Green and Sustainable Imprinting Technology for Removal of Heavy Metal Ions from Water via Selective Adsorption
Abstract
:1. Introduction
2. What Is Imprinting Technique?
3. Synthetic Approach of Imprinted Polymer
3.1. Bulk Polymerization
3.2. Suspension Polymerization
3.3. Precipitation Polymerization
3.4. Emulsion Polymerization
3.5. Surface-Imprinted Polymerization
3.6. Sol–Gel Method
4. Applications for Water Restoration and Resource Recovery
Absorbents | Target | Adsorption Capacity (mg/g) | Coexisting Ions | Ref. |
---|---|---|---|---|
Cd-IIPs | Cd(II) | 65.5 | Zn(I), Ni(II), Cu(II), Co(II) | [83] |
AAMA | Cd(II) | 175 | Pb(II), Hg(II), Cu(II), Co(II), Zn(II) | [84] |
Cd(II)-IIP | Cd(II) | 83.89 | Ni(II), Cu(II), Zn(II) | [85] |
Fe3O4@SiO2@IIP | Cd(II) | 29.82 | Zn(II), Ni(II), Co(II) | [86] |
Cd(II)-IICM | Cd(II) | 509.93 | Co(II), Ni(II), Cu(II) | [87] |
Cd-IIMs | Cd(II) | 162.44 | Zn(II), Pb(II), Ni(II) Fe(III), Na(I), K(I), Ca(II), Mg(II) | [88] |
Cd(II)-IIP | Cd(II) | 64.74 | Pb(II), Mn(II), Ni(II), Cu(II), Hg(II) | [89] |
QAPs | Cr(VI) | 211.8 | SO42−, NO3−, PO43− | [90] |
PAH-ASGO | Cr(VI) | 373.1 | Mg(II), Ca(II) | [91] |
Cr(VI)-IIP | Cr(VI) | 96.32 | Cr(III) | [92] |
Cr(VI)-IICM | Cr(VI) | 4.07 | Cd(II), Cu(II), Ni(II) | [93] |
Gel/CS/PPy | Cr(VI) | 106.8 | NO3−, Cl−, SO42− | [94] |
IIP | Cr(VI) | 103 | Cr(III), Cu(II), SO42−, | [95] |
MIP | Pb(II), As(V) | 81.97, 625 | Na(I), K(I), Ca(II), Mg(II), Cu(II) | [96] |
DMHIIPs | Pb(II) | 135.2 | Cu(II), Cd(II) Ni(II) | [97] |
DE/Pb(II)IIP | Pb(II) | 79.38 | Cd(II), Ni(II), Co(II), Cu(II), Mn(II) | [98] |
MTCI-SBA-15 | Pb(II) | 283 | Cd(II), Zn(II), Co(II), Ni(II) | [99] |
IIP-MMT | Pb(II) | 201.84 | Zn(II), Cd(II), Cu(II), Sn(IV), Mn(II) | [100] |
MA/MIIP | Cu(II) | 131.47 | Pb(II), Cd(II), Zn(II) | [101] |
Hg-PMTF | Hg(II) | 360.5 | Pb(II), Cd(II), Cu (II), Ni(II) | [102] |
IIM | Hg(II) | 21.6 | Zn(II), Pb(II), Cu(II), Cd(II), Co(II), Cr(II) | [103] |
IIPs | Ni(II) | 19.86 | Pb(II), Cu(II) | [104] |
IICFMPSs | Ni(II) | 41.95 | Zn(II), Cd(II), Cu(II) | [105] |
Fe3O4@void@ IIP-Ni(II) | Ni(II) | 44.64 | Co(II), Cu(II), Pb(II) Zn(II), | [106] |
IIC | As(V) | 55.0 | SO42−, NO3−, H2PO4− | [107] |
M-IIP | As(V) | 78.74 | SO42−, NO3−, H2PO4− | [108] |
5. Conclusions
6. Future Perspective
- i.
- Vigorously develop imprinted materials for anion recognition;
- ii.
- Design new non-toxic and highly selective functional monomers and continue to promote green recycling technology;
- ii.
- Combine imprinting technology with other new technologies and methods to prepare new types of highly selective adsorbents, improve the structure model of IIPs, and deeply analyze the microscopic mechanism of IIPs for the selective recognition of heavy metal ions;
- iv.
- Improve the adsorption capacity of imprinted polymers, especially in the case of controllable preparation of bifunctional molecular/ionic recognition materials and low concentrations of target ions, which is of great significance for the enrichment, detection, and recovery of heavy metals in water bodies;
- v.
- Optimize the kinetic adsorption performance and shorten the adsorption time to meet the needs of rapid identification and capture;
- vi.
- Enhance the efficiency of separation and utilization and further strengthen the recognition ability, especially for improving the specific recognition effect on targets close to the size.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B-Environ. 2023, 328, 122430. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef] [PubMed]
- Iesan, C.M.; Capat, C.; Ruta, F.; Udrea, I. Evaluation of a novel hybrid inorganic/organic polymer type material in the Arsenic removal process from drinking water. Water Res. 2008, 42, 4327–4333. [Google Scholar] [CrossRef] [PubMed]
- Pi, K.; Wang, Y.; Xie, X.; Su, C.; Ma, T.; Li, J.; Liu, Y. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China. J. Hazard. Mater. 2015, 300, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef] [PubMed]
- Goncharuk, E.A.; Zagoskina, N.V. Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review. Molecules 2023, 28, 3921. [Google Scholar] [CrossRef]
- Wang, D.; Ye, Y.; Liu, H.; Ma, H.; Zhang, W. Effect of alkaline precipitation on Cr species of Cr(III)-bearing complexes typically used in the tannery industry. Chemosphere 2018, 193, 42–49. [Google Scholar] [CrossRef]
- Bakker, K. Water Security: Research Challenges and Opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef]
- Sounthararajah, D.P.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. J. Hazard. Mater. 2015, 287, 306–316. [Google Scholar] [CrossRef]
- Wang, W.Q.; Li, M.Y.; Zeng, Q.X. Adsorption of chromium (VI) by strong alkaline anion exchange fiber in a fixed-bed column: Experiments and models fitting and evaluating. Sep. Purif. Technol. 2015, 149, 16–23. [Google Scholar] [CrossRef]
- Qian, W.; Liang, J.-Y.; Zhang, W.-X.; Huang, S.-T.; Diao, Z.-H. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil. J. Environ. Sci. 2022, 113, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Niazi, L.; Lashanizadegan, A.; Sharififard, H. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J. Clean. Prod. 2018, 185, 554–561. [Google Scholar] [CrossRef]
- Nejadshafiee, V.; Islami, M.R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 101, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.-X.; Yan, L.; Zhou, X.-H.; Huang, S.-T.; Liang, J.-Y.; Zhang, W.-X.; Guo, Z.-W.; Guo, P.-R.; Qian, W.; Kong, L.-J.; et al. Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism. J. Hazard. Mater. 2021, 416, 125930. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, Y.N.; Wang, J.G.; Tang, Y.; Zhang, Z. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: Kinetic, thermal dynamic and DFT studies. J. Hazard. Mater. 2021, 404, 124140. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.G.; Pearson, R.G. Absolute hardness—Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Gao, X.P.; Li, M.Y.; Zhao, Y.M.; Zhang, Y. Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads. Chem. Eng. J. 2019, 378, 122096. [Google Scholar] [CrossRef]
- Zhang, Q.R.; Li, Y.X.; Yang, Q.G.; Chen, H.; Chen, X.Q.; Jiao, T.F.; Peng, Q.M. Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. J. Hazard. Mater. 2018, 342, 732–740. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhao, C.; Wang, H.; Chen, J.; Yang, L.; Feng, J.; Yan, W. Study on the synthesis of poly(pyrrole methane)s with the hydroxyl in different substituent position and their selective adsorption for Pb2+. Chem. Eng. J. 2019, 361, 528–537. [Google Scholar] [CrossRef]
- Kang, J.-K.; Kim, S.-B. Synthesis of quaternized mesoporous silica SBA-15 with different alkyl chain lengths for selective nitrate removal from aqueous solutions. Microporous Mesoporous Mater. 2020, 295, 109967. [Google Scholar] [CrossRef]
- Song, H.; Zhou, Y.; Li, A.; Mueller, S. Selective removal of nitrate from water by a macroporous strong basic anion exchange resin. Desalination 2012, 296, 53–60. [Google Scholar] [CrossRef]
- Sowmya, A.; Meenakshi, S. A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chem. Eng. J. 2014, 257, 45–55. [Google Scholar] [CrossRef]
- Gu, B.H.; Brown, G.M.; Bonnesen, P.V.; Liang, L.Y.; Moyer, B.A.; Ober, R.; Alexandratos, S.D. Development of novel bifunctional anion exchange resins with improved selectivity for pertechnetate sorption from contaminated groundwater. Environ. Sci. Technol. 2000, 34, 1075–1080. [Google Scholar] [CrossRef]
- Gu, B.; Brown, G.M.; Chiang, C.-C. Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environ. Sci. Technol. 2007, 41, 6277–6282. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, X.; Wang, Z.; Duan, S.; Zheng, S.; Zheng, X. Effects of counterion type on selective arsenic removal process combining standard anion exchange resin with electrocoagulation for polluted groundwater. J. Clean. Prod. 2023, 385, 135762. [Google Scholar] [CrossRef]
- Shakerian, F.; Kim, K.H.; Kwon, E.; Szulejko, J.E.; Kumar, P.; Dadfarnia, S.; Shabani, A.M.H. Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. Trac-Trends Anal. Chem. 2016, 83, 55–69. [Google Scholar] [CrossRef]
- Polyakov, M.; Kuleshina, L.; Neimark, I. On the dependence of silica gel adsorption properties on the character of its porosity. Zhurnal Fizieskoj Khimii/Akad SSSR 1937, 10, 100–112. [Google Scholar]
- Dickey, F.H. The preparation of specific adsorbents. Proc. Natl. Acad. Sci. USA 1949, 35, 227–229. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett. 1973, 14, 4329–4332. [Google Scholar] [CrossRef]
- Tsuchida, H.N.a.E. Selective Adsorption of Metal Ions on Pol y(4-vin ylpyridine) Resins in which the Ligand Chain is Immobilized by Crosslinking. Makromol. Chem. 1976, 177, 2295–2310. [Google Scholar]
- Birlik, E.; Ersöz, A.; Denizli, A.; Say, R. Preconcentration of copper using double-imprinted polymer via solid phase extraction. Anal. Chim. Acta 2006, 565, 145–151. [Google Scholar] [CrossRef]
- Mishra, S.; Tripathi, A. Selective solid phase extraction and pre-concentration of Cu(II) ions from aqueous solution using Cu(II)-ion imprinted polymeric beads. J. Environ. Chem. Eng. 2020, 8, 103656. [Google Scholar] [CrossRef]
- Hajri, A.K.; Jamoussi, B.; Albalawi, A.E.; Alhawiti, O.H.N.; Alsharif, A.A. Designing of modified ion-imprinted chitosan particles for selective removal of mercury (II) ions. Carbohydr. Polym. 2022, 286, 119207. [Google Scholar] [CrossRef] [PubMed]
- Velempini, T.; Pillay, K.; Mbianda, X.Y.; Arotiba, O.A. Carboxymethyl cellulose thiol-imprinted polymers: Synthesis, characterization and selective Hg(II) adsorption. J. Environ. Sci. 2019, 79, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Zheng, S.K. Selective Ionic Removal Strategy and Adsorbent Preparation. Prog. Chem. 2023, 35, 780–793. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Gao, J.; Dai, J.; Han, J.; Wang, Y.; Xie, J.; Yan, Y. Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprinting technique. J. Hazard. Mater. 2011, 186, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Arshady, R.; Mosbach, K. Synthesis of substrate-selective polymers by host-guest polymerization. Macromol. Chem. Phys. Makromol. Chem. 1981, 182, 687–692. [Google Scholar] [CrossRef]
- Vlatakis, G.; Andersson, L.I.; Muller, R.; Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361, 645–647. [Google Scholar] [CrossRef]
- Xie, F.; Liu, G.; Wu, F.; Guo, G.; Li, G. Selective adsorption and separation of trace dissolved Fe(III) from natural water samples by double template imprinted sorbent with chelating diamines. Chem. Eng. J. 2012, 183, 372–380. [Google Scholar] [CrossRef]
- Teixeira Tarley, C.R.; Corazza, M.Z.; Somera, B.F.; Segatelli, M.G. Preparation of new ion-selective cross-linked poly(vinylimidazole-co-ethylene glycol dimethacrylate) using a double-imprinting process for the preconcentration of Pb2+ ions. J. Colloid Interface Sci. 2015, 450, 254–263. [Google Scholar] [CrossRef]
- Mafu, L.D.; Msagati, T.A.M.; Mamba, B.B. Ion-imprinted polymers for environmental monitoring of inorganic pollutants: Synthesis, characterization, and applications. Environ. Sci. Pollut. Res. 2013, 20, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, R. Review on Fundamentals, Preparations and Applications of Imprinted Polymers. Curr. Org. Chem. 2018, 22, 1600–1618. [Google Scholar] [CrossRef]
- Lu, J.; Qin, Y.Y.; Wu, Y.L.; Meng, M.J.; Yan, Y.S.; Li, C.X. Recent advances in ion-imprinted membranes: Separation and detection via > ion-selective recognition. Environ. Sci. Water Res. Technol. 2019, 5, 1626–1653. [Google Scholar] [CrossRef]
- Lofgreen, J.E.; Ozin, G.A. Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem. Soc. Rev. 2014, 43, 911–933. [Google Scholar] [CrossRef] [PubMed]
- Andersson, L.; Sellergren, B.; Mosbach, K. Imprinting of amino-acid derivatives in macroporous polymers. Tetrahedron Lett. 1984, 25, 5211–5214. [Google Scholar] [CrossRef]
- Haupt, K. Molecularly imprinted sorbent assays and the use of non-related probes. React. Funct. Polym. 1999, 41, 125–131. [Google Scholar] [CrossRef]
- Kandimalla, V.B.; Ju, H.X. Molecular imprinting: A dynamic technique for diverse applications in analytical chemistry. Anal. Bioanal. Chem. 2004, 380, 587–605. [Google Scholar] [CrossRef]
- Kugimiya, A.; Matsui, J.; Abe, H.; Aburatani, M.; Takeuchi, T. Synthesis of castasterone selective polymers prepared by molecular imprinting. Anal. Chim. Acta 1998, 365, 75–79. [Google Scholar] [CrossRef]
- Shea, K.J.; Dougherty, T.K. Molecular recognition on synthetic amorphous surfaces—The influence of functional-group positioning on the effectiveness of molecular recognition. J. Am. Chem. Soc. 1986, 108, 1091–1093. [Google Scholar] [CrossRef]
- Wulff, G.; Schauhoff, S. Enzyme-analog-built polymers. 27. racemic-resolution of free sugars with macroporous polymers prepared by molecular imprinting—Selectivity dependence on the arrangement of functional-groups versus spatial requirements. J. Org. Chem. 1991, 56, 395–400. [Google Scholar] [CrossRef]
- Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ye, J.; Bie, Z.; Liu, Z. Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting. Chem. Sci. 2014, 5, 1135–1140. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Miao, H.H.; Wang, J.X.; Pan, G.Q. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. Small 2020, 16, e1906644. [Google Scholar] [CrossRef] [PubMed]
- Zu, B.Y.; Zhang, Y.; Guo, X.Z.; Zhang, H.Q. Preparation of Molecularly Imprinted Polymers via Atom Transfer Radical “Bulk” Polymerization. J. Polym. Sci. Part A-Polym. Chem. 2010, 48, 532–541. [Google Scholar] [CrossRef]
- Prasad, B.B.; Pathak, P.K. Development of surface imprinted nanospheres using the inverse suspension polymerization method for electrochemical ultra sensing of dacarbazine. Anal. Chim. Acta 2017, 974, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, K.; Takano, E.; Kitayama, Y.; Takeuchi, T. Synthesis of Monodispersed Submillimeter-Sized Molecularly Imprinted Particles Selective for Human Serum Albumin Using Inverse Suspension Polymerization in Water-in-Oil Emulsion Prepared Using Microfluidics. Langmuir 2015, 31, 4981–4987. [Google Scholar] [CrossRef]
- Alizadeh, T.; Ganjali, M.R.; Rafiei, F.; Akhoundian, M. Synthesis of nano-sized timolol-imprinted polymer via ultrasonication assisted suspension polymerization in silicon oil and its use for the fabrication of timolol voltammetric sensor. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 77, 300–307. [Google Scholar] [CrossRef]
- Liu, X.; Wu, F.; Au, C.; Tao, Q.; Pi, M.; Zhang, W. Synthesis of molecularly imprinted polymer by suspension polymerization for selective extraction of p-hydroxybenzoic acid from water. J. Appl. Polym. Sci. 2019, 136, 46984. [Google Scholar] [CrossRef]
- Pan, T.; Lin, Y.L.; Wu, Q.Z.; Huang, K.W.; He, J.F. Preparation of boronate-functionalized surface molecularly imprinted polymer microspheres with polydopamine coating for specific recognition and separation of glycoside template. J. Sep. Sci. 2021, 44, 2465–2473. [Google Scholar] [CrossRef]
- Wang, J.F.; Cormack, P.A.G.; Sherrington, D.C.; Khoshdel, E. Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew. Chem. Int. Ed. 2003, 42, 5336–5338. [Google Scholar] [CrossRef]
- Zhou, T.; Jorgensen, L.; Mattebjerg, M.A.; Chronakis, I.S.; Ye, L. Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: A step forward towards multi-functionalities. RSC Adv. 2014, 4, 30292–30299. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, R.; Tang, J.; Zhu, Q.; Li, X.; Xiong, Y.; Wu, X. Preparation and adsorption properties of molecularly imprinted polymer via RAFT precipitation polymerization for selective removal of aristolochic acid I. Talanta 2017, 162, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.Y.; Shi, H.X.; Han, Y.R.; Yang, Y.Y.; Wang, R.X.; Men, J.Y. Molecularly imprinted polymers by the surface imprinting technique. Eur. Polym. J. 2021, 145, 110231. [Google Scholar] [CrossRef]
- Decompte, E.; Lobaz, V.; Monperrus, M.; Deniau, E.; Save, M. Molecularly Imprinted Polymer Colloids Synthesized by Miniemulsion Polymerization for Recognition and Separation of Nonylphenol. ACS Appl. Polym. Mater. 2020, 2, 3543–3556. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wang, J.; Sun, X.; Cao, R.; Sun, H.; Huang, C.; Chen, J. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Anal. Chim. Acta 2015, 872, 35–45. [Google Scholar] [CrossRef]
- Zhu, F.; Li, L.W.; Xing, J.D. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism. J. Hazard. Mater. 2017, 321, 103–110. [Google Scholar] [CrossRef]
- Gao, R.; Mu, X.; Hao, Y.; Zhang, L.; Zhang, J.; Tang, Y. Combination of surface imprinting and immobilized template techniques for preparation of core-shell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin. J. Mater. Chem. B 2014, 2, 1733–1741. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Li, J.; Wei, J. Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization. Sep. Purif. Technol. 2017, 177, 62–70. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Liu, Z.; Meng, M.; Jiang, F.; Luo, M.; Ni, L.; Qiu, J.; Liu, F.; Zhong, G. Preparation of a Two-Dimensional Ion-Imprinted Polymer Based on a Graphene Oxide/SiO2 Composite for the Selective Adsorption of Nickel Ions. Langmuir 2015, 31, 8841–8851. [Google Scholar] [CrossRef]
- Wang, H.Q.; Shang, H.Z.; Sun, X.R.; Hou, L.; Wen, M.Y.; Qiao, Y.X. Preparation of thermo-sensitive surface ion-imprinted polymers based on multi-walled carbon nanotube composites for selective adsorption of lead(II) ion. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 585, 124139. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Li, J.H.; Wang, X.Y.; Zhang, Z.Y.; Choo, J.; Chen, L.X. Molecular Imprinting: Green Perspectives and Strategies. Adv. Mater. 2021, 33, 2100543. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, M.; Yin, J.; Shui, R.; Yang, S.; Hua, D. Dual Ion-Imprinted Mesoporous Silica for Selective Adsorption of U(VI) and Cs(I) through Multiple Interactions. ACS Appl. Mater. Interfaces 2021, 13, 6322–6330. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qiu, T.; Guo, L.; Ye, J.; He, L.; Li, X. Polymerization induced shaping of Pickering emulsion droplets: From simple hollow microspheres to molecularly imprinted multicore microrattles. Chem. Eng. J. 2018, 332, 409–418. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, S.; Zhou, Y.; Dong, P.; Hua, D. Synthesis of surface ion-imprinted magnetic microspheres by locating polymerization for rapid and selective separation of uranium(VI). RSC Adv. 2015, 5, 4153–4161. [Google Scholar] [CrossRef]
- Ji, C.; Wu, D.; Lu, J.; Shan, C.; Ren, Y.; Li, T.; Lv, L.; Pan, B.; Zhang, W. Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. Water Res. 2021, 189, 116599. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, R. Green recovery of lithium from water by a smart imprinted adsorbent with photo-controlled and selective properties. Chem. Eng. J. 2019, 378, 122084. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Niu, D.; Li, Y.; Shi, J. Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers. J. Hazard. Mater. 2017, 328, 160–169. [Google Scholar] [CrossRef]
- Wan, S.L.; He, F.; Wu, J.Y.; Wan, W.B.; Gu, Y.W.; Gao, B. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J. Hazard. Mater. 2016, 314, 32–40. [Google Scholar] [CrossRef]
- Liu, S. Preparation of nanocellulose grafted molecularly imprinted polymer for selective adsorption Pb(II) and Hg(II). Chemosphere 2023, 316, 137832. [Google Scholar] [CrossRef]
- Gao, B.J.; Wang, X.H.; Zhang, Y.Y. Preparation of chromate anion surface-imprinted material IIP-PVI/SiO2 based on polyvinylimidazole-grafted particles PVI/SiO2 and its ionic recognition characteristic. Mater. Chem. Phys. 2013, 140, 478–486. [Google Scholar] [CrossRef]
- Huang, R.; Ma, X.; Li, X.; Guo, L.; Xie, X.; Zhang, M.; Li, J. A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (VI) from aqueous solution. J. Colloid Interface Sci. 2018, 514, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.B.; Xi, Y.; Yu, H.Y.; Yin, X.C.; Luo, S.L. Capturing Cadmium(II) Ion from Wastewater Containing Solid Particles and Floccules Using Ion-Imprinted Polymers with Broom Effect. Ind. Eng. Chem. Res. 2017, 56, 2350–2358. [Google Scholar] [CrossRef]
- Li, Z.Y.; Guo, S.Z.; Li, D.; Zang, L.H. Selective adsorption behavior of Cd2+ imprinted acrylamide-crosslinked-poly(alginic acid) magnetic polymers: Fabrication, characterization, adsorption performance and mechanism. Water Sci. Technol. 2021, 83, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Buhani; Narsito; Nuryono; Kunarti, E.S. Production of metal ion imprinted polymer from mercapto-silica through sol-gel process as selective adsorbent of cadmium. Desalination 2010, 251, 83–89. [Google Scholar] [CrossRef]
- Ye, S.Q.; Zhang, W.Y.; Hu, X.L.; He, H.X.; Zhang, Y.; Li, W.L.; Hu, G.Y.; Li, Y.; Deng, X.J. Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer. Polymers 2023, 15, 2416. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.W.; Wang, X.; Fu, D.X.; Wang, G.F.; Zhao, L.; Cheng, H.L. Synthesis of cadmium(ii) ion-imprinted composite membrane with a pyridine functional monomer and characterization of its adsorption performance. e-Polymers 2023, 23, 20228103. [Google Scholar] [CrossRef]
- Yu, C.; Song, J.; Ma, Z.; Lu, J.; Xing, W.; Meng, M.; Dai, J.; Yan, Y.; Wu, Y. Tailor-made double-face imprinted membrane with ultra-high specific surface area asymmetric structure through a connective method of dip-coating and delayed phase inversion for selective adsorption of cadmium ion. Sep. Purif. Technol. 2022, 280, 119865. [Google Scholar] [CrossRef]
- Zhu, S.N.; Xi, C.; Zhang, Y.Z.; Zhang, F. Preparation and Characterization of Cadmium(II)-Ion-Imprinted Composites Based on Epoxy Resin. ACS Appl. Polym. Mater. 2022, 4, 9284–9293. [Google Scholar] [CrossRef]
- Fang, L.L.; Ding, L.; Ren, W.; Hu, H.Q.; Huang, Y.; Shao, P.H.; Yang, L.M.; Shi, H.; Ren, Z.; Han, K.K.; et al. High exposure effect of the adsorption site significantly enhanced the adsorption capacity and removal rate: A case of adsorption of hexavalent chromium by quaternary ammonium polymers (QAPs). J. Hazard. Mater. 2021, 416, 125829. [Google Scholar] [CrossRef]
- Bao, S.Y.; Yang, W.W.; Wang, Y.J.; Yu, Y.S.; Sun, Y.Y. Highly efficient and ultrafast removal of Cr(VI) in aqueous solution to ppb level by poly(allylamine hydrochloride) covalently cross-linked amino-modified graphene oxide. J. Hazard. Mater. 2021, 409, 124470. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Kang, Y.M.; Huang, Q.Y.; Zhang, J.H.; Liu, J.H.; Hu, Z.Y.; Liu, Z.C.; Liu, Y. Cr(VI) anion-imprinted polymer synthesized on mesoporous silicon via synergistic action of bifunctional monomers for precise identification and separation of Cr(VI) from aqueous solution by fixed-bed adsorption. Water Sci. Technol. 2023, 87, 2061–2078. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, P.; Wang, G.F.; Zhao, L.; Cheng, H.L. Preparation and permeation recognition mechanism of Cr(vi) ion-imprinted composite membranes. e-Polymers 2022, 22, 938–948. [Google Scholar] [CrossRef]
- Xing, J.Y.; Li, J.C.; Yang, F.Y.; Fu, Y.; Huang, J.M.; Bai, Y.H.; Bai, B. Cyclic enrichment of chromium based on valence state transformation in metal-free photocatalytic reductive imprinted composite hydrogel. Sci. Total Environ. 2022, 839, 156367. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Guo, M.; Jiang, H.; Geng, W.; Wei, W.; Lian, Z. Plasma polymerization mediated construction of surface ion-imprinted polypropylene fibers for the selective adsorption of Cr(VI). React. Funct. Polym. 2020, 150, 104552. [Google Scholar] [CrossRef]
- Hawash, H.B.; Hagar, M.; Elkady, M.F.; Moneer, A.A.; Galhoum, A.A.; Attia, N.F.; Kassem, T.S. Synthesis and functionalization of cross-linked molecularly imprinted polymer (MIP) microwave-assisted for recognition and selective extraction of lead (II) and arsenic (V) from water: Isotherms modeling and integrative mechanisms. Chem. Eng. J. 2023, 475, 146019. [Google Scholar] [CrossRef]
- Zheng, Z.X.; Liu, J.X.; Zhang, M.S.; Li, H.; Pan, J.M. A crescent-shaped imprinted microgel adsorbent with near-infrared light-responsive performance for selective adsorption of Lead(II). Sep. Purif. Technol. 2024, 328, 124963. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Yang, Y.; Li, B.; Pan, G.; Chen, N.; Xie, Q. Optimization of diatom-based blotting materials and their efficient selective adsorption of Pb(II). Mater. Today Commun. 2023, 36, 106434. [Google Scholar] [CrossRef]
- Liang, H.; Chai, K.; Shen, F.; He, H.; He, G.; Chen, C.; Wei, Z. Methylthiazole Schiff base functionalized SBA-15 for high-performance Pb(Ⅱ) capture and separation. Microporous Mesoporous Mater. 2023, 351, 112476. [Google Scholar] [CrossRef]
- Zhu, C.; Hu, T.J.; Tang, L.; Zeng, G.M.; Deng, Y.C.; Lu, Y.; Fang, S.Y.; Wang, J.J.; Liu, Y.; Yu, J.F. Highly efficient extraction of lead ions from smelting wastewater, slag and contaminated soil by two-dimensional montmorillonite-based surface ion imprinted polymer absorbent. Chemosphere 2018, 209, 246–257. [Google Scholar] [CrossRef]
- Li, N.; Lu, H.J.; Liang, Y.K.; Zhu, F. Microwave-Assisted Magnetic Cu(II)-Imprinted-Polymer Based on Double Functional Monomers for Selective Removal of Cu(II) from Wastewater. J. Water Chem. Technol. 2022, 44, 431–439. [Google Scholar] [CrossRef]
- Monier, M.; Elsayed, N.H.; Abdel-Latif, D.A. Synthesis and application of ion-imprinted resin based on modified melamine-thiourea for selective removal of Hg(II). Polym. Int. 2015, 64, 1465–1474. [Google Scholar] [CrossRef]
- Esmali, F.; Mansourpanah, Y.; Farhadi, K.; Amani, S.; Rasoulifard, A.; Ulbricht, M. Fabrication of a novel and highly selective ion-imprinted PES-based porous adsorber membrane for the removal of mercury(II) from water. Sep. Purif. Technol. 2020, 250, 117183. [Google Scholar] [CrossRef]
- He, J.N.; Shang, H.Z.; Zhang, X.; Sun, X.R. Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion. Appl. Surf. Sci. 2018, 428, 110–117. [Google Scholar] [CrossRef]
- Zhou, G.Z.; Wu, S.; Zhou, R.S.; Wang, C.Z.; Song, Z.Z.; Miller, R.H.B.; Hao, T.; Yang, R.C. Synthesis of ion imprinted magnetic nanocomposites and application for novel selective recycling of Ni(II). J. Clean. Prod. 2021, 314, 127999. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Deng, X.J.; Ye, S.Q.; Xia, Y.; Li, L.L.; Li, W.L.; He, H.X. Selective removal and recovery of Ni(II) using a sulfonic acid-based magnetic rattle-type ion-imprinted polymer: Adsorption performance and mechanisms. RSC Adv. 2022, 12, 34571–34583. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.Q.; Yang, H.Z.; Liu, X.T.; Mo, Y.L.; Ye, T.; Cao, H.; Yuan, M.; Xu, F. Aqueous phase synthesis of ion-imprinted cryogel for paper-based colorimetric detection of As(V) with high selectivity. Microchim. Acta 2023, 190, 35. [Google Scholar] [CrossRef]
- Yin, F.; Liu, X.; Wu, M.; Yang, H.; Wu, X.; Hao, L.; Yu, J.; Wang, P.; Xu, F. “One-pot” synthesis of mesoporous ion imprinted polymer for selective adsorption and detection of As(V) in aqueous phase via cooperative extraction mechanism. Microchem. J. 2022, 177, 107272. [Google Scholar] [CrossRef]
- Zhao, H.; Liang, Q.; Yang, Y.Z.; Liu, W.F.; Liu, X.G. Magnetic graphene oxide surface lithium ion-imprinted material towards lithium extraction from salt lake. Sep. Purif. Technol. 2021, 265, 118513. [Google Scholar] [CrossRef]
- Zhang, E.H.; Liu, W.F.; Liang, Q.; Liu, X.G.; Zhao, Z.B.; Yang, Y.Z. Selective recovery of Li+ in acidic environment based on one novel electroactive Li+-imprinted graphene-based hybrid aerogel. Chem. Eng. J. 2020, 385, 123948. [Google Scholar] [CrossRef]
- Yu, J.X.; Li, H.X.; Zhou, R.Y.; Li, X.D.; Wu, H.J.; Xiao, C.Q.; Chi, R.A. Surface ion imprinted bagasse for selective removal of Cu (II) from the leaching solution of electroplating sludge. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 639, 128394. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Helleur, R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea-glutaraldehyde. Chem. Eng. J. 2015, 264, 56–65. [Google Scholar] [CrossRef]
- Guo, J.K.; Fan, X.H.; Li, Y.P.; Yu, S.H.; Zhang, Y.; Wang, L.; Ren, X.H. Mechanism of selective gold adsorption on ion-imprinted chitosan resin modified by thiourea. J. Hazard. Mater. 2021, 415, 125617. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Liu, S.; Shao, N.; Tian, Z.; Zhu, X. Synthesis of a novel magnetic chitosan-mediated GO dual-template imprinted polymer for the simultaneous and selective removal of Cd(Ⅱ) and Ni(Ⅱ) from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132266. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, E.H.; Yan, G.; Yang, Y.Z.; Liu, W.F.; Liu, X.G. A lithium ion-imprinted adsorbent using magnetic carbon nanospheres as a support for the selective recovery of lithium ions. New Carbon Mater. 2020, 35, 696–705. [Google Scholar] [CrossRef]
- Lu, J.; Qin, Y.Y.; Zhang, Q.; Wu, Y.L.; Cui, J.Y.; Li, C.X.; Wang, L.; Yan, Y.S. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. Appl. Surf. Sci. 2018, 427, 931–941. [Google Scholar] [CrossRef]
- Kang, X.; Zhu, C.; Xiong, P.; Du, Z.; Cai, Z. Copper ion-imprinted bacterial cellulose for selectively removing heavy metal ions from aqueous solution. Cellulose 2022, 29, 4001–4019. [Google Scholar] [CrossRef]
- Jiang, C.; Fang, M.; Huang, A.; Han, S.; Jin, G.-P. Fabrication of a novel magnetic rubidium ion-imprinted polymer for selective separation. New J. Chem. 2022, 46, 6343–6352. [Google Scholar] [CrossRef]
- Zeng, J.; Lv, C.; Liu, G.; Zhang, Z.; Dong, Z.; Liu, J.; Wang, Y. A novel ion-imprinted membrane induced by amphiphilic block copolymer for selective separation of Pt(IV) from aqueous solutions. J. Membr. Sci. 2019, 572, 428–441. [Google Scholar] [CrossRef]
- Ma, L.; Zheng, Q. Selective adsorption behavior of ion-imprinted magnetic chitosan beads for removal of Cu(II) ions from aqueous solution. Chin. J. Chem. Eng. 2021, 39, 103–111. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Cui, K.; Li, H.; Feng, J.; Pu, X.; Xiong, W.; Liu, N.; Yuan, G. Novel MOFs-based ion-imprinted polymer for selective separation of cobalt ions from waste battery leaching solution. Inorganica Chim. Acta 2022, 536, 120922. [Google Scholar] [CrossRef]
- Rajhans, A.; Gore, P.M.; Siddique, S.K.; Kandasubramanian, B. Ion-imprinted nanofibers of PVDF/1-butyl-3-methylimidazolium tetrafluoroborate for dynamic recovery of europium (III) ions from mimicked effluent. J. Environ. Chem. Eng. 2019, 7, 103068. [Google Scholar] [CrossRef]
- Gao, X.; Liu, J.; Li, M.; Guo, C.; Long, H.; Zhang, Y.; Xin, L. Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chem. Eng. J. 2020, 385, 123897. [Google Scholar] [CrossRef]
- Yang, L.; Li, S.; Sun, C. Selective adsorption and separation of Cs(I) from salt lake brine by a novel surface magnetic ion-imprinted polymer. J. Dispers. Sci. Technol. 2017, 38, 1547–1555. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Luo, M.; Meng, M.; Ni, L.; Qiu, J.; Hu, Z.; Liu, F.; Zhong, G.; Liu, Z.; et al. Synthesis of hydrophilic surface ion-imprinted polymer based on graphene oxide for removal of strontium from aqueous solution. J. Mater. Chem. A 2015, 3, 1287–1297. [Google Scholar] [CrossRef]
- Hong, M.; Wang, X.; You, W.; Zhuang, Z.; Yu, Y. Adsorbents based on crown ether functionalized composite mesoporous silica for selective extraction of trace silver. Chem. Eng. J. 2017, 313, 1278–1287. [Google Scholar] [CrossRef]
Synthetic Methods | Strengths | Weaknesses |
---|---|---|
Bulk polymerization | Simple to operate | Irregular shape Damage-binding sites Low yield Templates are difficult to remove |
Suspension polymerization | Easily adjustable in size | Poor recognition performance Low adsorption capacity |
Precipitation polymerization | Effectively controls the size | High solvent consumption |
Emulsion polymerization | High polymer yield High particle size uniformity | Poor adsorption capacity and low selectivity |
Surface-imprinted polymerization | Rich adsorption sites High efficiency Strong recyclability Template elution is easy | Slightly poor adsorption capacity |
Sol–gel method | Mild reaction conditions Simple synthesis process | Difficulty in eluting the template |
Adsorbents | Metal Resources | Adsorption Capacity (mg/g) | Time (min) | Ref. |
---|---|---|---|---|
MCTS@GO@DIIP | Cd(II), Ni(II) | 39.35, 33.91 | 30 | [114] |
Li+-IIP-Fe3O4@C | Li(I) | 22.26 | 40 | [115] |
Li-IIMs | Li(I) | 23.0 | 60 | [116] |
IBCN-Cu | Cu(II) | 152.2 | 150 | [117] |
MIIP | Rb(I) | 186 | 60 | [118] |
Pt(IV)-IIM | Pt(IV) | 79.68 | 40 | [119] |
IIMCD | Cu(II) | 78.1 | -- | [120] |
MOF-IIP | Co(II) | 132.8 | 120 | [121] |
PVDF/RTIL | Eu3+ | 22.37 | 180 | [122] |
IUA | Au(III) | 184.82 | 360 | [123] |
Cs(I)-MIIP | Cs(I) | 36.15 | 180 | [124] |
RAFT-IIP | Sr(II) | 145.77 | 60 | [125] |
MS-C-D | Ag(I) | 39.8 | 120 | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Wang, B.; Zhao, X.; Zhou, X.; Wang, R. Green and Sustainable Imprinting Technology for Removal of Heavy Metal Ions from Water via Selective Adsorption. Sustainability 2024, 16, 339. https://doi.org/10.3390/su16010339
Qiu X, Wang B, Zhao X, Zhou X, Wang R. Green and Sustainable Imprinting Technology for Removal of Heavy Metal Ions from Water via Selective Adsorption. Sustainability. 2024; 16(1):339. https://doi.org/10.3390/su16010339
Chicago/Turabian StyleQiu, Xiaoyu, Bingquan Wang, Xiaoxiao Zhao, Xiaoyu Zhou, and Rui Wang. 2024. "Green and Sustainable Imprinting Technology for Removal of Heavy Metal Ions from Water via Selective Adsorption" Sustainability 16, no. 1: 339. https://doi.org/10.3390/su16010339
APA StyleQiu, X., Wang, B., Zhao, X., Zhou, X., & Wang, R. (2024). Green and Sustainable Imprinting Technology for Removal of Heavy Metal Ions from Water via Selective Adsorption. Sustainability, 16(1), 339. https://doi.org/10.3390/su16010339