Pots to Plots: Microshock Weed Control Is an Effective and Energy Efficient Option in the Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment and Materials
2.2. Environmental Data
2.3. Methods
2.4. Treatments
2.5. Statistical Analysis
3. Results
3.1. Trial 1 Lepidium didymum
3.2. Trial 2 Amaranthus powellii
3.3. Trial 3 Lolium multiflorum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Donoghue, T.; Minasny, B.; McBratney, A. Regenerative Agriculture and Its Potential to Improve Farmscape Function. Sustainability 2022, 14, 5815. [Google Scholar] [CrossRef]
- Rempelos, L.; Kabourakis, E.; Leifert, C. Innovative Organic and Regenerative Agricultural Production. Agronomy 2023, 13, 1344. [Google Scholar] [CrossRef]
- Grelet, G.; Lang, S. Regenerative agriculture in Aotearoa New Zealand: Research Pathways to Build Science-Based Evidence and National Narratives; Manaaki Whenua-Landcare Research: Lincoln, NZ, USA, 2021; p. 59. [Google Scholar]
- Burns, E.A. Thinking sociologically about regenerative agriculture. N. Z. Sociol. 2020, 35, 189–213. [Google Scholar]
- LaCanne, C.E.; Lundgren, J.G. Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ 2018, 6, e4428. [Google Scholar] [CrossRef] [PubMed]
- Hageman, K.J.; Aebig, C.H.F.; Luong, K.H.; Kaserzon, S.L.; Wong, C.S.; Reeks, T.; Greenwood, M.; Macaulay, S.; Matthaei, C.D. Current-use pesticides in New Zealand streams: Comparing results from grab samples and three types of passive samplers. Environ. Pollut. 2019, 254, 112973. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Thomas, D.T.; Anderson, J.P.; Chen, C.; Macdonald, B.C.T. Global Application of Regenerative Agriculture: A Review of Definitions and Assessment Approaches. Sustainability 2023, 15, 15941. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Weed science in sustainable agriculture. Am. J. Altern. Agric. 1995, 10, 138–142. [Google Scholar] [CrossRef]
- Fenster, T.; LaCanne, C.; Pecenka, J.; Schmid, R.; Bredeson, M.; Busenitz, K.; Michels, A.; Welch, K.; Lundgren, J. Defining and validating regenerative farm systems using a composite of ranked agricultural practices [version 1; peer review: 2 approved]. F1000Research 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Elrick, W.; Luke, H.; Stimpson, K. Exploring opportunities and constraints of a certification scheme for regenerative agricultural practice. Agroecol. Sustain. Food Syst. 2022, 46, 1527–1549. [Google Scholar] [CrossRef]
- McCain Foods. McCain’s Regenerative Agriculture Framework. 2023. Available online: https://www.mccain.com/media/4594/mccain_regenag_framework_2024.pdf (accessed on 6 May 2024).
- Cornell University College of Agriculture and Life Sciences. Environmental Impact Quotient (EIQ) Explained. Available online: https://turf.cals.cornell.edu/pests-and-weeds/environmental-impact-quotient-eiq-explained/ (accessed on 5 March 2024).
- Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. Robots and shocks: Emerging non-herbicide weed control options for vegetable and arable cropping. N. Z. J. Agric. Res. 2024, 67, 81–103. [Google Scholar] [CrossRef]
- Crinnion, W.J. Organic foods contain higher levels of certain nutrients, lower levels of pesticides, and may provide health benefits for the consumer. Environ. Med. 2010, 15, 9. [Google Scholar] [PubMed]
- Forbes, S.L.; Cohen, D.A.; Cullen, R.; Wratten, S.D.; Fountain, J. Consumer attitudes regarding environmentally sustainable wine: An exploratory study of the New Zealand marketplace. J. Clean. Prod. 2009, 17, 1195–1199. [Google Scholar] [CrossRef]
- Galati, A.; Schifani, G.; Crescimanno, M.; Migliore, G. “Natural wine” consumers and interest in label information: An analysis of willingness to pay in a new Italian wine market segment. J. Clean. Prod. 2019, 227, 405–413. [Google Scholar] [CrossRef]
- Hoek, A.C.; Pearson, D.; James, S.W.; Lawrence, M.A.; Friel, S. Shrinking the food-print: A qualitative study into consumer perceptions, experiences and attitudes towards healthy and environmentally friendly food behaviours. Appetite 2017, 108, 117–131. [Google Scholar] [CrossRef]
- Koch, S.; Epp, A.; Lohmann, M.; Bol, G.F. Pesticide residues in food: Attitudes, beliefs, and misconceptions among conventional and organic consumers. J. Food Prot. 2017, 80, 2083–2089. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Mahajan, G.; Chauhan, B.S. Nonconventional weed management strategies for modern agriculture. Weed Sci. 2015, 63, 723–747. [Google Scholar] [CrossRef]
- Jun, I.; Feng, Z.; Avanasi, R.; Brain, R.A.; Prosperi, M.; Bian, J. Evaluating the perceptions of pesticide use, safety, and regulation and identifying common pesticide-related topics on Twitter. Integr. Environ. Assess. Manag. 2023, 19, 1581–1599. [Google Scholar] [CrossRef]
- Ministry for Primary Industries. Regenerating Aotearoa: Investigating the Impacts of Regenerative Farming Practices; Ministry for Primary Industries: Wellington, New Zealand, 2022; ISBN 978-1-99-105209-4.
- Buddenhagen, C.E.; James, T.K.; Ngow, Z.; Hackell, D.L.; Rolston, M.P.; Chynoweth, R.J.; Gunnarsson, M.; Li, F.; Harrington, K.C.; Ghanizadeh, H. Resistance to post-emergent herbicides is becoming common for grass weeds on New Zealand wheat and barley farms. PLoS ONE 2021, 16, e0258685. [Google Scholar] [CrossRef]
- Doole, G.J.; James, T.K. Profitable management of a finite herbicide resource. Crop Prot. 2023, 172, 106314. [Google Scholar] [CrossRef]
- Espig, M.; Henwood, R.J.T. The social foundations for re-solving herbicide resistance in Canterbury, New Zealand. PLoS ONE 2023, 18, e0286515. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Online 2020. Available online: www.weedscience.com (accessed on 14 April 2024).
- Ngow, Z. Herbicide Resistant Weeds in Maize in New Zealand: A Survey for Herbicide Resistant Weeds in the Bay of Plenty and Waikato; Waikato: Hamilton, NZ, USA, 2022. [Google Scholar]
- Alluvione, F.; Moretti, B.; Sacco, D.; Grignani, C. EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy 2011, 36, 4468–4481. [Google Scholar] [CrossRef]
- Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. Micro electric shocks control broadleaved and grass weeds. Agronomy 2022, 12, 2039. [Google Scholar] [CrossRef]
- Coleman, G.Y.; Stead, A.; Rigter, M.; Xu, Z.; Johnson, D.W.; Brooker, G.; Sukkarieh, S.; Walsh, M.J. Using energy requirements to compare the suitability of alternative methods for broadcast and site-specific weed control. Weed Technol. 2019, 33, 633. [Google Scholar] [CrossRef]
- Kaufman, K.R.; Schaffner, L.W. Energy and economics of electrical weed control. Trans. ASAE 1982, 25, 297–0300. [Google Scholar] [CrossRef]
- Vigneault, C.; Benoit, D.L.; McLaughlin, N.B. Energy aspects of weed electrocution. Rev. Weed Sci. 1990, 5, 15–26. [Google Scholar]
- Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. The electric spatula: Killing weeds with pulsed microshocks from a flat-plate electrode. Agronomy 2023, 13, 2694. [Google Scholar] [CrossRef]
- Andreasen, C.; Saberi, M.; Rakhmatulin, I. Weed control with laser beams using autonomous vehicles: Pros and cons. In Proceedings of the FIRA 2021, Online, 7–9 December 2021; ACM: New York, NY, USA, 2021. [Google Scholar]
- Coleman, G.Y.; Betters, C.; Squires, C.; Leon-Saval, S.; Walsh, M.J. Low energy laser treatments control annual ryegrass (Lolium rigidum). Front. Agron. 2021, 2, 601542. [Google Scholar] [CrossRef]
- De Cauwer, B.; Bogaert, S.; Claerhout, S.; Bulcke, R.; Reheul, D.; Kim, D.-S. Efficacy and reduced fuel use for hot water weed control on pavements. Weed Res. 2015, 55, 195–205. [Google Scholar] [CrossRef]
- Denmukhammadiev, A.; Matchanov, O.; Sobirov, E.; Azamov, S. Energy-efficient environmentally friendly electric device for the destruction of weeds by heating them. IOP Conf. Ser. Earth Environ. Sci. 2022, 1076, 012036. [Google Scholar] [CrossRef]
- Fergedal, S. Weed control by freezing with liquid nitrogen and carbon dioxide snow. A comparison between flaming and freezing. In Proceedings of the Maitrise Des Adventices Par Voie Non Chimique, Communications de la Quatrieme Conference Internationale I.F.O.A.M., Dijon, France, 5–9 July 1993; pp. 163–166. [Google Scholar]
- Gay, P.; Piccarolo, P.; Ricauda Aimonino, D.; Tortia, C. A high efficiency steam soil disinfestation system, part I: Physical background and steam supply optimisation. Biosyst. Eng. 2010, 107, 74–85. [Google Scholar] [CrossRef]
- Goel, A.; Foshee, W.; Kirkici, H.; Ieee, I. Pulsed Electric Field Studies of Bio-Dielectrics; IEEE: Piscataway, NJ, USA, 2003; pp. 56–59. [Google Scholar]
- Gonzalez-de-Soto, M.; Emmi, L.; Garcia, I.; Gonzalez-de-Santos, P. Reducing fuel consumption in weed and pest control using robotic tractors. Comput. Electron. Agric. 2015, 114, 96–113. [Google Scholar] [CrossRef]
- Helsel, Z.R.; Pimentel, D. Energy in pesticide production and use. Encycl. Pest Manag. 2007, 2, 157–160. [Google Scholar]
- Kaufman, K.R.; Schaffner, L.W. Energy Requirements and Economic Analysis of Electrical Weed Control; The Sugarbeet Research and Education Board of Minnesota and North Dakota: Fargo, ND, USA, 1980; pp. 72–85. [Google Scholar]
- Mwitta, C.; Rains, G.C.; Prostko, E. Evaluation of Diode Laser Treatments to Manage Weeds in Row Crops. Agronomy 2022, 12, 2681. [Google Scholar] [CrossRef]
- Lati, R.N.; Rosenfeld, L.; David, I.B.; Bechar, A. Power on! Low-energy electrophysical treatment is an effective new weed control approach. Pest Manag. Sci. 2021, 77, 4138–4147. [Google Scholar] [CrossRef]
- Diprose, M.F.; Hackam, R.; Benson, F.A. Weed control by high voltage electric shocks. In Proceedings of the 1978 British Crop Protection Conference-Weeds, Brighton, UK, 20–23 November 1978; pp. 443–450. [Google Scholar]
- Chandler, J.M. Crop and weed response to an electrical discharge. In Proceedings of the 31st Annual Meeting of the Southern Weed Science Society, Charleston, South Carolina, 20–25 January 1978; Volume 63. [Google Scholar]
- Mizuno, A.; Tenma, T.; Yamano, N. Destruction of weeds by pulsed high voltage discharges. In Proceedings of the Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA, 7–12 October 1990; pp. 720–727. [Google Scholar]
- Blasco, J.; Aleixos, N.; Roger, J.M.; Rabatel, G.; Moltó, E. Automation and emerging technologies. Robotic weed control using machine vision. Biosyst. Eng. 2002, 83, 149–157. [Google Scholar] [CrossRef]
- Cao, Y.; Repo, T.; Silvennoinen, R.; Lehto, T.; Pelkonen, P. An appraisal of the electrical resistance method for assessing root surface area. J. Exp. Bot. 2010, 61, 2491–2497. [Google Scholar] [CrossRef]
- Scheible, A. Apparatus for Exterminating Vegetation. US Patent 546,682, 24 September 1895. [Google Scholar]
- Sharp, A.A. Vegetation Exterminator. US Patent 492,635, 28 February 1893. [Google Scholar]
- Diprose, M.F.; Benson, F.A. Electrical methods of killing plants. J. Agric. Eng. Res. 1984, 30, 197–209. [Google Scholar] [CrossRef]
- Diprose, M.F.; Fletcher, R.; Longden, P.C.; Champion, M.J. Use of electricity to control bolters in sugar beet (Beta vulgaris L.): A comparison of the electrothermal with chemical and mechanical cutting methods. Weed Res. 1985, 25, 53. [Google Scholar] [CrossRef]
- Vigoureux, A. Results of trials carried out in Belgium in 1980 about killing weed beets by electric discharge. Meded. Van De Fac. Landbouwwet. Rijksuniv. Gent 1981, 46, 163–172. [Google Scholar]
- Mizuno, A.; Nagura, A.; Miyamoto, T.; Chakrabarti, A.; Sato, T.; Kimura, K.; Kimura, T.; Kobayashi, M. A portable weed control device using high frequency AC voltage. In Proceedings of the Record of the 1993 IEEE Industry Applications Conference, Toronto, ON, USA, 2–8 October 1993; pp. 2000–2003. [Google Scholar]
- Manaaki Whenua-Landcare Research. The New Zealand Soils Portal. 2024, Version: 5.0.154. Available online: https://soils.landcareresearch.co.nz/ (accessed on 3 January 2024).
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics: And Sex and Drugs and Rock ‘n’ Roll, 4th ed.; Sage: London, UK, 2013. [Google Scholar]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Perneger, T.V. What’s wrong with Bonferroni adjustments. BMJ 1998, 316, 1236. [Google Scholar] [CrossRef]
- Baev, I.V.; Yudaev, V.I. The determination of the most effective current type for electrical damage of plants. Indian J. Sci. Technol. 2017, 10, 1. [Google Scholar] [CrossRef]
- Gusbeth, C.; Frey, W.; Bluhm, H. Evidences for membrane electroporation during application of nanoseconds electrical pulses. In IEEE Conference Record-Abstracts; IEEE: Piscataway, NJ, USA, 2004; Volume 195. [Google Scholar] [CrossRef]
- Yudaev, I.V. Analysis of Variation in Circuit Parameters for Substitution of Weed Plant Tissue under Electric Impulse Action. Surf. Eng. Appl. Electrochem. 2019, 55, 219–224. [Google Scholar] [CrossRef]
- Slaven, M.J.; Koch, M.; Borger, C.P.D. Exploring the potential of electric weed control: A review. Weed Sci. 2023, 1–19. [Google Scholar] [CrossRef]
- McNeill, J. Electrical Conductivity of Soil and Rocks; Geonics Ltd.: Mississauga, ON, Canada, 1980. [Google Scholar]
- Ahmad, J.; Muhammad, K.; Ahmad, I.; Ahmad, W.; Smith, M.L.; Smith, L.N.; Jain, D.K.; Wang, H.; Mehmood, I. Visual features based boosted classification of weeds for real-time selective herbicide sprayer systems. Comput. Ind. 2018, 98, 23–33. [Google Scholar] [CrossRef]
- Anken, T.; Latsch, A. Detection rate and spraying accuracy of Ecorobotix ARA. In 42nd GIL Annual Conference, Artificial Intelligence in the Agricultural and Food Sector; Gandorfer, M., Hoffmann, C., El Benni, N., Cockburn, M., Anken, T., Floto, H., Eds.; Society for Informatics: Bonn, Germany, 2022; pp. 45–50. [Google Scholar]
- Coleman, G.; Bender, A.; Hu, K.; Sharpe, S.; Schumann, A.; Wang, Z.; Bagavathiannan, M.; Boyd, N.; Walsh, M. Weed detection to weed recognition: Reviewing 50 years of research to identify constraints and opportunities for large-scale cropping systems. Weed Technol. 2022, 36, 741–757. [Google Scholar] [CrossRef]
- Coleman, G.; Salter, W. More eyes on the prize: Open-source data, software and hardware for advancing plant science through collaboration. AoB Plants 2023, 15, plad010. [Google Scholar] [CrossRef]
- Li, N.; Zhang, X.; Zhang, C.; Guo, H.; Sun, Z.; Wu, X. Real-Time Crop Recognition in Transplanted Fields With Prominent Weed Growth: A Visual-Attention-Based Approach. IEEE Access 2019, 7, 185310–185321. [Google Scholar] [CrossRef]
- Ziwen, C.; Chunlong, Z.; Nan, L.; Zhe, S.; Wei, L.; Bin, Z. Study review and analysis of high performance intra-row weeding robot. Trans. Chin. Soc. Agric. Eng. 2015, 31, 5. [Google Scholar]
- Michaels, A.; Haug, S.; Albert, A. Vision-based high-speed manipulation for robotic ultra-precise weed control. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 5498–5505. [Google Scholar]
- Nguyen, V.-T.; Tung, T. Development of a prototype of weeding robot. Eng. Res. Express 2024, 6, 015411. [Google Scholar] [CrossRef]
- Malewar, A. New agricultural Robots Kill Individual Weeds with Electricity. Available online: https://www.inceptivemind.com/small-robot-company-tom-dick-kill-individual-weeds-electricity/19481/ (accessed on 3 August 2022).
- Lysakov, A.A.; Masyutina, G.V.; Rostova, A.T.; Eliseeva, A.A.; Lubentsov, V.F. Development of a weeding robot with tubular linear electric motors. IOP Conf. Ser. Earth Environ. Sci. 2021, 852, 012063. [Google Scholar] [CrossRef]
- Vaqar, A. New Weed Killer Robot Scours the Fields and Takes Out Weeds with a Single Chemical Jet Blast. Wonderful Engeneering. 2018. Available online: https://wonderfulengineering.com/new-weed-killer-robot-scours-the-fields-and-takes-out-weeds-with-a-single-chemical-jet-blast/ (accessed on 2 May 2024).
- Abdelghafour, F.; Rançon, F.; Liu, S.; Champ, J.; De Rudnicki, V.; Guizard, C.; Goëau, H.; Doussan, C.; Joly, A.; Bonnet, P. 83. WeedElec: A robotic research platform for individual weed detection and selective electrical weeding. In Precision Agriculture’21; Wageningen Academic: Wageningen, The Netherlands, 2021; pp. 695–702. [Google Scholar]
Trial | Species | Mean Size | Treatments |
---|---|---|---|
1 | L. didymum | Stem length 64.0 mm (SD = 13.9 mm) Stem basal diameter 1.9 mm (SD = 0.5 mm) | Plants grown: in bags vs. in ground Application: to leaves pressed to dry soil surface Dose applied: no treatment vs. 25, 50 or 100 × 100 µs pulse lengths at 4.5 kV with electrode disc pressing plant to soil. Extra treatments: inserted rod vs. surface-pressed disc earthing electrode applying 100 × 100 µs pulses at 4.5 kV with different electrode separation distances. |
2 | A. powellii | Stem length 72.9 mm (SD = 12.3 mm) Stem basal diameter 2.1 mm (SD = 0.3 mm) | Plants grown: in bags vs. in ground Application: to leaf canopy only vs. leaves pressed to dry soil surface Dose applied: no treatment vs. 25 × 25 µs, 50 × 50 µs, 50 × 100 µs, 100 × 100 µs, or 100 × 200 µs pulses at 4.5 kV. |
3 | L. multiflorum | Tiller No. 1.2 (SD = 0.3) Leaf No. 2.9 (SD = 0.5) Longest leaf length 157.6 mm (SD = 17.1 mm) | Plants grown: in bags vs. in ground Application: to leaf canopy only vs. leaves pressed to dry soil surface Dose applied: no treatment vs. 100 × 200 µs pulses, 200 × 200 µs pulses and 200 × 400 µs pulses at 3.5 kV or 4.5 kV. |
Planting | Earthing | Voltage | Pulse Length (µs) | Number of Pulses | Mean Energy Discharge (J) |
---|---|---|---|---|---|
Bagged | Probe | 4500 | 100 | 25 | 4.6 b |
Bagged | Probe | 4500 | 100 | 50 | 8.4 c |
Bagged | Probe | 4500 | 100 | 100 | 23.0 d |
Bagged | Disc | 4500 | 100 | 100 | 4.5 b |
In-ground | Disc | 4500 | 100 | 100 | 2.2 a |
Mean Energy Discharge (kJ s−1) | ||||
---|---|---|---|---|
Treatment | Bag-Grown | Ground-Grown | ||
Dose Applied | Leaves Only | Pressed to Soil | Leaves Only | Pressed to Soil |
45-025-025 | 0.518 | 0.667 | 0.053 | 0.050 |
45-050-025 | 1.674 | 2.022 | 0.303 | 0.724 |
45-050-050 | 1.302 | 2.178 | 0.252 | 0.976 |
45-100-050 | 1.505 | 2.345 | 0.207 | 0.740 |
45-100-100 | 1.649 | 3.807 | 0.241 | 0.529 |
45-100-100 | 1.452 | 3.170 | 0.1851 | 0.459 |
Bag-Grown Plants | In-Ground-Grown Plants | ||||||
---|---|---|---|---|---|---|---|
Dose Discharge Duration (ms) | >0 | 0.625 | >0.625 | >0 | 0.625 | >0.625 | |
Average of all plants | Mean death rate (%) | 86.1 | 25.0 | 98.3 | 88.7 | 58.3 | 94.9 |
Mean energy discharge/plant (J) | 12.9 | 0.37 | 17.9 | 2.01 | 0.032 | 2.82 | |
Mean energy discharge rate (kJ s−1) | 1.86 | 0.59 | 2.11 | 0.391 | 0.052 | 0.459 | |
Electrode contacting leaf canopy only | Mean death rate (%) | 88.9 | 33.3 | 100 | 80.6 | 33.3 | 90.0 |
Mean energy discharge/plant (J) | 8.39 | 0.32 | 11.7 | 1.17 | 0.033 | 1.63 | |
Mean energy discharge rate (kJ s−1) | 1.35 | 0.51 | 1.52 | 0.207 | 0.053 | 0.238 | |
Electrode pressing whole plant to soil | Mean death rate (%) | 83.3 | 16.7 | 96.7 | 97.1 | 83.3 | 100 |
Mean energy discharge/plant (J) | 17.4 | 0.41 | 24.2 | 2.87 | 0.031 | 4.21 | |
Mean energy discharge rate (kJ s−1) | 2.36 | 0.66 | 2.70 | 0.576 | 0.050 | 0.681 |
Variables in the Equation | 95% C.I. for EXP(B) | ||||||||
---|---|---|---|---|---|---|---|---|---|
B | S.E. | Wald | df | Sig. | Exp(B) | Lower | Upper | ||
Step 1 | Electrode Contact | 1.116 | 0.784 | 2.028 | 1 | 0.154 | 3.054 | 0.657 | 14.193 |
Soil Moisture (%) | 0.259 | 0.143 | 3.303 | 1 | 0.069 | 1.296 | 0.980 | 1.715 | |
Stem Length (mm) | −0.030 | 0.034 | 0.799 | 1 | 0.371 | 0.970 | 0.908 | 1.037 | |
Stem Diameter (mm) | −0.133 | 1.258 | 0.011 | 1 | 0.916 | 0.875 | 0.074 | 10.300 | |
Mean Voltage (V) | 0.001 | 0.000 | 7.965 | 1 | 0.005 | 1.001 | 1.000 | 1.001 | |
Mean Current (I) | −8.397 | 3.765 | 4.974 | 1 | 0.026 | 0.000 | 0.000 | 0.362 | |
Discharged energy (J) | 3.048 | 1.076 | 8.023 | 1 | 0.005 | 21.080 | 2.557 | 173.768 | |
Constant | −8.436 | 4.435 | 3.618 | 1 | 0.057 | 0.000 |
Voltage (kV) | Bag-Grown Plants | In-Ground Plants | |||||
---|---|---|---|---|---|---|---|
3.5 | 4.5 | All | 3.5 | 4.5 | All | ||
All plants | Death Rate (%) | 83.3 | 91.7 | 87.5 | 91.7 | 96.3 | 94.0 |
Energy Discharge (J) | 59.4 | 95.2 | 77.3 | 6.58 | 11.8 | 9.18 | |
Energy ha−1 (MJ ha−1) * | 2.97 | 4.76 | 3.86 | 0.329 | 0.589 | 0.507 | |
Leaf canopy only contacted | Death Rate (%) | 87.0 | 87.0 | 87.0 | 88.9 | 92.6 | 90.7 |
Energy Discharge (J) | 56.5 | 89.4 | 73.0 | 4.49 | 10.0 | 7.26 | |
Energy ha−1 (MJ ha−1) * | 2.82 | 4.47 | 3.65 | 0.224 | 0.502 | 0.363 | |
Leaves pressed to soil | Death Rate (%) | 79.6 | 96.3 | 88.0 | 94.4 | 100 | 92.7 |
Energy Discharge (J) | 62.2 | 101 | 81.6 | 8.68 | 13.5 | 11.1 | |
Energy ha−1 (MJ ha−1) * | 3.11 | 5.05 | 4.10 | 0.434 | 0.675 | 0.555 |
Variables in the Equation | 95% C.I. for EXP(B) | ||||||||
---|---|---|---|---|---|---|---|---|---|
B | S.E. | Wald | df | Sig. | Exp(B) | Lower | Upper | ||
Step 1 | Electrode Contact | 0.792 | 0.349 | 5.150 | 1 | 0.023 | 2.208 | 1.114 | 4.375 |
Leaf number | −0.506 | 0.244 | 4.290 | 1 | 0.038 | 0.603 | 0.374 | 0.973 | |
Longest leaf (mm) | 0.014 | 0.007 | 4.509 | 1 | 0.034 | 1.014 | 1.001 | 1.028 | |
Soil moisture (%) | −0.025 | 0.028 | 0.834 | 1 | 0.361 | 0.975 | 0.924 | 1.029 | |
Mean Voltage (V) | 0.001 | 0.000 | 58.849 | 1 | <0.001 | 1.001 | 1.001 | 1.001 | |
Mean Current (I) | −0.690 | 1.049 | 0.433 | 1 | 0.510 | 0.501 | 0.064 | 3.916 | |
Discharged energy (J) | 0.026 | 0.009 | 9.370 | 1 | 0.002 | 1.027 | 1.010 | 1.044 | |
Constant | −2.334 | 1.311 | 3.172 | 1 | 0.075 | 0.097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bloomer, D.J.; Harrington, K.C.; Ghanizadeh, H.; James, T.K. Pots to Plots: Microshock Weed Control Is an Effective and Energy Efficient Option in the Field. Sustainability 2024, 16, 4324. https://doi.org/10.3390/su16114324
Bloomer DJ, Harrington KC, Ghanizadeh H, James TK. Pots to Plots: Microshock Weed Control Is an Effective and Energy Efficient Option in the Field. Sustainability. 2024; 16(11):4324. https://doi.org/10.3390/su16114324
Chicago/Turabian StyleBloomer, Daniel J., Kerry C. Harrington, Hossein Ghanizadeh, and Trevor K. James. 2024. "Pots to Plots: Microshock Weed Control Is an Effective and Energy Efficient Option in the Field" Sustainability 16, no. 11: 4324. https://doi.org/10.3390/su16114324
APA StyleBloomer, D. J., Harrington, K. C., Ghanizadeh, H., & James, T. K. (2024). Pots to Plots: Microshock Weed Control Is an Effective and Energy Efficient Option in the Field. Sustainability, 16(11), 4324. https://doi.org/10.3390/su16114324