Hydrological Analysis of Agricultural Reservoir Watersheds Based on Water Utilization System Using the Catchment Hydrology Cycle Analysis Tool Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Target Watershed
2.2. CAT Model Overview
2.3. Establishing Input Data
3. Results and Discussion
3.1. Model Calibration Results
3.2. Reservoir Water Level Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jo, D.; Son, I.; Choi, H. Development of a New Flood Index for Local Flood Severity Predictions. J. Korea Water Resour. Assoc. 2013, 46, 47–58. [Google Scholar] [CrossRef]
- Kim, S.; Lee, T.; Shin, Y. Estimation of high-resolution soil moisture based on Sentinel-1A/B SAR sensors. J. Korean Soc. Agric. Eng. 2019, 61, 89–99. [Google Scholar] [CrossRef]
- Chikamoto, Y.; Wang, S.; Yost, M.; Yocom, L.; Gillies, R. Colorado River water supply is predictable on multi-year timescales owing to long-term ocean memory. Commun. Earth Environ. 2020, 1, 26. [Google Scholar] [CrossRef]
- Lee, H.; Nam, W.; Yoon, D.; Hong, E.; Kim, T.; Park, J. Percentile approach of drought severity classification in Evaporative Stress Index for South Korea. J. Korean Soc. Agric. Eng. 2020, 62, 63–73. [Google Scholar] [CrossRef]
- Jeon, M.; Nam, W.; Yang, M.; Mun, Y.; Hong, E.; Ok, J.; Hwang, S.; Hur, S. Assessment of upland drought using soil moisture based on the water balance analysis. J. Korean Soc. Agric. Eng. 2021, 63, 1–11. [Google Scholar] [CrossRef]
- Knox, K. Climate Justice in the UK: Reconciling Climate Change and Equity Issues in Policy and Practice in a Developed Country Contex. In Routledge Handbook of Climate Justice; Jafry, T., Ed.; Routledge: London, UK, 2019; pp. 114–127. [Google Scholar] [CrossRef]
- Korea Environment Institute (KEI). A Study on Impoving Policy for Actieving Climate Justice; Korea Environment Institute (KEI): Sejong, Republic of Korea, 2019; pp. 13–15. [Google Scholar]
- Korea Research Institute for Human Settlements (KRIHS). Policy Direction of Water Resources Considering Efficiency and Acceptability; Korea Research Institute for Human Settlements (KRIHS): Sejong, Republic of Korea, 2019; pp. 19–43. [Google Scholar]
- Kite, G. Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation. J. Hydrol. 2000, 229, 59–69. [Google Scholar] [CrossRef]
- Kite, G. Modeling the mekong: Hydrological simulation for environmental impact studies. J. Hydrol. 2001, 253, 1–13. [Google Scholar] [CrossRef]
- Kim, B.; Kim, B.; Kwon, H. Impact assessment of agricultural reservoir on streamflow simulation using semi-distributed hydrologic model. J. Korean Soc. Civ. Eng. 2009, 29, 11–22. [Google Scholar] [CrossRef]
- Kim, D.; Park, K.; Jo, J. Analysis of characteristics for irrigation reservoir using SWAT model. In Proceedings of the Korea Water Resources Association Conference; 2008; pp. 810–817. Available online: https://www.kwra.or.kr/publication/proceeding/detail/?chk=5426 (accessed on 12 November 2023).
- Lee, Y.; Park, M.; Park, K.; Kim, S. Analysis of hydrologic behavior including agricultural reservoir operation using SWAT model. J. Korean Assoc. Geogr. Inf. Stud. 2008, 11, 20–30. [Google Scholar]
- Arnold, J.; Allen, P.; Bernhardt, G. A comprehensive surface groundwater flow model. J. Hydrol. 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Ahn, S.; Park, G.; Shin, Y.; Kim, S. Assessment of the Potential Water Supply Rate of Agricultural Irrigation Facilities Using MODSIM: For Geum River Basin. J. Korea Water Resour. Assoc. 2009, 42, 825–843. [Google Scholar] [CrossRef]
- Labadie, J. MODSIM: River basin management decision support system. In Watershed Models; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Lee, H.; Kim, Y.; Yang, J.; Koh, D. Water Balance Analysis at Yongdam Testing Basin. In Proceedings of the Korea Water Resources Association Conference; 2008; pp. 1884–1888. Available online: https://www.kwra.or.kr/publication/proceeding/detail/?chk=5650 (accessed on 12 November 2023).
- Lee, S.; Kim, J.; Noh, J. Long Term Runoff Simulation for Water Balance at Daecheong Basin. J. Environ. Sci. 2010, 19, 1211–1217. [Google Scholar] [CrossRef]
- Jang, C.; Kim, H.; Kim, J. Prediction of Reservoir Water Level using CAT. J. Korean Soc. Agric. Eng. 2012, 54, 27–38. [Google Scholar] [CrossRef]
- Kim, H.; Noh, S.; Jang, C. Development and Application of the Water Cycle Analysis Model for the Urban Catchment; Korea Institute of Construction Technology: Goyang, Gyeonggi, Repubic of Korea, 2011; pp. 71–174. [Google Scholar]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanizaztion on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef]
- Han River Flood Control Office (HRFCO). Available online: http://www.wamis.go.kr/ (accessed on 12 November 2023).
- Kim, H.; Jang, C.; Noh, S. Development and Application of the Catchment Hydrologic Cycle Assessment Tool Considering Urbanization (I)—Model Development. J. Korea Water Resour. Assoc. 2012, 45, 203–215. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Jang, C. Analysis of Streamflow Characteristics of Boryeong-dam Watershed using Global Optimization Technique by Infiltraion Methods of CAT. J. Korea Acad. Ind. 2019, 20, 412–424. [Google Scholar] [CrossRef]
- Smith, M.; Allen, R.; Periera, L.; Raes, D. Crop evapotranspiration: Guidelines for computing crop requirements. In Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United: Roma, Italy, 1998. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism (MLIT). River Environment Division, River Bureau, SHER Model User’s Manual (Draft); 2001; Japan. pp. 3–13. Available online: https://arsit.or.jp/sher_download (accessed on 12 November 2023).
- Maidment, D. Handbook of Hydrology; McGraw-Hill, Inc.: New York, NY, USA, 1992; pp. 127–174. [Google Scholar]
- Green, W.; Ampt, G. Studies on Soil Physics. Part I. The Flow of Air and Water through Soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Horton, R. The role of infiltration in the hydrologic cycle. Am. Geophys. Union Trans. 1933, 14, 446–460. [Google Scholar]
- Ministry of Land, Infrastructure and Transport. Available online: https://www.molit.go.kr/english/intro.do (accessed on 12 November 2023).
Data Type | Source | Scale/Period | Data Description/Properties |
---|---|---|---|
Topography | Korea National Geography Institute | 1/5000 | Elevation |
Soil | Korea Rural Development Administration | 1/25,000 | Soil classifications and physical properties such as bulk density, texture, porosity, wilting point, field capacity and saturated hydraulic conductivity |
Land cover | Korea Ministry of Environment | 1:25,000 | Land cover classification (7 classes) |
Precipitation | Korea Meteorological Administration | 2010–2017 | Daily precipitation |
Streamflow | Han River Flood Control Office | 2010–2017 | Daily observed streamflow |
Reservoir operation data | Korea Rural Community Corporation | 2010–2017 | Storage volume data, Bottom surface, Saturated permeability coefficient, Overwater height- length, Outlet height-diameter-number |
Groundwater usage | National Groundwater Information Center | 2010–2017 | Groundwater usage |
Wastewater discharge | Korea Ministry of Environment | 2012–2017 | Wastewater processing facility, Wastewater throughput |
Facility | Effective Storage (Thousand m3) | Floor Saturation Coefficient of Permeability (mm/day) | Spillway Height | Spillway Length | Outlet Height | Outlet Diameter | Outlet Number | On-Site Confirmation | |
---|---|---|---|---|---|---|---|---|---|
m | EL.m | m | m | m | num | EL.m | |||
Naengjeong | 774.9 | 7.0 | 0.0 | 169.96 | 0 | 0.6 | 0.6 | 1 | 170.701 |
Jail | 444.6 | 7.0 | 4.6 | 151.00 | 50 | 0.5 | 0.3 | 2 | 147.292 |
Sanjeong | 1921.9 | 7.0 | 21.5 | 204.46 | 42 | 0.6 | 0.6 | 4 | |
Jungri | 531.6 | 7.0 | 2.0 | 116.60 | 40 | 0.6 | 0.3 | 2 | |
Yonghwa | 2019.0 | 6.0 | 2.5 | 250.00 | 61 | 20.8 | 0.3 | 4 | |
Jamgok | 4279.0 | 6.6 | 1.0 | 425.60 | 76 | 39.6 | 0.8 | 11 | 424.055 |
Togyo | 17,412.0 | 6.0 | 1.0 | 209.50 | 110 | 11.0 | 0.9 | 4 | |
Hagal | 101.0 | 6.0 | 2.1 | 224.20 | 7 | 4.7 | 0.3 | 1 | |
Dongsong | 3770.0 | 5.5 | 4.5 | 262.20 | 201 | 13.8 | 0.6 | 3 | |
Geumyeon | 890.0 | 3.0 | 1.0 | 193.10 | 11 | 0.0 | 0.5 | 2 | 192.731 |
Hak | 1426.0 | 6.0 | 4.1 | 188.70 | 91 | 0.0 | 0.8 | 2 |
Year | Upper Hantan River | Hwa River | After Joining Daekyocheon | After Joining Busocheon | Hantan River Dam |
---|---|---|---|---|---|
Agricultural | 6.53 | 12,615.19 | 7522.72 | 1640.29 | 769.07 |
Daily use | 275.11 | 6637.22 | 2420.55 | 3277.64 | 577.48 |
Industrial use | 0.00 | 80.88 | 115.07 | 473.64 | 30.00 |
etc. | 0.00 | 0.00 | 82.19 | 0.00 | 0.00 |
Sum | 281.65 | 19,333.28 | 10,140.54 | 5391.58 | 1376.55 |
Year | Hwa River | After Joining Daekyocheon | After Joining Busocheon | Hantan River Dam | Sum |
---|---|---|---|---|---|
2012 | 720,076.8 | 134,362.5 | 2,348,332.2 | 48,296.0 | 3,251,067.5 |
2013 | 852,671.1 | 1,814,377.1 | 2,369,405.5 | 41,325.0 | 5,077,778.7 |
2014 | 772,870.6 | 1,519,675.3 | 2,191,931.0 | 38,959.0 | 4,523,435.9 |
2015 | 971,057.7 | 1,772,930.2 | 2,377,765.6 | 37,949.0 | 5,159,702.5 |
2016 | 1,005,095.6 | 1,756,940.1 | 2,414,129.5 | 38,206.0 | 5,214,371.2 |
2017 | 818,791.4 | 1,563,156.0 | 2,360,704.8 | 31,283.0 | 4,773,935.2 |
Average | 856,760.5 | 1,426,906.9 | 2,343,711.4 | 39,336.3 | 4,666,715.2 |
Division | Total Period | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |
---|---|---|---|---|---|---|---|---|---|---|
1 basin | CASE 1 | 0.731 | 0.704 | 0.697 | 0.867 | 0.749 | 0.113 | 0.550 | 0.770 | 0.589 |
CASE 2 | 0.732 | 0.705 | 0.699 | 0.866 | 0.749 | 0.110 | 0.546 | 0.771 | 0.588 | |
CASE 3 | 0.732 | 0.704 | 0.698 | 0.867 | 0.749 | 0.124 | 0.551 | 0.770 | 0.589 | |
CASE 4 | 0.730 | 0.699 | 0.699 | 0.867 | 0.747 | 0.130 | 0.551 | 0.773 | 0.584 | |
5 basin | CASE 1 | 0.829 | 0.868 | 0.776 | 0.849 | 0.850 | 0.127 | 0.803 | 0.818 | 0.711 |
CASE 2 | 0.830 | 0.870 | 0.779 | 0.847 | 0.849 | 0.107 | 0.805 | 0.817 | 0.697 | |
CASE 3 | 0.829 | 0.868 | 0.776 | 0.849 | 0.850 | 0.127 | 0.803 | 0.818 | 0.711 | |
CASE 4 | 0.830 | 0.870 | 0.780 | 0.847 | 0.849 | 0.115 | 0.805 | 0.817 | 0.697 | |
27 basin | CASE 1 | 0.839 | 0.811 | 0.816 | 0.892 | 0.863 | 0.199 | 0.703 | 0.831 | 0.687 |
CASE 2 | 0.835 | 0.810 | 0.807 | 0.891 | 0.863 | 0.190 | 0.703 | 0.831 | 0.687 | |
CASE 3 | 0.839 | 0.811 | 0.816 | 0.892 | 0.863 | 0.207 | 0.703 | 0.831 | 0.687 | |
CASE 4 | 0.836 | 0.810 | 0.807 | 0.891 | 0.863 | 0.199 | 0.703 | 0.831 | 0.687 |
Year | Hantan River Dam Inflow | Precipitation | Amount of Loss | Sewage Quantity | Usage Performance Reservoir | Groundwater Usage | Reservoir Change |
---|---|---|---|---|---|---|---|
2011 | 1354.58 | 1809.39 | 454.81 | 0.00 | 30.06 | 13.33 | −0.70 |
2012 | 852.39 | 1471.48 | 619.09 | 3.25 | 33.34 | 13.33 | 0.54 |
2013 | 1463.46 | 2057.22 | 593.75 | 5.08 | 29.96 | 13.33 | −0.57 |
2014 | 221.90 | 755.68 | 533.77 | 4.52 | 33.92 | 13.33 | −11.05 |
2015 | 416.60 | 1201.92 | 785.32 | 5.16 | 37.54 | 13.33 | 7.68 |
2016 | 432.06 | 1392.21 | 960.15 | 5.21 | 38.76 | 13.33 | −1.01 |
2017 | 707.17 | 1405.11 | 697.94 | 4.77 | 41.51 | 13.33 | 1.17 |
Average | 778.31 | 1441.86 | 663.55 | 4.00 | 35.01 | 13.33 | −0.56 |
Year | Month | Net Inflow into the Watershed * (×10⁶ m3) | Net Outflow within the Watershed ** (×10⁶ m3) | Runoff Rate (%) | Year | Month | Net Inflow into the Watershed * (×10⁶ m3) | Net Outflow within the Watershed ** (×10⁶ m3) | Runoff Rate (%) |
---|---|---|---|---|---|---|---|---|---|
2012 | 1 | 4.53 | 16.51 | 364.9 | 2013 | 1 | 19.50 | 20.02 | 102.7 |
2 | 1.14 | 13.43 | 1174.9 | 2 | 50.26 | 30.24 | 60.2 | ||
3 | 34.87 | 14.99 | 43.0 | 3 | 30.90 | 39.46 | 127.7 | ||
4 | 156.00 | 61.71 | 39.6 | 4 | 76.46 | 33.74 | 44.1 | ||
5 | 33.64 | 38.10 | 113.3 | 5 | 104.84 | 44.12 | 42.1 | ||
6 | 113.34 | 25.06 | 22.1 | 6 | 56.23 | 33.81 | 60.1 | ||
7 | 276.24 | 106.56 | 38.6 | 7 | 1179.02 | 950.53 | 80.6 | ||
8 | 524.78 | 332.95 | 63.4 | 8 | 309.41 | 205.16 | 66.3 | ||
9 | 131.08 | 117.24 | 89.4 | 9 | 122.13 | 47.45 | 38.9 | ||
10 | 94.31 | 42.54 | 45.1 | 10 | 18.86 | 22.50 | 119.3 | ||
11 | 68.04 | 53.79 | 79.0 | 11 | 71.03 | 18.09 | 25.5 | ||
12 | 36.76 | 28.98 | 78.8 | 12 | 23.65 | 18.89 | 79.9 | ||
2014 | 1 | 11.18 | 14.46 | 129.4 | 2015 | 1 | 16.58 | 7.79 | 47.0 |
2 | 17.20 | 12.77 | 74.2 | 2 | 26.88 | 7.19 | 26.8 | ||
3 | 6.75 | 22.79 | 337.5 | 3 | 7.26 | 2.88 | 39.6 | ||
4 | 15.11 | 23.97 | 158.7 | 4 | 114.81 | 18.64 | 16.2 | ||
5 | 84.32 | 20.92 | 24.8 | 5 | 39.14 | 20.57 | 52.6 | ||
6 | 99.19 | 19.57 | 19.7 | 6 | 80.75 | 11.25 | 13.9 | ||
7 | 180.38 | 33.32 | 18.5 | 7 | 484.72 | 163.86 | 33.8 | ||
8 | 137.71 | 36.52 | 26.5 | 8 | 152.52 | 119.62 | 78.4 | ||
9 | 95.12 | 28.34 | 29.8 | 9 | 42.17 | 18.39 | 43.6 | ||
10 | 54.75 | 7.76 | 14.2 | 10 | 76.45 | 10.70 | 14.0 | ||
11 | 47.88 | 5.17 | 10.8 | 11 | 134.56 | 11.43 | 8.5 | ||
12 | 10.61 | 7.35 | 69.3 | 12 | 31.25 | 16.60 | 53.1 | ||
2016 | 1 | 0.66 | 9.30 | 1412.4 | 2017 | 1 | 12.71 | 13.15 | 103.5 |
2 | 63.63 | 9.39 | 14.8 | 2 | 14.52 | 16.20 | 111.6 | ||
3 | 55.20 | 5.46 | 9.9 | 3 | 20.74 | 12.37 | 59.6 | ||
4 | 108.30 | 2.56 | 2.4 | 4 | 74.54 | 17.41 | 23.4 | ||
5 | 175.31 | 48.10 | 27.4 | 5 | 44.10 | 24.39 | 55.3 | ||
6 | 53.70 | 21.50 | 40.0 | 6 | 48.05 | 23.94 | 49.8 | ||
7 | 504.30 | 226.16 | 44.8 | 7 | 650.82 | 293.47 | 45.1 | ||
8 | 82.05 | 26.31 | 32.1 | 8 | 426.60 | 241.91 | 56.7 | ||
9 | 41.22 | 12.43 | 30.2 | 9 | 34.01 | 17.76 | 52.2 | ||
10 | 209.88 | 48.02 | 22.9 | 10 | 21.78 | 14.60 | 67.0 | ||
11 | 25.60 | 11.10 | 43.3 | 11 | 49.54 | 14.36 | 29.0 | ||
12 | 77.59 | 12.74 | 16.4 | 12 | 12.48 | 16.43 | 131.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; Lim, H.; Lee, J.; Lee, S.; Jin, Y.; Lim, H.; Lee, C.-s.; Lee, G.; Kim, S.; Park, C. Hydrological Analysis of Agricultural Reservoir Watersheds Based on Water Utilization System Using the Catchment Hydrology Cycle Analysis Tool Model. Sustainability 2024, 16, 3887. https://doi.org/10.3390/su16103887
Shin H, Lim H, Lee J, Lee S, Jin Y, Lim H, Lee C-s, Lee G, Kim S, Park C. Hydrological Analysis of Agricultural Reservoir Watersheds Based on Water Utilization System Using the Catchment Hydrology Cycle Analysis Tool Model. Sustainability. 2024; 16(10):3887. https://doi.org/10.3390/su16103887
Chicago/Turabian StyleShin, Hyungjin, Hyeokjin Lim, Jaenam Lee, Seulgi Lee, Youngkyu Jin, Heesung Lim, Chul-sung Lee, Gyumin Lee, Sehoon Kim, and Changi Park. 2024. "Hydrological Analysis of Agricultural Reservoir Watersheds Based on Water Utilization System Using the Catchment Hydrology Cycle Analysis Tool Model" Sustainability 16, no. 10: 3887. https://doi.org/10.3390/su16103887
APA StyleShin, H., Lim, H., Lee, J., Lee, S., Jin, Y., Lim, H., Lee, C. -s., Lee, G., Kim, S., & Park, C. (2024). Hydrological Analysis of Agricultural Reservoir Watersheds Based on Water Utilization System Using the Catchment Hydrology Cycle Analysis Tool Model. Sustainability, 16(10), 3887. https://doi.org/10.3390/su16103887