Internal Force Mechanism of Pisha Sandstone as a Soil Amendment to Improve Sandy Soil Structural Stability in Mu Us Sandy Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Determination of the Basic Properties of the Compound Soil
2.3. Determination of Soil Surface Charge Properties
2.4. Quantification of Soil Particle Interaction Forces
2.5. Evaluation of Soil Aggregate Stability
3. Results
3.1. Influences of PSS on Compound Soil Properties
3.2. Changes of Surface Potential and Electric Field Strength of Compound Soils
3.3. Changes in the Aggregate Stability of Compound Soils
3.4. Pnet of Compound Soil Particles
3.5. Relationship between the Net Pressure (Pnet) and the Aggregate Breaking Strength of under Different Compound Ratios
4. Discussion
4.1. Responses of Compound Soil Properties to Soft Rock Addition
4.2. Effects of PSS Application on Soil Aggregate Stability and SIFs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, P.; Yang, X.P. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena 2016, 145, 321–333. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wu, Y.H.; Kou, Q.; Min, D.A.; Chang, Y.Z.; Zhang, R.J. Definition of arsenic rock zone borderline and its classification. Sci. Soil Water Conserv. 2007, 5, 14–18. [Google Scholar]
- Bazhenov, M.L.; Chauvin, A.; Audibert, M.; Levashova, N.M. Permian and Triassic paleomagnetism of the southwestern Tien Shan: Timing and mode of tectonic rotations. Earth Planet. Sci. Lett. 1993, 118, 195–212. [Google Scholar] [CrossRef]
- Liang, Z.S.; Wu, Z.R.; Yao, W.Y.; Noori, M.; Yang, C.Q.; Xiao, P.Q.; Leng, Y.B.; Deng, L. Pisha sandstone: Causes, processes and erosion options for its control and prospects. Int. Soil Water Conserv. Res. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Guo, J.; Shi, Y.C.; Wu, L.J. Gravity erosion and lithology in Pisha sandstone in southern Inner Mongolia. J. Groundw. Sci. Eng. 2015, 3, 45–58. [Google Scholar] [CrossRef]
- Zhang, H.O.; Guo, Z.; Li, J.; Lu, Y.J.; Xu, Y. Improvement of aeolian sandy soil in Mu Us, China with soft montmorillonite clay stone. Agron. J. 2020, 113, 820–828. [Google Scholar] [CrossRef]
- Guo, Z.; Hui, W.; Li, J.; Yan, J.; Zhang, H.; Wang, H. Effects of Soft Rock on Soil Properties and Bacterial Community in Mu us Sandy land, China. PeerJ 2022, 10, e13561. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z. Response of Soil Structure and Crop Yield to Soft Rock in Mu Us Sandy Land, China. Sci. Rep. 2022, 12, 876. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xie, J.C.; Han, J.C. A Sand Control and Development Model in Sandy Land Based on Mixed Experiments of Arsenic Sandstone and Sand: A Case Study in Mu Us Sandy Land in China. Chin. Geogr. 2013, 23, 700–707. [Google Scholar] [CrossRef]
- Guo, Z.; Han, J.C.; Xu, Y.; Lu, Y.J.; Li, J. The mineralization characteristics of organic carbon and particle composition analysis in reconstructed soil with different proportions of soft rock and sand. PeerJ 2019, 7, e7707. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, N.; Yan, J.; Zhang, S. Effects of Soft Rock and Biochar Applications on Millet (Setaria italica L.) Crop Performance in Sandy Soil. Agronomy 2020, 10, 669. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- Sun, Z. Effect of Soft Rock Amendment on Soil Moisture and Water Storage in Mu Us Sandy Land. IOP Conf. Ser. Mater. Sci. Eng. 2018, 381, 012044. [Google Scholar] [CrossRef]
- Chorom, M.; Regasamy, P.; Murray, R. Clay dispersion as influenced by pH and net particle charge of sodic soils. Soil Res. 1994, 32, 1243–1252. [Google Scholar] [CrossRef]
- Xu, C.Y.; Yu, Z.H.; Li, H. The coupling effects of electric field and clay mineralogy on clay aggregate stability. J. Soils Sediments 2015, 5, 1159–1168. [Google Scholar] [CrossRef]
- Liu, J.F.; Wang, Z.L.; Hu, F.N.; Xu, C.Y.; Ma, R.T.; Zhao, S.W. Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. Catena 2020, 190, 104526. [Google Scholar] [CrossRef]
- Hu, F.N.; Xu, C.Y.; Ma, R.T.; Tu, K.; Zhang, F.B. Biochar application driven change in soil internal forces improves aggregate stability: Based on a two-year field study. Geoderma 2021, 403, 115276. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J.O. Total and Organic Carbon. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; CRC Press: Boca Raton, FL, USA, 1993; Volume 38, pp. 187–199. [Google Scholar]
- Lu, K. Analytical Methods of Soil and Agricultural Chemistry; Scientific Research Publishing: Wuhan, China, 1999. [Google Scholar]
- Lierop, W.V.; Mackenzie, A.F. Carbonate Determination in Organic Soils. Can J. Soil Sci. 1974, 54, 457–462. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Xu, C.Y.; Huang, X.R.; Xie, D.T.; Ni, J.P. Particle Interaction Forces Induce Soil Particle Transport during Rainfall. Soil Sci. Soc. Am. J. 2013, 77, 1563–1571. [Google Scholar] [CrossRef]
- Li, H.; Hou, J.; Liu, X.M.; Hou, J.; Liu, X.M.; Li, R.; Zhu, H.L.; Wu, L.S. Combined determination of specific surface area and surface charge properties of charged particles from a single experiment. Soil. Sci. Soc. Am. J. 2011, 75, 21–28. [Google Scholar] [CrossRef]
- Bissonnais, Y.L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Yu, Z.H.; Li, H.; Liu, X.M.; Xu, C.Y.; Xiong, H.L. Influence of soil electric field on water movement in soil. Soil Tillage Res. 2016, 155, 263–270. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Tian, R.; Yang, S.S.; Guo, X.M.; Li, H. Toward an Approach for Determining the Hamaker Constant of Soft Materials Using Dynamic Light Scattering. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127604. [Google Scholar] [CrossRef]
- Hamaker, H.C. The London—Van der Waals attraction between spherical particles. Physica 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- Tuller, M.; Or, D. Water films and scaling of soil characteristic curves at low water contents. Water Resour. Res. 2005, 41, 319–335. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zhang, J.B.; Zhang, C.Z.; Xin, X.L.; Li, H. The coupling effects of soil organic matter and particle interaction forces on soil aggregate stability. Soil Tillage Res. 2017, 174, 251–260. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Sun, Y.; Han, J.; Hu, F.; Li, J.; Li, X. Effects of the Changes of Particle Surface Electric Field and Interaction Force on the Reclaimed Soil Aggregate Structural Stability under the Application of Different Soil Conditioners. Agronomy 2023, 13, 1866. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zheng, Y.Y.; Zhang, J.B.; Zhang, C.Z.; Ma, D.H.; Chen, L.; Cai, T.Y. Importance of soil interparticle forces and organic matter for aggregate stability in a temperate soil and a subtropical soil. Geoderma 2020, 362, 114088. [Google Scholar] [CrossRef]
- Gong, Y.; Tian, R.; Li, H. Coupling effects of surface charges, adsorbed counterions and particle-size distribution on soil water infiltration and transport. Eur. J. Soil Sci. 2018, 69, 1008–1017. [Google Scholar] [CrossRef]
- Hu, F.N.; Liu, J.F.; Xu, C.Y.; Du, W.; Yang, Z.H.; Liu, X.M.; Liu, G.; Zhao, S.W. Soil internal forces contribute more than raindrop impact force to rainfall splash erosion. Geoderma 2018, 330, 91–98. [Google Scholar] [CrossRef]
- Calero, J.; Ontiveros-Ortega, A.; Aranda, V.; Plaza, I. Humic acid adsorption and its role in colloidal-scale aggregation determined with the zeta potential, surface free energy and the extended-DLVO theory. Eur. J. Soil Sci. 2017, 68, 491–503. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, H.O.; Wang, H.Y. Soft rock increases the colloid content and crop yield in sandy soil. Agron. J. 2020, 113, 677–684. [Google Scholar] [CrossRef]
- Pihlap, E.; Steffens, M.; Kgel-Knabner, I. Initial soil aggregate formation and stabilisation in soils developed from calcareous loess. Geoderma 2021, 385, 114854. [Google Scholar] [CrossRef]
- Li, W.Y.; Guo, Z.; Li, J.; Han, J.C. Effects of different proportions of soft rock additions on organic carbon pool and bacterial community structure of sandy soil. Sci. Rep. 2021, 11, 4624. [Google Scholar] [CrossRef] [PubMed]
- Ingelmo, F.; Albiach, R.; Gamon, S. Organic matter of a soil amended with composted sludges and affected by simulated processes of soil degradation. WIT Trans. Ecol. Environ. 2003, 64, 10. [Google Scholar]
- Zhen, Q.; Zheng, J.Y.; He, H.H.; Han, F.P.; Zhang, X.C. Effects of Pisha sandstone content on solute transport in a sandy soil. Chemosphere 2016, 144, 2214–2220. [Google Scholar] [CrossRef] [PubMed]
- Iturri, L.A.; Buschiazzo, D.E. Cation exchange capacity and mineralogy of loess soils with different amounts of volcanic ashes. Catena 2014, 121, 81–87. [Google Scholar] [CrossRef]
- Hepper, E.N.; Buschiazzo, D.E.; Hevia, G.G.; Urioste, A.; Antón, L. Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents. Geoderma 2006, 135, 216–223. [Google Scholar] [CrossRef]
- Yukselen-Aksoy, Y.; Kaya, A. Method dependency of relationships between specific surface area and soil physicochemical properties. Appl Clay Sci. 2010, 50, 182–190. [Google Scholar] [CrossRef]
- Liu, J.F.; Hu, F.N.; Xu, C.Y.; Wang, Z.L.; Ma, R.T.; Zhao, S.W.; Liu, G. Comparison of different methods for assessing effects of soil interparticle forces on aggregate stability. Geoderma 2021, 385, 114834. [Google Scholar] [CrossRef]
- Feng, B.; Li, Y.L.; Li, R.; Li, H. Error analysis in calculation and interpretation of AFM tip-surface interaction forces. Adv. Colloid Interface Sci. 2022, 306, 102710. [Google Scholar] [CrossRef] [PubMed]
- Holthusen, D.; Reeb, D.; Horn, R. Influence of potassium fertilization, water and salt stress, and their interference on rheological soil parameters in planted containers. Soil Tillage Res. 2012, 125, 72–79. [Google Scholar] [CrossRef]
v (PSS):v (SS) | Particle Size Distribution | pH | CaCO3 (g·kg−1) | SOC (g·kg−1) | CEC (cmol·kg−1) | SSA (m2·g−1) | ||
---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | ||||||
0:1 | 93.8 ± 0.25 a | 2.33 ± 0.21 d | 3.87 ± 0.22 a | 8.39 ± 0.01 b | 29.14 ± 2.49 d | 3.28 ± 1.13 cd | 4.68 ± 0.04 d | 2.54 ± 0.31 d |
1:5 | 88.15 ± 0.52 b | 8.85 ± 0.71 c | 3.00 ± 0.19 a | 8.78 ± 0.05 a | 40.84 ± 1.76 c | 4.50 ± 0.86 bc | 6.45 ± 0.07 c | 7.47 ± 2.12 cd |
1:2 | 82.82 ± 2.13 c | 12.94 ± 1.74 b | 4.24 ± 1.7 a | 8.75 ± 0.06 a | 44.59 ± 1.95 c | 5.24 ± 0.52 ab | 6.67 ± 0.08 c | 10.96 ± 0.77 c |
1:1 | 83.29 ± 0.61 c | 14.13 ± 1.37 b | 2.58 ± 0.82 a | 8.72 ± 0.02 a | 55.09 ± 2.26 b | 6.59 ± 0.52 a | 13.76 ± 0.22 b | 28.71 ± 3.84 b |
1:0 | 64.18 ± 1.81 d | 31.59 ± 1.86 a | 4.23 ± 0.07 a | 8.21 ± 0.10 c | 144.66 ± 5.16 a | 2.22 ± 0.52 cd | 17.91 ± 0.18 a | 37.24 ± 4.90 a |
Electrolyte Concentration (mol·L−1) | Compound Soil Surface Potential (mV) | ||||
---|---|---|---|---|---|
0:1 | 1:5 | 1:2 | 1:1 | 1:0 | |
1 | −470.3 | −431.4 | −413.4 | −401.2 | −401.4 |
0.1 | −352.2 | −313.3 | −295.4 | −283.2 | −283.4 |
0.01 | −293.2 | −254.6 | −236.9 | −224.8 | −225.0 |
0.001 | −234.7 | −196.7 | −179.4 | −167.7 | −167.9 |
0.00001 | −177.3 | −140.8 | −124.5 | −113.6 | −113.8 |
Electrolyte Concentration (mol·L−1) | Compound Soil Electric Field Strength (−V m−1) | ||||
---|---|---|---|---|---|
0:1 | 1:5 | 1:2 | 1:1 | 1:0 | |
1 | 5.12 × 106 | 5.11 × 106 | 5.10 × 106 | 5.09 × 106 | 5.09 × 106 |
0.1 | 4.90 × 106 | 4.89 × 106 | 4.88 × 106 | 4.87 × 106 | 4.87 × 106 |
0.01 | 3.40 × 106 | 3.39 × 106 | 3.38 × 106 | 3.37 × 106 | 3.37 × 106 |
0.001 | 3.04 × 105 | 3.00 × 105 | 2.98 × 105 | 2.96 × 105 | 2.96 × 105 |
0.00001 | 13.76 | 13.30 | 12.95 | 12.71 | 12.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhou, L.; Zhang, Y.; Han, J.; Sun, Y.; Zhang, R.; Li, X.; Hu, F. Internal Force Mechanism of Pisha Sandstone as a Soil Amendment to Improve Sandy Soil Structural Stability in Mu Us Sandy Land. Sustainability 2024, 16, 4415. https://doi.org/10.3390/su16114415
Liu Z, Zhou L, Zhang Y, Han J, Sun Y, Zhang R, Li X, Hu F. Internal Force Mechanism of Pisha Sandstone as a Soil Amendment to Improve Sandy Soil Structural Stability in Mu Us Sandy Land. Sustainability. 2024; 16(11):4415. https://doi.org/10.3390/su16114415
Chicago/Turabian StyleLiu, Zhe, Lin Zhou, Yang Zhang, Jichang Han, Yingying Sun, Ruiqing Zhang, Xuxiang Li, and Feinan Hu. 2024. "Internal Force Mechanism of Pisha Sandstone as a Soil Amendment to Improve Sandy Soil Structural Stability in Mu Us Sandy Land" Sustainability 16, no. 11: 4415. https://doi.org/10.3390/su16114415
APA StyleLiu, Z., Zhou, L., Zhang, Y., Han, J., Sun, Y., Zhang, R., Li, X., & Hu, F. (2024). Internal Force Mechanism of Pisha Sandstone as a Soil Amendment to Improve Sandy Soil Structural Stability in Mu Us Sandy Land. Sustainability, 16(11), 4415. https://doi.org/10.3390/su16114415