; Shariff, M.; Gopinath, N. Diversity of Malaysian aquatic ecosystems and resources. Aquat. Ecosyst. Health Manag. 2006, 9, 119–135. [Google Scholar] [CrossRef]
- Jakubiak, M.; Chmielowski, K. Identification of urban water bodies ecosystem services. Acta Sci. Pol. Form. Circumiectus 2020, 19, 73–82. [Google Scholar] [CrossRef]
- Jakubiak, M.; Bojarski, B. Impact of point source pollutants on the distribution of selected water parameters in the Vistula River in Puławy, Poland. J. Water Land Dev. 2021, 51, 50–55. [Google Scholar] [CrossRef]
- Baron, J.S.; Poff, N.L.; Angermeier, P.L.; Dahm, C.N.; Gleick, P.H.; Hairston, N.G., Jr.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A.D. Meeting ecological and societal needs for freshwater. Ecol. Appl. 2002, 12, 1247–1260. [Google Scholar] [CrossRef]
- Alahuhta, J.; Erős, T.; Kärnä, O.M.; Soininen, J.; Wang, J.; Heino, J. Understanding environmental change through the lens of trait-based, functional, and phylogenetic biodiversity in freshwater ecosystems. Environ. Rev. 2019, 27, 263–273. [Google Scholar] [CrossRef]
- Das, S.; Ward, L.R.; Burke, C. Prospects of using marine actinobacteria as probiotics in aquaculture. Appl. Microbiol. Biotechnol. 2008, 81, 419–429. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A.; O’Connor, D.; Hu, Q.; Zhu, Y.G.; Wang, L.; Rinklebe, J. Sustainable remediation and redevelopment of brownfield sites. Nat. Rev. Earth Environ. 2023, 4, 271–286. [Google Scholar] [CrossRef]
- Mehmood, T.; Gaurav, G.K.; Cheng, L.; Klemeš, J.J.; Usman, M.; Bokhari, A.; Lu, J. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. J. Environ. Manag. 2021, 294, 113108. [Google Scholar] [CrossRef]
- Dondajewska, R.; Kozak, A.; Rosińska, J.; Gołdyn, R. Water quality and phytoplankton structure changes under the influence of effective microorganisms (EM) and barley straw–Lake restoration case study. Sci. Total Environ. 2019, 660, 1355–1366. [Google Scholar] [CrossRef]
- Mazurkiewicz, J.; Mazur, A.; Mazur, R.; Chmielowski, K.; Czekała, W.; Janczak, D. The process of microbiological remediation of the polluted Słoneczko reservoir in Poland: For reduction of water pollution and nutrients management. Water 2020, 12, 3002. [Google Scholar] [CrossRef]
- Simon, M.; Joshi, H. A review on green technologies for the rejuvenation of polluted surface water bodies: Field-scale feasibility, challenges, and future perspectives. J. Environ. Chem. Eng. 2021, 9, 105763. [Google Scholar] [CrossRef]
- Velmurugan, L.; Pandian, K.D. Recycling of wet grinding industry effluent using effective Microorganisms™(EM). Heliyon 2023, 9, e13266. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.; Gairola, S.; Shariff, N.M. Effective microorganisms (EM) technology for water quality restoration and potential for sustainable water resources and management. In Proceedings of the 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 1 July 2010. [Google Scholar]
- Safwat, S.M.; Matta, M.E. Environmental applications of Effective Microorganisms: A review of current knowledge and recommendations for future directions. J. Eng. Appl. Sci. 2021, 68, 48. [Google Scholar] [CrossRef]
- Dobrzyński, J.; Kulkova, I.; Wierzchowski, P.S.; Wróbel, B. Response of Physicochemical and Microbiological Properties to the Application of Effective Microorganisms in the Water of the Turawa Reservoir. Water 2021, 14, 12. [Google Scholar] [CrossRef]
- European Commission. EU Biodiversity Strategy for 2030—Bridging Nature Back into Our Lives; European Commission: Ispra, Italy, 2021. Available online: https://op.europa.eu/en/publication-detail/-/publication/31e4609f-b91e-11eb-8aca-01aa75ed71a1/language-en (accessed on 19 October 2023).
- Prejs, A.; Koperski, P.; Prejs, K. Food-web manipulation in a small, eutrophic Lake Wirbel, Poland: The effect of replacement of key predators on epiphytic fauna. Hydrobiologia 1997, 342, 377–381. [Google Scholar] [CrossRef]
- Bielczyńska, A. Bioindication on the basis of benthic diatoms: Advantages and disadvantages of the Polish phytobenthos lake assessment method (IOJ–the Diatom Index for Lakes)/Bioindykacja na podstawie okrzemek bentosowych: Mocne i słabe strony polskiej metody oceny jezior na podstawie fitobentosu (IOJ–Indeks Okrzemkowy Jezior). Environ. Prot. Nat. Resour. 2015, 26, 48–55. [Google Scholar] [CrossRef]
- Pełechata, A.; Pełechaty, M.; Pukacz, A. Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquat. Bot. 2015, 124, 10–18. [Google Scholar] [CrossRef]
- Napiórkowski, P.; Bąkowska, M.; Mrozińska, N.; Szymańska, M.; Kolarova, N.; Obolewski, K. The effect of hydrological connectivity on the zooplankton structure in floodplain lakes of a regulated large river (the Lower Vistula, Poland). Water 2019, 11, 1924. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef]
- Martinsen, K.T.; Andersen, M.R.; Sand-Jensen, K. Water temperature dynamics and the prevalence of daytime stratification in small temperate shallow lakes. Hydrobiologia 2019, 826, 247–262. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Kennedy, R.H.; Walker, W.W. Reservoir nutrient dynamics. In Reservoir Limnology: Ecological Perspectives; Thornton, K.W., Kimmel, B.L., Payne, F.E., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1990; pp. 109–131. [Google Scholar]
- Berthold, M. Nutrient and Limitation Regimes in Coastal Water Ecosystems. In Southern Baltic Coastal Systems Analysis; Schubert, H., Müller, F., Eds.; Springer Ecological Studies: Berlin/Heidelberg, Germany, 2023; Volume 246, pp. 175–185. [Google Scholar]
- Gebler, D.; Kolada, A.; Pasztaleniec, A.; Szoszkiewicz, K. Modelling of ecological status of Polish lakes using deep learning techniques. Environ. Sci. Pollut. Res. 2021, 28, 5383–5397. [Google Scholar] [CrossRef] [PubMed]
- Ulańczyk, R.; Łozowski, B.; Woźnica, A.; Absalon, D.; Kolada, A. Water Quality and Ecosystem Modelling: Practical Application on Lakes and Reservoirs. In Quality of Water Resources in Poland; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 173–189. [Google Scholar] [CrossRef]
- PN-86 C-05560/02; Water and Waste Water. Tests for Chlorophyll in Surface Water, Determination of Chlorophyll a in Planktonic Algae by Spectrophotometric Monochromatic Method with Correction for Pheopigments Alpha. Polish Committee for Standardisation: Warsaw, Poland, 1986. Available online: https://sklep.pkn.pl/pn-c-05560-02-1986p.html (accessed on 1 November 2023). (In Polish)
- Dean, W.E. Carbonate minerals and organic matter in sediments of modern north temperate hard-water lakes. In Recent and Ancient Nonmarine Depositional Environments: Models for Exploration; Ethridge, F.G., Flores, R.M., Eds.; SEPM Society for Sedimentary Geology: Los Angeles, CA, USA, 1981; pp. 213–231. [Google Scholar] [CrossRef]
- Dean, W.E. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paleolimnol. 1999, 21, 375–393. [Google Scholar] [CrossRef]
- Anderson, N.J.; Bennion, H.; Lotter, A.F. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob. Chang. Biol. 2014, 20, 2741–2751. [Google Scholar] [CrossRef] [PubMed]
- Ferland, M.E.; Prairie, Y.T.; Teodoru, C.; del Giorgio, P.A. Linking organic carbon sedimentation, burial efficiency, and long-term accumulation in boreal lakes. J. Geophys. Res. Biogeosci. 2014, 119, 836–847. [Google Scholar] [CrossRef]
- Bastviken, D.; Olsson, M.; Tranvik, L. Simultaneous measurements of organic carbon mineralization and bacterial production in oxic and anoxic lake sediments. Microb. Ecol. 2003, 46, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Van der Does, J.; Verstraelen, P.; Boers, P.; Van Roestel, J.; Roijackers, R.; Moser, G. Lake restoration with and without dredging of phosphorus-enriched upper sediment layers. Hydrobiologia 1992, 233, 197–210. [Google Scholar] [CrossRef]
- Annadotter, H.; Cronberg, G.; Aagren, R.; Lundstedt, B.; Nilsson, P.Ǻ.; Ströbeck, S. Multiple techniques for lake restoration. In The Ecological Bases for Lake and Reservoir Management, Proceedings of the Ecological Bases for Management of Lakes and Reservoirs Symposium, Leicester, UK, 19–22 March 1996; Springer: Dordrecht, The Netherlands, 1999; pp. 77–85. [Google Scholar]
- Hupfer, M.; Hilt, S.; Jørgensen, S.E.; Asolekar, S.R.; Kalbar, P.P.; Maillacheruvu, K.Y.; Abell, R.; Blanch, S.; Thieme, M.; Geller, W.; et al. Lake restoration. Encycl. Ecol. 2008, 2080–2093. [Google Scholar] [CrossRef]
- Mazur, A.; Chmielowski, K. Innovative aeration and treatment technologies supporting the process of revitalization of degraded water reservoirs. Acta Sci. Pol. Form. Circumiectus 2020, 19, 15–28. [Google Scholar] [CrossRef]
- Cooke, G.D.; Welch, E.B.; Peterson, S.A.; Nichols, S.A. Restoration and Management of Lakes and Reservoirs, 3rd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2005; p. 616. [Google Scholar]
- Dąbrowska, J.; Kaczmarek, H.; Markowska, J.; Tyszkowski, S.; Kempa, O.; Gałęza, M.; Kucharczak-Moryl, E.; Moryl, A. Shore zone in protection of water quality in agricultural landscape—The Mściwojów Reservoir, southwestern Poland. Environ. Monit. Assess. 2016, 188, 467. [Google Scholar] [CrossRef]
- Lawniczak-Malińska, A.E.; Achtenberg, K. On the use of macrophytes to maintain functionality of overgrown lowland lakes. Ecol. Eng. 2018, 113, 52–60. [Google Scholar] [CrossRef]
- Asaeda, T.; Pham, H.S.; Priyantha, D.N.; Manatunge, J.; Hocking, G.C. Control of algal blooms in reservoirs with a curtain: A numerical analysis. Ecol. Eng. 2001, 16, 395–404. [Google Scholar] [CrossRef]
- Kratzer, S.; Håkansson, B.; Sahlin, C. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data. Ambio 2003, 32, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.V.; Petrucio, M.M. Water level decreases and increased water stability promotes phytoplankton growth in a mesotrophic subtropical lake. Mar. Freshw. Res. 2015, 66, 711–718. [Google Scholar] [CrossRef]
- Abirhire, O.; Davies, J.M.; Guo, X.; Hudson, J. Understanding the factors associated with long-term reconstructed turbidity in Lake Diefenbaker from Landsat imagery. Sci. Total Environ. 2020, 724, 138222. [Google Scholar] [CrossRef] [PubMed]
- Rome, M.; Happel, A.; Dahlenburg, C.; Nicodemus, P.; Schott, E.; Mueller, S.; Lovell, K.; Beighley, R.E. Application of floating wetlands for the improvement of degraded urban waters: Findings from three multi-year pilot-scale installations. Sci. Total Environ. 2023, 877, 162669. [Google Scholar] [CrossRef] [PubMed]
- Schwammberger, P.F.; Lucke, T.; Walker, C.; Trueman, S.J. Nutrient uptake by constructed floating wetland plants during the construction phase of an urban residential development. Sci. Total Environ. 2019, 677, 390–403. [Google Scholar] [CrossRef]
- Barnett, A.; Beisner, B.E. Zooplankton biodiversity and lake trophic state: Explanations invoking resource abundance and distribution. Ecology 2007, 88, 1675–1686. [Google Scholar] [CrossRef]
- Guan, H.; Chen, X.; Jin, Y.; Xie, X.; Zhao, H.; Yu, L.; Lin, L.; Xu, S. Hypolimnetic oxygen depletion by sediment-based reduced substances in a reservoir formerly affected by acid mine drainage. Ecol. Indic. 2023, 151, 110301. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Liu, M.; He, J.; Shi, K.; Zhou, Y.; Liu, X. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Res. 2015, 75, 249–258. [Google Scholar] [CrossRef]
- Viet, N.D.; Bac, N.A.; Huong, H.T.T. Dissolved oxygen as an indicator for eutrophication in freshwater lakes. In Proceedings of the International Conference on Environmental Engineering and Management for Sustainable Development, Hanoi, Vietnam, 15 September 2016. [Google Scholar]
- Banerjee, A.; Chakrabarty, M.; Rakshit, N.; Bhowmick, A.R.; Ray, S. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach. Ecol. Indic. 2019, 100, 99–117. [Google Scholar] [CrossRef]
The Measured Parameters | Methods/Tools |
---|---|
Dissolved oxygen 2014–2018 | By portable multi-function meter CX-401 with oxygen galvanic oxygen sensors COG-1 (made by Elmetron) |
Dissolved oxygen 2014–2018 | By portable multi-function meter HQ 1130 with a 5-m cable and oxygen sensor (probe) (made by Hach) |
Transparency | Measurement by Secchi disc |
Sediment layer | With the application of geodetic staff, an endoscopic camera with its light source, and a visual monitor connected to the camera via a USB cable—sediment thickness readings were displayed on a metric scale on the geodetic staff |
Turbidity | By portable turbidity meter 2100Q (made by Hach) |
Chlorophyll-a | Spectrophotometric method according to the PN-86 C-05560/02 standard [28] |
No. | Water Reservoir | Location | Date of Restoration | Surface Area (m2) | Volume (m3) | Maximum Depth (m) | Average Depth (m) | Water Flow Types | Flow Velocity | River Tributary |
---|---|---|---|---|---|---|---|---|---|---|
1 | Pnio-wiec Dam Rese-rvoir | Rybnik | 2018–2019 | 885,000 | 4,800,000 | 12 | 5.4 | exorheic reservoir | slow | Ruda |
2 | Niskie Brodno Lake | Brodnica | 2022–2023 | 823,420 | 5,681,595 | 18.2 | 6.9 | exorheic reservoir | slow | Brodniczka |
3 | Kórnickie Lake | Kórnik | 2022–2023 | 741,669 | 2,225,007 | 6 | 3 | exorheic reservoir | slow | Kórnicki canal |
4 | Błędno Lake | Grójec | 2022–2023 | 700,000 | 1,330,000 | 5.6 | 1.9 | exorheic reservoir | slow | Obra–Szarka |
5 | Bugaj Lake | Piotrków Trybunalski | 2017–2018 | 520,000 | 936,000 | 4 | 1.8 | exorheic reservoir | slow | Wirzejka |
6 | Pasternik Lake | Starachowice | 2021–2022 | 420,000 | 840,000 | 4 | 2 | exorheic reservoir | slow | Kamienna |
7 | Muchawka Dam Rese-rvoir | Siedlce | 2014–2015 | 400,000 | 600,000 | 5 | 1.5 | endorheic reservoir | very slow/no flow | Muchawka |
8 | Łokacz Lake in K.W. | Krzyż Wiel-kopolski | 2022–2023 | 382,241 | 1,146,722 | 3.4 | 3 | exorheic reservoir | slow | Człopica |
9 | Mrożyczka Dam Reservoir | Głowno | 2019–2020 | 380,000 | 608,000 | 3.3 | 1.6 | exorheic reservoir | slow | Mroga |
10 | Siemiatycze Dam Reservoir | Siemiatycze | 2016–2017 | 274,000 | 548,000 | 5.1 | 2 | exorheic reservoir | slow | Kamionka and Mahomet |
11 | Tarpno Lake | Grudziądz | 2021–2022 | 270,000 | 1,512,000 | 5.8 | 5.6 | exorheic reservoir | slow | Trynkowa |
12 | Studzienniczno Lake | Studziniczno, Bytów | 2022–2023 | 210,623 | 1,474,363 | 20 | 7 | exorheic reservoir | slow | Studnica |
13 | Iłżanka Reservoir | Iłża | 2020–2021 | 185,447 | 148,358 | 3 | 0.8 | exorheic reservoir | slow | Iłżanka |
14 | Ożanna Lake | Kuryłówka | 2020–2021 | 181,245 | 253,743 | 3.7 | 1.4 | exorheic reservoir | slow | Złota |
15 | Zimna Woda Lake | Łuków | 2020–2021 | 180,000 | 270,000 | 3 | 1.5 | endorheic reservoir | very slow/no flow | Krzna Południowa |
16 | Pinczów Dam Reservoir | Pińczów | 2022–2023 | 115,000 | 218,500 | 3.5 | 1.9 | exorheic reservoir | slow | Nida canal |
17 | Warszawa city pond | Warsaw | 2022–2023 | 108,807 | 321,091 | 5 | 2.5 | exorheic multi reservoirs | slow | Wystawowy Canal–Vistula |
18 | Śmieszek Lake | Żory | 2019–2020 | 95,000 | 190,000 | 2.7 | 2 | exorheic reservoir | slow | Ruda |
19 | Bąk Lake | Okonek | 2018–2019 | 65,000 | 97,500 | 3 | 1.5 | endorheic reservoir | very slow/no flow | Czarna |
20 | Leśny Lake | Sosnowiec | 2021–2022 | 50,913 | 101,826 | 2.5 | 2 | endorheic reservoir | no flow | No-name water canal |
21 | Pruszków city pond | Pruszków | 2020–2021 | 30,998 | 46,496 | 1.95 | 1.5 | endorheic reservoir | very slow/no flow | Utrata |
22 | Oleśnica city pond | Oleśnica | 2021–2022 | 28,408 | 42,612 | 2 | 1.5 | endorheic reservoir | very slow/no flow | Oleśnica |
23 | Ożarków Mazowiecki city pond | Ożarów Mazowiecki | 2020–2021 | 13,314 | 19,972 | 2 | 1.5 | endorheic reservoir | very slow/no flow | City canal |
24 | Strzelce Opolskie city pond | Strzelce Opolskie | 2020–2021 | 12,289 | 12,289 | 1 | 1 | endorheic reservoir | no flow | groundwater-fed ponds |
25 | Jędrzejów Dam Reservoir | Jędrzejów, Świętokrzyskie | 2021–2022 | 11,636 | 23,272 | 3 | 2 | endorheic reservoir | very slow/no flow | Brzeźnica |
26 | Kaczeńcowa city pond | Kraków County | 2017–2018 | 8200 | 11,480 | 2 | 1.4 | endorheic reservoir | very slow/no flow | groundwater-fed ponds–Młynówka |
27 | Stawek pond in Gryfice | Gryfice | 2021–2022 | 6866 | 27,466 | 9 | 4 | endorheic reservoir | very slow/no flow | No-name water canal |
28 | Ostrów Wielkopolski city pond | Ostrów Wielkopolski | 2022–2023 | 5900 | 8849 | 2 | 1.5 | endorheic reservoir | very slow/no flow | No-name water canal |
29 | Gedymin pond | Szczawno-Zdrój | 2021–2022 | 5445 | 8167 | 2 | 1.5 | exorheic reservoir | very slow/no flow | Szczawnik |
30 | Baranów Sandomierski Palast pond | Baranów Sandomierski | 2022–2023 | 4718 | 9435 | 2 | 2 | endorheic reservoir | very slow/no flow | No-name water canal |
31 | Krobia community pond | Gmina Krobia | 2021–2022 | 4009 | 5124 | 1.5 | 1.5 | endorheic multi reservoirs | very slow/no flow | No-name water canal |
32 | Mysłakowice Palast pond | Mysłakowice | 2021–2022 | 3640 | 5460 | 2 | 1.5 | exorheic reservoir | very slow/no flow | Łomnica |
33 | Pond at Łańcut Castle Park | Łańcut | 2022–2023 | 3121 | 4682 | 2 | 1.5 | exorheic reservoir | very slow/no flow | No-name water canal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, R.; Jakubiak, M.; Santos, L. Environmental Factors Affecting the Efficiency of Water Reservoir Restoration Using Microbiological Biotechnology. Sustainability 2024, 16, 266. https://doi.org/10.3390/su16010266
Mazur R, Jakubiak M, Santos L. Environmental Factors Affecting the Efficiency of Water Reservoir Restoration Using Microbiological Biotechnology. Sustainability. 2024; 16(1):266. https://doi.org/10.3390/su16010266
Chicago/Turabian StyleMazur, Robert, Mateusz Jakubiak, and Luís Santos. 2024. "Environmental Factors Affecting the Efficiency of Water Reservoir Restoration Using Microbiological Biotechnology" Sustainability 16, no. 1: 266. https://doi.org/10.3390/su16010266
APA StyleMazur, R., Jakubiak, M., & Santos, L. (2024). Environmental Factors Affecting the Efficiency of Water Reservoir Restoration Using Microbiological Biotechnology. Sustainability, 16(1), 266. https://doi.org/10.3390/su16010266