Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks
Abstract
:1. Introduction
- Clean OpenStreetMap (OSM) data to extract critical road infrastructure, including motorways, primary roads, secondary roads, tertiary roads, and trunk roads, prioritizing extraction based on strategic significance;
- Identify high-risk areas with elevated concession scores, using the Zezere database, and analyze the occurrence repetitiveness versus real data, to enhance flood risk assessments for road infrastructure;
- Simulate flood events using a stochastic approach, attributing a probability of occurrence during rainy seasons, and validate the flood model using historical data on floods and landslides in Portugal, to improve flood risk assessments for road infrastructure;
- Compile Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) for different road types, including motorways, primary roads, and secondary roads, and validate these expenditures or costs, by estimating them at five times the initial cost over a five-year period to ensure ongoing sustainability;
- Establish benchmarks for assessing road performance levels across diverse socioeconomic contexts, guiding strategic decision-making processes for road infrastructure resilience enhancement and management;
- Develop scenarios to explore various resilience strategies and their impacts on road network performance and cost optimization.
2. Literature Review
2.1. Urban Resilience Stages
2.2. Critical Infrastructure
2.3. Constructed Assets and Assets Systems Performance: Road Networks
2.4. Flood Risk Reduction Strategies and Cost Optimization in Road Networks
2.5. Geospatial AI Technologies for Flood Prediction
3. Methodology
3.1. Framework
3.2. Extracting Main Roads from OpenStreetMap Data
3.3. Performance Metrics
3.4. Urban Resilience Index
3.5. Risk of Flood Exposure to Roads
3.6. CAPEX and OPEX of Road Network
3.7. Calibration of Road Performance Levels
3.8. Urban Resilience Index Formulation
3.9. Scenarios Analysis
4. Results
4.1. Individual Road Resilience Assessment Output
4.2. Comparative Analysis of Multiple Roads
4.3. Municipality-Level Resilience Analysis and Scenario Application
4.4. Cost–Benefit Analysis of Flood Resilience Scenarios for the Lisbon Road Network
4.5. The Numerical Comparison between Scenarios
5. Discussion
5.1. Significance for the Portuguese Road Networks
5.2. Implications for Urban Resilience Policy and Planning
- Mandating the incorporation of resilience assessments into urban planning processes, requiring the evaluation of flood risks and the implementation of appropriate mitigation strategies.
- Establishing guidelines or regulations for the construction and maintenance of critical infrastructure, such as roads, to ensure they meet robust resilience standards.
- Incentivizing the adoption of nature-based solutions, such as the use of permeable surfaces and green infrastructure, to enhance urban flood management.
- Allocating dedicated funding streams for resilience-focused interventions, ensuring the availability of resources for high-impact projects.
- Promoting cross-sectoral collaboration between urban planning, emergency management, and environmental agencies, to foster a comprehensive approach to resilience.
5.3. Mitigation Strategies
5.4. Broader Applicability of the Methodology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Annex
References
- Van Ginkel, K.C.H.; Dottori, F.; Alfieri, L.; Feyen, L.; Koks, E.E. Flood Risk Assessment of the European Road Network. Nat. Hazards Earth Syst. Sci. 2021, 21, 1011–1027. [Google Scholar] [CrossRef]
- van Ginkel, K.C.H.; Koks, E.E.; de Groen, F.; Nguyen, V.D.; Alfieri, L. Will River Floods ‘Tip’ European Road Networks? A Robustness Assessment. Transp. Res. Part D Transp. Environ. 2022, 108, 103332. [Google Scholar] [CrossRef]
- Crawford, M.C.; Bukvic, A.; Rijal, S.; Gohlke, J.M. The Exposure of Vulnerable Coastal Populations to Flood-Induced Natech Events in Hampton Roads, Virginia. Nat. Hazards 2023, 119, 1633–1663. [Google Scholar] [CrossRef]
- Sahoo, U.C.; Dash, S.R.; Sahu, C.S. Climate-Resilient Road Design in Coastal Areas Subjected to Cyclones and Associated Floods. Infrastruct. Asset Manag. 2021, 8, 209–218. [Google Scholar] [CrossRef]
- Li, D.; Zhu, X.; Huang, G.; Feng, H.; Zhu, S.; Li, X. A Hybrid Method for Evaluating the Resilience of Urban Road Traffic Network under Flood Disaster: An Example of Nanjing, China. Environ. Sci. Pollut. Res. 2022, 29, 46306–46324. [Google Scholar] [CrossRef]
- Mukesh, M.S.; Katpatal, Y.B.; Londhe, D.S. Measurement of City Road Network Resilience in Hazardous Flood Events. Int. J. Disaster Resil. Built Environ. 2022, 15, 274–288. [Google Scholar] [CrossRef]
- Rezvani, S.M.; de Almeida, N.M.; Falcão, M.J.; Duarte, M. Enhancing Urban Resilience Evaluation Systems through Automated Rational and Consistent Decision-Making Simulations. Sustain. Cities Soc. 2022, 78, 103612. [Google Scholar] [CrossRef]
- Duarte, M.; Almeida, N.; Falcão, M.J.; Rezvani, S.M.H.S. Resilience Rating System for Buildings against Natural Hazards. In World Congress on Engineering Asset Management; Springer International Publishing: Cham, Switzerland, 2022; ISBN 9783030967932. [Google Scholar]
- Rezvani, S.M.H.S.; Almeida, N.; Silva, M.J.F. Multi-Disciplinary and Dynamic Urban Resilience Assessment through Stochastic Analysis of a Virtual City. In World Congress on Engineering Asset Management; Springer International Publishing: Cham, Switzerland, 2023; ISBN 9783031254475. [Google Scholar]
- Rezvani, S.M.H.S.; Almeida, N.; Silva, M.J.F.; Maletič, D. Resilience Exposure Assessment Using Multi-Layer Mapping of Portuguese 308 Cities and Communities. In World Congress on Engineering Asset Management; Springer International Publishing: Cham, Switzerland, 2023; ISBN 9783031254475. [Google Scholar]
- Meerow, S.; Newell, J.P.; Stults, M.; Newell, J.P.; Stults, M. Defining Urban Resilience: A Review. Landsc. Urban. Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Rezvani, S.M.H.S.; Falcão, M.J.; Komljenovic, D.; de Almeida, N.M. A Systematic Literature Review on Urban Resilience Enabled with Asset and Disaster Risk Management Approaches and GIS-Based Decision Support Tools. Appl. Sci. 2023, 13, 2223. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Li, G. Multi-Stage Composition of Urban Resilience and the Influence of Pre-Disaster Urban Functionality on Urban Resilience. Nat. Hazards 2021, 107, 447–473. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D.; et al. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Chen, B.; Sharifi, A.; Schlör, H. Integrated Social-Ecological-Infrastructural Management for Urban Resilience. Resour. Conserv. Recycl. 2022, 181, 106268. [Google Scholar] [CrossRef]
- Jones, K.; Pascale, F.; Wanigarathna, N.; Morga, M.; Sargin, S. Critical Evaluation of the Customisation Process of the UNDRR Disaster Resilience Scorecard for Cities to Earthquake-Induced Soil Liquefaction Disaster Events. Bull. Earthq. Eng. 2021, 19, 4115–4143. [Google Scholar] [CrossRef]
- UNDRR Disaster Risk Management|UNDRR. Available online: https://www.undrr.org/terminology/disaster-risk-management (accessed on 20 July 2022).
- Hendricks, M.D.; Meyer, M.A.; Gharaibeh, N.G.; Van Zandt, S.; Masterson, J.; Cooper, J.T.; Horney, J.A.; Berke, P. The Development of a Participatory Assessment Technique for Infrastructure: Neighborhood-Level Monitoring towards Sustainable Infrastructure Systems. Sustain. Cities Soc. 2018, 38, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.A.A.; Hendricks, M.; Newman, G.D.D.; Masterson, J.H.H.; Cooper, J.T.T.; Sansom, G.; Gharaibeh, N.; Horney, J.; Berke, P.; van Zandt, S.; et al. Participatory Action Research: Tools for Disaster Resilience Education. Int. J. Disaster Resil. Built Env. 2018, 9, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Eslamzadeh, M.K.; Grilo, A.; Espadinha-Cruz, P. A Model for Fire Departments’ Performance Assessment in Portugal. Fire 2023, 6, 31. [Google Scholar] [CrossRef]
- Kammouh, O.; Zamani Noori, A.; Cimellaro, G.P.; Mahin, S.A. Resilience Assessment of Urban Communities. ASCE ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2019, 5, 04019002. [Google Scholar] [CrossRef]
- Aldrich, D.P.; Kyota, E. Creating Community Resilience through Elder-Led Physical and Social Infrastructure. Disaster Med. Public. Health Prep. 2017, 11, 120–126. [Google Scholar] [CrossRef]
- Pelling, M.; Manuel-Navarrete, D. From Resilience to Transformation: The Adaptive Cycle in Two Mexican Urban Centers. Ecol. Soc. 2011, 16, 11. [Google Scholar] [CrossRef]
- COUNCIL DIRECTIVE 2008/114/EC COUNCIL DIRECTIVE 2008/114/EC of 8 December 2008 on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve Their Protection (Text with EEA Relevance). Off. J. Eur. Union 2008, 345, 75–82.
- CISA Critical Infrastructure Systems|CISA. Available online: https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/resilience-services/infrastructure-dependency-primer/learn/critical-infrastructure-systems (accessed on 24 March 2024).
- Garcia, J.; Rezvani, S.; Silva, M.J.F.; Almeida, N.; Pinto, C.; Gomes, R.; Ferreira, M.A.; Ribeiro, F.; Salvado, F.; Oliveira, C.S. Resilience Assessment of Public Treasury Elementary School Buildings in Lisbon Municipality. In Lecture Notes in Mechanical Engineering; Springer: Berlin, Heidelberg, 2023; pp. 636–644. [Google Scholar]
- EPRS|European Parliamentary Research Service. European Critical Infrastructure of Directive 2008/114/EC; EPRS | European Parliamentary Research Service: Brussels, Belgium, 2021. [Google Scholar]
- Feofilovs, M.; Romagnoli, F. Resilience of Critical Infrastructures: Probabilistic Case Study of a District Heating Pipeline Network in Municipality of Latvia. Energy Procedia 2017, 128, 17–23. [Google Scholar] [CrossRef]
- Hossain, N.U.I.; Amrani, S.E.; Jaradat, R.; Marufuzzaman, M.; Buchanan, R.; Rinaudo, C.; Hamilton, M. Modeling and Assessing Interdependencies between Critical Infrastructures Using Bayesian Network: A Case Study of Inland Waterway Port and Surrounding Supply Chain Network. Reliab. Eng. Syst. Saf. 2020, 198, 106898. [Google Scholar] [CrossRef]
- Abdel-Mottaleb, N.; Ghasemi Saghand, P.; Charkhgard, H.; Zhang, Q. An Exact Multiobjective Optimization Approach for Evaluating Water Distribution Infrastructure Criticality and Geospatial Interdependence. Water Resour. Res. 2019, 55, 5255–5276. [Google Scholar] [CrossRef]
- Hynes, W.; Purcell, S.M. Security for Critical Infrastructure and Urban Areas: A Holistic Approach to Urban Safety, Security and Resilience. In Future Security Research Conference; Springer: Berlin/Heidelberg, Germany, 2012; Volume 318 CCIS, ISBN 9783642331602. [Google Scholar]
- Alyami, S.H.; Abd El Aal, A.K.; Alqahtany, A.; Aldossary, N.A.; Jamil, R.; Almohassen, A.; Alzenifeer, B.M.; Kamh, H.M.; Fenais, A.S.; Alsalem, A.H. Developing a Holistic Resilience Framework for Critical Infrastructure Networks of Buildings and Communities in Saudi Arabia. Buildings 2023, 13, 179. [Google Scholar] [CrossRef]
- Urlainis, A.; Shohet, I.M. Seismic Risk Mitigation and Management for Critical Infrastructures Using an RMIR Indicator. Buildings 2022, 12, 1748. [Google Scholar] [CrossRef]
- Komljenovic, D.; Abdul-Nour, G.; Boudreau, J.-F. Risk-informed decision-making in asset management as a complex adaptive system of systems. Int. J. Strat. Eng. Asset Manag. 2019, 3, 198–238. [Google Scholar] [CrossRef]
- Argyroudis, S.A.; Mitoulis, S.A.; Hofer, L.; Zanini, M.A.; Tubaldi, E.; Frangopol, D.M. Resilience Assessment Framework for Critical Infrastructure in a Multi-Hazard Environment: Case Study on Transport Assets. Sci. Total Environ. 2020, 714, 136854. [Google Scholar] [CrossRef] [PubMed]
- Gay, L.F.; Sinha, S.K. Resilience of Civil Infrastructure Systems: Literature Review for Improved Asset Management. Int. J. Crit. Infrastruct. 2013, 9, 330–350. [Google Scholar] [CrossRef]
- He, C.-Y.; Tung, C.-P.; Lin, Y.-J. Applying the DRCA Risk Template on the Flood-Prone Disaster Prevention Community Due to Climate Change. Sustainability 2021, 13, 891. [Google Scholar] [CrossRef]
- Lu, Q.-C.; Peng, Z.-R.; Zhang, J. Identification and Prioritization of Critical Transportation Infrastructure: Case Study of Coastal Flooding. J. Transp. Eng. 2015, 141, 04014082. [Google Scholar] [CrossRef]
- Yin, Y.; Val, D.V.; Zou, Q.; Yurchenko, D. Resilience of Critical Infrastructure Systems to Floods: A Coupled Probabilistic Network Flow and LISFLOOD-FP Model. Water 2022, 14, 683. [Google Scholar] [CrossRef]
- Gebhartová, J.; Caletková, J.; Beneš, I. Resilience of Critical Infrastructure in Field of Water Supply System. In Proceedings of the 5th International Disaster and Risk Conference: Integrative Risk Management—The Role of Science, Technology and Practice, IDRC Davos, Davos, Switzerland, 24–28 August 2014; pp. 262–265. [Google Scholar]
- Espada, R.J.J.; Apan, A.; McDougall, K. Vulnerability Assessment and Interdependency Analysis of Critical Infrastructures for Climate Adaptation and Flood Mitigation. Int. J. Disaster Resil. Built Environ. 2015, 6, 313–346. [Google Scholar] [CrossRef]
- Haraguchi, M.; Kim, S. Critical Infrastructure Interdependence in New York City during Hurricane Sandy. Int. J. Disaster Resil. Built Environ. 2016, 7, 133–143. [Google Scholar] [CrossRef]
- Nozhati, S.; Ellingwood, B.R.; Mahmoud, H.; Van De Lindt, J.W. Identifying and Analyzing Interdependent Critical Infrastructure in Postearthquake Urban Reconstruction. In Proceedings of the 11th National Conference on Earthquake Engineering 2018, NCEE 2018: Integrating Science, Engineering, and Policy, Los Angeles, CA, USA, 25–29 June 2018; Volume 1, pp. 251–260. [Google Scholar]
- Rezvani, S.; Almeid, N. Multi-Criteria Decision Analysis Applied to Subcontractors Selection in Construction Projects. In Proceedings of the 11th IMA International Conference on Modelling in Industrial Maintenance and Reliability, Essex, UK, 29 June–1 July 2021; Institute of Mathematics & its Applications: Essex, UK, 2021. [Google Scholar]
- Rahman, M.M.; Beecham, S.; Iqbal, A.; Karim, M.R.; Rabbi, A.T.Z. Sustainability Assessment of Using Recycled Aggregates in Concrete Block Pavements. Sustainability 2020, 12, 4313. [Google Scholar] [CrossRef]
- Gnecco, I.; Pirlone, F.; Spadaro, I.; Bruno, F.; Lobascio, M.C.; Sposito, S.; Pezzagno, M.; Palla, A. Participatory Mapping for Enhancing Flood Risk Resilient and Sustainable Urban Drainage: A Collaborative Approach for the Genoa Case Study. Sustainability 2024, 16, 1936. [Google Scholar] [CrossRef]
- Ramos, H.M.; Besharat, M. Urban Flood Risk and Economic Viability Analyses of a Smart Sustainable Drainage System. Sustainability 2021, 13, 13889. [Google Scholar] [CrossRef]
- Rasoulkhani, K.; Mostafavi, A.; Cole, J.; Sharvelle, S. Resilience-Based Infrastructure Planning and Asset Management: Study of Dual and Singular Water Distribution Infrastructure Performance Using a Simulation Approach. Sustain. Cities Soc. 2019, 48, 101577. [Google Scholar] [CrossRef]
- Schuman, C.A.; Brent, A.C. Asset Life Cycle Management: Towards Improving Physical Asset Performance in the Process Industry. Int. J. Oper. Prod. Manag. 2005, 25, 566–579. [Google Scholar] [CrossRef]
- Piryonesi, S.M.; El-Diraby, T. Using Data Analytics for Cost-Effective Prediction of Road Conditions: Case of the Pavement Condition Index, No. FHWA-HRT-18-065; Federal Highway Administration: Washington, DC, USA, 2018. [Google Scholar]
- Renne, J.; Wolshon, B.; Murray-Tuite, P.; Pande, A. Emergence of Resilience as a Framework for State Departments of Transportation (DOTs) in the United States. Transp. Res. Part D Transp. Environ. 2020, 82, 102178. [Google Scholar] [CrossRef]
- Rezvani, S.; Gomes, M.C. Assessment of Pavement Degradation through Statistical Analysis Model A Case Study of the Department of Transportation (DOT) of Iowa, USA. In Proceedings of the 11th IMA International Conference on Modelling in Industrial Maintenance and Reliability, Essex, UK, 29 June–1 July 2021; Institute of Mathematics & Its Applications: Essex, UK, 2021. [Google Scholar]
- Ye, S.; Lai, X.; Bartoli, I.; Aktan, A.E. Technology for Condition and Performance Evaluation of Highway Bridges. J. Civ. Struct. Health Monit. 2020, 10, 573–594. [Google Scholar] [CrossRef]
- El Marai, O.; Taleb, T.; Song, J. Roads Infrastructure Digital Twin: A Step Toward Smarter Cities Realization. IEEE Netw. 2021, 35, 136–143. [Google Scholar] [CrossRef]
- Eslamzadeh, M.K.; Grilo, A.; Espadinha-Cruz, P. A Framework for Resource Allocation in Fire Departments: A Structured Literature Review. Fire 2022, 5, 109. [Google Scholar] [CrossRef]
- Wisetjindawat, W.; Kermanshah, A.; Derrible, S.; Fujita, M. Stochastic Modeling of Road System Performance during Multihazard Events: Flash Floods and Earthquakes. J. Infrastruct. Syst. 2017, 23, 04017031. [Google Scholar] [CrossRef]
- Gangwal, U.; Dong, S. Critical Facility Accessibility Rapid Failure Early-Warning Detection and Redundancy Mapping in Urban Flooding. Reliab. Eng. Syst. Saf. 2022, 224, 108555. [Google Scholar] [CrossRef]
- Twum, K.O.; Abubakari, M. Cities and Floods: A Pragmatic Insight into the Determinants of Households’ Coping Strategies to Floods in Informal Accra, Ghana. Jamba J. Disaster Risk Stud. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Haer, T.; Botzen, W.J.W.; Zavala-Hidalgo, J.; Cusell, C.; Ward, P.J. Economic Evaluation of Climate Risk Adaptation Strategies: Cost-Benefit Analysis of Flood Protection in Tabasco, Mexico. Atmosfera 2017, 30, 101–120. [Google Scholar] [CrossRef]
- Cabrera, J.S.; Lee, H.S. Lee Flood-Prone Area Assessment Using GIS-Based Multi-Criteria Analysis: A Case Study in Davao Oriental, Philippines. Water 2019, 11, 2203. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour. Manag. 2014, 29, 399–418. [Google Scholar] [CrossRef]
- Al-Suleiman, T.I.; Bazlamit, S.M.; Azzama, M.; Ahmad, H.S. Pavement Deterioration Rate and Maintenance Cost for Low-Volume Roads. MATEC Web Conf. 2020, 312, 06002. [Google Scholar] [CrossRef]
- Chinowsky, P.S.; Price, J.C.; Neumann, J.E. Assessment of Climate Change Adaptation Costs for the U.S. Road Network. Glob. Environ. Chang. 2013, 23, 764–773. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Panahi, M.; Khosravi, K.; Shirzadi, A.; Shahabi, H.; Panahi, S.; Costache, R. Flood Susceptibility Mapping in Dingnan County (China) Using Adaptive Neuro-Fuzzy Inference System with Biogeography Based Optimization and Imperialistic Competitive Algorithm. J. Environ. Manag. 2019, 247, 712–729. [Google Scholar] [CrossRef] [PubMed]
- Sušnik, J.; Strehl, C.; Postmes, L.A.; Vamvakeridou-Lyroudia, L.S.; Mälzer, H.-J.; Savić, D.A.; Kapelan, Z. Assessing Financial Loss Due to Pluvial Flooding and the Efficacy of Risk-Reduction Measures in the Residential Property Sector. Water Resour. Manag. 2015, 29, 161–179. [Google Scholar] [CrossRef]
- Dwirahmadi, F.; Rutherford, S.; Phung, D.; Chu, C. Understanding the Operational Concept of a Flood-Resilient Urban Community in Jakarta, Indonesia, from the Perspectives of Disaster Risk Reduction, Climate Change Adaptation and Development Agencies. Int. J. Environ. Res. Public. Health 2019, 16, 3993. [Google Scholar] [CrossRef] [PubMed]
- Li, W. GeoAI: Where Machine Learning and Big Data Converge in GIScience. J. Spat. Inf. Sci. 2020, 20, 71–77. [Google Scholar] [CrossRef]
- Li, W.; Lee, H.; Wang, S.; Hsu, C.-Y.; Arundel, S.T. Assessment of a New GeoAI Foundation Model for Flood Inundation Mapping. In Proceedings of the GeoAI 2023—Proceedings of the 6th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, Hamburg, Germany, 13 November 2023; pp. 102–109. [Google Scholar]
- Wang, S.; Li, W. GeoAI in Terrain Analysis: Enabling Multi-Source Deep Learning and Data Fusion for Natural Feature Detection. Comput. Environ. Urban Syst. 2021, 90, 101715. [Google Scholar] [CrossRef]
- Kang, Y.; Abraham, J.; Ceccato, V.; Duarte, F.; Gao, S.; Ljungqvist, L.; Zhang, F.; Näsman, P.; Ratti, C. Assessing Differences in Safety Perceptions Using GeoAI and Survey across Neighbourhoods in Stockholm, Sweden. Landsc. Urban Plan. 2023, 236, 104768. [Google Scholar] [CrossRef]
- Ballesteros, J.R.; Sanchez-Torres, G.; Branch-Bedoya, J.W. A GIS Pipeline to Produce GeoAI Datasets from Drone Overhead Imagery. ISPRS Int. J. Geoinf. 2022, 11, 508. [Google Scholar] [CrossRef]
- Basha, E.A.; Ravela, S.; Rus, D. Model-Based Monitoring for Early Warning Flood Detection. In Proceedings of the SenSys’08—Proceedings of the 6th ACM Conference on Embedded Networked Sensor Systems, Raleigh, NC, USA, 5–7 November 2008; pp. 295–308. [Google Scholar] [CrossRef]
- Rezvani, S.M.H.S.; de Almeida, N.M.; Falcão, M.J. Climate Adaptation Measures for Enhancing Urban Resilience. Buildings 2023, 13, 2163. [Google Scholar] [CrossRef]
- Rezvani, S.M.H.S.; Falcão Silva, M.J.; de Almeida, N.M. The Risk-Informed Asset-Centric (RIACT) Urban Resilience Enhancement Process: An Outline and Pilot-Case Demonstrator for Earthquake Risk Mitigation in Portuguese Municipalities. Appl. Sci. 2024, 14, 634. [Google Scholar] [CrossRef]
- Viljoen, N.M.; Joubert, J.W. The Road Most Travelled: The Impact of Urban Road Infrastructure on Supply Chain Network Vulnerability. Netw. Spat. Econ. 2018, 18, 85–113. [Google Scholar] [CrossRef]
- Guo, J.C.Y. Risk-Cost Approach to Interim Drainage Structure Design. J. Water Resour. Plan. Manag. 1998, 124, 330–333. [Google Scholar] [CrossRef]
- Nofal, O.M.; van de Lindt, J.W.; Cutler, H.; Shields, M.; Crofton, K. Modeling the Impact of Building-Level Flood Mitigation Measures Made Possible by Early Flood Warnings on Community-Level Flood Loss Reduction. Buildings 2021, 11, 475. [Google Scholar] [CrossRef]
- Alabbad, Y.; Mount, J.; Campbell, A.M.; Demir, I. Assessment of Transportation System Disruption and Accessibility to Critical Amenities during Flooding: Iowa Case Study. Sci. Total Environ. 2021, 793, 148476. [Google Scholar] [CrossRef] [PubMed]
- Pedrozo-Acuña, A.; Moreno, G.; Mejía-Estrada, P.; Paredes-Victoria, P.; Breña-Naranjo, J.A.; Meza, C. Integrated Approach to Determine Highway Flooding and Critical Points of Drainage. Transp. Res. Part D Transp. Environ. 2017, 50, 182–191. [Google Scholar] [CrossRef]
- Jiang, R.; Wu, P. Estimation of Environmental Impacts of Roads through Life Cycle Assessment: A Critical Review and Future Directions. Transp. Res. Part D Transp. Environ. 2019, 77, 148–163. [Google Scholar] [CrossRef]
- Zhou, R.; Zheng, H.; Liu, Y.; Xie, G.; Wan, W. Flood Impacts on Urban Road Connectivity in Southern China. Sci. Rep. 2022, 12, 16866. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yang, B. Towards Resilient and Smart Urban Road Networks: Connectivity Restoration via Community Structure. Sustain. Cities Soc. 2021, 75, 103344. [Google Scholar] [CrossRef]
- Winter, M.G.; Peeling, D.; Palmer, D.; Peeling, J. Economic Impacts of Landslides and Floods on a Road Network. Acta Univ. Carol. Geogr. 2019, 54, 207–220. [Google Scholar] [CrossRef]
- Espinet, X.; Rozenberg, J. Prioritization of Climate Change Adaptation Interventions in a Road Network Combining Spatial Socio-Economic Data, Network Criticality Analysis, and Flood Risk Assessments. Transp. Res. Rec. 2018, 2672, 44–53. [Google Scholar] [CrossRef]
- City Resilience Index—Arup. Available online: https://www.arup.com/perspectives/publications/research/section/city-resilience-index (accessed on 1 April 2024).
- Suárez, M.; Gómez-Baggethun, E.; Benayas, J.; Tilbury, D.; Romero-Lankao, P.; Wilhelmi, O.; Hayden, M. Towards an Urban Resilience Index: A Case Study in 50 Spanish Cities. Sustainability 2016, 8, 774. [Google Scholar] [CrossRef]
- Sands, G.; Filion, P.; Skidmore, M. Conclusion: Stages and Scales of Urban Resilience Strategies. In Cities at Risk; Routledge: Oxfordshire, UK, 2016; pp. 221–230. [Google Scholar]
- Zêzere, J.L.; Pereira, S.; Tavares, A.O.; Bateira, C.; Trigo, R.M.; Quaresma, I.; Santos, P.P.; Santos, M.; Verde, J. DISASTER: A GIS Database on Hydro-Geomorphologic Disasters in Portugal. Nat. Hazards 2014, 72, 503–532. [Google Scholar] [CrossRef]
- Silva, M.M.; Costa, J.P. Urban Flood Adaptation through Public Space Retrofits: The Case of Lisbon (Portugal). Sustainability 2017, 9, 816. [Google Scholar] [CrossRef]
- Liu, B.; Xu, C.; Yang, J.; Lin, S.; Wang, X. Effect of Land Use and Drainage System Changes on Urban Flood Spatial Distribution in Handan City: A Case Study. Sustainability 2022, 14, 14610. [Google Scholar] [CrossRef]
- Piazza, P.; Ursino, N. On the Reason to Implement a Sustainable Urban Drainage Nature-Based Solution to Decrease Flood Threat: A Survey. Sustainability 2023, 15, 9798. [Google Scholar] [CrossRef]
- Dirección General de Tráfico, DGT. Available online: https://www.dgt.es/inicio/ (accessed on 31 March 2024).
- The Department of Infrastructure, T.R.D.C. and the A. The Economics of Road Maintenance; Bureau of Infrastructure and Transport Research Economics: Canberra, Australia, 2023. [Google Scholar]
- Kim, B.; Shin, S.C.; Kim, D.Y. Scenario-Based Economic Impact Analysis for Bridge Closures Due to Flooding: A Case Study of North Gyeongsang Province, South Korea. Water 2018, 10, 981. [Google Scholar] [CrossRef]
- Russo, B.; Velasco, M.; Locatelli, L.; Sunyer, D.; Yubero, D.; Monjo, R.; Martínez-Gomariz, E.; Forero-Ortiz, E.; Sánchez-Muñoz, D.; Evans, B.; et al. Assessment of Urban Flood Resilience in Barcelona for Current and Future Scenarios. The RESCCUE Project. Sustainability 2020, 12, 5638. [Google Scholar] [CrossRef]
- Brunetta, G.; Ceravolo, R.; Barbieri, C.A.; Borghini, A.; de Carlo, F.; Mela, A.; Beltramo, S.; Longhi, A.; De Lucia, G.; Ferraris, S.; et al. Territorial Resilience: Toward a Proactive Meaning for Spatial Planning. Sustainability 2019, 11, 2286. [Google Scholar] [CrossRef]
- Nahvi, A.; Sadati, S.M.S.; Cetin, K.; Ceylan, H.; Sassani, A.; Kim, S. Towards Resilient Infrastructure Systems for Winter Weather Events: Integrated Stochastic Economic Evaluation of Electrically Conductive Heated Airfield Pavements. Sustain. Cities Soc. 2018, 41, 195–204. [Google Scholar] [CrossRef]
- Lubashevskiy, V.; Suzuki, T.; Kanno, T.; Furuta, K. Recovery of Urban Socio-Technical Systems after Disaster: Quasi-Optimality of Reactive Decision-Making Based Planning. EURO J. Decis. Process. 2017, 5, 65–77. [Google Scholar] [CrossRef]
- Burch, S.; Sheppard, S.R.J.; Shaw, A.; Flanders, D. Planning for Climate Change in a Flood-Prone Community: Municipal Barriers to Policy Action and the Use of Visualizations as Decision-Support Tools. J. Flood Risk Manag. 2010, 3, 126–139. [Google Scholar] [CrossRef]
- Karavokiros, G.; Lykou, A.; Koutiva, I.; Batica, J.; Kostaridis, A.; Alves, A.; Makropoulos, C. Providing Evidence-Based, Intelligent Support for Flood Resilient Planning and Policy: The PEARL Knowledge Base. Water 2016, 8, 392. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Cui, X. Flood Emergency Management Using Hydrodynamic Modelling. Procedia Eng. 2012, 28, 750–753. [Google Scholar] [CrossRef]
- Valizadeh, N.; Shamseldin, A.Y.; Wotherspoon, L. Quantification of the Hydraulic Dimension of Stormwater Management System Resilience to Flooding. Water Resour. Manag. 2019, 33, 4417–4429. [Google Scholar] [CrossRef]
- Karamouz, M.; Taheri, M.; Khalili, P.; Chen, X. Building Infrastructure Resilience in Coastal Flood Risk Management. J. Water Resour. Plan. Manag. 2019, 145, 04019004. [Google Scholar] [CrossRef]
- Bernello, G.; Mondino, E.; Bortolini, L. People’s Perception of Nature-Based Solutions for Flood Mitigation: The Case of Veneto Region (Italy). Sustainability 2022, 14, 4621. [Google Scholar] [CrossRef]
- Ciampa, F.; Seifollahi-Aghmiuni, S.; Kalantari, Z.; Ferreira, C.S.S. Flood Mitigation in Mediterranean Coastal Regions: Problems, Solutions, and Stakeholder Involvement. Sustainability 2021, 13, 10474. [Google Scholar] [CrossRef]
- Taromideh, F.; Fazloula, R.; Choubin, B.; Emadi, A.; Berndtsson, R. Urban Flood-Risk Assessment: Integration of Decision-Making and Machine Learning. Sustainability 2022, 14, 4483. [Google Scholar] [CrossRef]
- Rodríguez-Gaviria, E.M.; Ochoa-Osorio, S.; Builes-Jaramillo, A.; Botero-Fernández, V. Computational Bottom-up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas. Sustainability 2019, 11, 4341. [Google Scholar] [CrossRef]
- Tachaudomdach, S.; Upayokin, A.; Kronprasert, N.; Arunotayanun, K. Quantifying Road-Network Robustness toward Flood-Resilient Transportation Systems. Sustainability 2021, 13, 3172. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Kim, Y.-C.; Seo, H. Selecting Disaster Waste Transportation Routes to Reduce Overlapping of Transportation Routes after Floods. Sustainability 2022, 14, 2866. [Google Scholar] [CrossRef]
Construction Type | Number of Lanes | Lane Width (m) | Average Construction Price per Lane (EUR Million) | Maintenance Cost per Kilometer (EUR Thousand) | Five Times Maintenance Cost, as Percentage of Initial Construction Cost |
---|---|---|---|---|---|
Motorway | 3.5 | 12.25 | 5.2 | 54.6 | 21% |
Motorway Link | 2 | 7 | 3 | 12.48 | 8% |
Primary | 2.5 | 8.75 | 3.33 | 21.06 | 13% |
Primary Link | 1 | 3.5 | 1.35 | 7.02 | 10% |
Secondary | 2 | 7 | 2.4 | 12.48 | 10% |
Secondary Link | 1 | 3.5 | 1.2 | 6.24 | 10% |
Tertiary | 2 | 6 | 1.75 | 9.345 | 11% |
Tertiary Link | 1 | 3 | 0.91 | 4.69 | 10% |
Trunk | 2 | 8 | 2.72 | 14.28 | 11% |
Trunk Link | 1 | 4 | 1.36 | 7.12 | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezvani, S.M.H.S.; Silva, M.J.F.; de Almeida, N.M. Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks. Sustainability 2024, 16, 4143. https://doi.org/10.3390/su16104143
Rezvani SMHS, Silva MJF, de Almeida NM. Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks. Sustainability. 2024; 16(10):4143. https://doi.org/10.3390/su16104143
Chicago/Turabian StyleRezvani, Seyed M. H. S., Maria João Falcão Silva, and Nuno Marques de Almeida. 2024. "Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks" Sustainability 16, no. 10: 4143. https://doi.org/10.3390/su16104143
APA StyleRezvani, S. M. H. S., Silva, M. J. F., & de Almeida, N. M. (2024). Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks. Sustainability, 16(10), 4143. https://doi.org/10.3390/su16104143