Impact of Land Use on Peat Soil Elemental Content and Carabidae and Plant Species Composition and Abundance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology of the Study
2.3. Statistical Analysis
3. Results
3.1. Peat Soil Elemental Content
3.2. Plant Species Composition and Abundance
3.3. Carabidae Species Composition and Abundance
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Carabidae Species | Meadow | Pasture | Total 2020–2022 | ||||
---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | ||
Carabus cancellatus (Illiger, 1798) | x | x | x | x | x | x | 174 |
Amara communis (Panzer, 1797) | x | x | 6 | ||||
Amara anthobia (A. Villa and G.B. Villa, 1833) | x | 4 | |||||
Anisodactylus binotatus (Fabricius, 1787) | x | x | x | x | x | x | 131 |
Harpalus rufipes (DeGeer, 1774) | x | x | x | x | x | 24 | |
Poecilus cupreus (Linnaeus, 1758) | x | x | x | x | 269 | ||
Poecilus versicolor (Sturm, 1824) | x | x | x | x | 78 | ||
Pterostichus melanarius (Illiger, 1798) | x | x | x | x | x | x | 1549 |
Calathus fuscipes (Goeze, 1777) | x | x | x | 17 | |||
Pterostichus niger (Schaller, 1783) | x | 2 | |||||
Carabus granulatus (Linnaeus, 1758) | x | x | x | x | x | x | 157 |
Carabus nemoralis (O.F. Müller, 1764) | x | 1 | |||||
Poecilus lepidus (Pterostichus virens) (Leske, 1785) | x | 1 | |||||
Agonum viduum (Panzer, 1796) | x | 1 | |||||
Amara similata (Gyllenhal, 1810) | x | 1 | |||||
Amara ovata (Fabricius, 1792) | x | 1 | |||||
Pterostichus vernalis (Panzer, 1796) | x | 1 | |||||
Loricera pilicornis (Fabricius, 1775) | x | 1 | |||||
Pterostichus nigirita (Paykull, 1790) | x | 2 | |||||
Total | 433 | 294 | 436 | 533 | 361 | 363 | 2420 |
References
- Méndez-Rojas, D.; Cultid-Medina, C.; Escobar, F. Influence of land use change on rove beetle diversity: A systematic review and global meta-analysis of a mega-diverse insect group. Ecol. Indic. 2021, 122, 107239. [Google Scholar] [CrossRef]
- Kotze, D.J.; O’Hara, R.B. Species decline—But why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 2003, 135, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Brooks, D.R.; Bater, J.E.; Clark, S.J.; Monteith, D.T.; Andrews, C.; Corbett, S.J.; Beaumont, D.A.; Chapman, J.W. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 2012, 49, 1009–1019. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Muller, A.; Sumser, H.; Horren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed]
- Homburg, K.; Drees, C.; Boutaud, E.; Nolte, D.; Schuett, W.; Zumstein, P.; von Ruschkowski, E.; Assmann, T. Where have all the beetles gone? Long-term study reveals carabid species decline in a nature reserve in Northern Germany. Insect Conserv. Divers. 2019, 12, 268–277. [Google Scholar] [CrossRef]
- Wagner, D.L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 2020, 65, 457–480. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J.; Abades, S.; Alfaro, F.D.; Bastida, F.; Berhe, A.A.; Cutler, N.A.; Gallardo, A.; et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020, 4, 210–220. [Google Scholar] [CrossRef]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the relationship between farm-land biodiversity and land-use intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef]
- Török, P.; Hölzel, N.; Rvan Diggelen, R.; Tischew, S. Grazing in European open landscapes: How to reconcile sustainable land management and biodiversity conservation? Agric. Ecosyst. Environ. 2016, 234, 1–4. [Google Scholar] [CrossRef]
- Díaz, S.; Lavorel, S.; Mcintyre, S.; Falczuk, V.; Casanoves, F.; Milchunas, D.G.; Skarpe, C.; Rusch, G.; Sternberg, M.; Noy-Meir, I.; et al. Plant trait responses to grazing—A global synthesis. Glob. Change Biol. 2007, 13, 313–341. [Google Scholar] [CrossRef]
- Gilhaus, K.; Boch, S.; Fischer, M.; Hölzel, N.; Kleinebecker, T.; Prati, D.; Rupprecht, D.; Schmitt, B.; Klaus, V.H. Grassland management in Germany: Effects on plant diversity and vegetation composition. Tuexenia 2017, 37, 379–397. [Google Scholar] [CrossRef]
- Rakosy, D.; Motivans, E.; Ştefan, V.; Nowak, A.; Świerszcz, S.; Feldmann, R.; Kühn, E.; Geppert, C.; Venkataraman, N.; Sobieraj-Betlińska, A.; et al. Intensive grazing alters the diversity, composition and structure of plant-pollinator interaction networks in Central European grasslands. PLoS ONE 2022, 17, e0263576. [Google Scholar] [CrossRef]
- Fründ, J.; Linsenmair, K.E.; Blüthgen, N. Pollinator diversity and specialization in relation to flower diversity. Oikos 2010, 119, 1581–1590. [Google Scholar] [CrossRef]
- Bucher, R.; Andres, C.; Wedel, M.F.; Entling, M.H.; Nickel, H. Reprint of “Biodiversity in low-intensity pastures, straw meadows, and fallows of a fen area—A multitrophic comparison”. Agric. Ecosyst. Environ. 2016, 234, 58–64. [Google Scholar] [CrossRef]
- Varvara, M. The genus Carabus (Coleoptera: Carabidae) in some poteto crops from Romania, 1978–1999. In Muzeul Olteniei Craiova. Oltenie. Studii si Comunicari: Stiintele Naturii; Muzeul Județean: Suceava, Romania, 2010; Volume 26, pp. 137–146. ISSN 1454-6914. [Google Scholar]
- Szyszko-Podgórska, K.; Kondras, M.; Dymitryszyn, I.; Matracka, A.; Cimoch, M.; Żyfka-Zagrodzińska, E. Influence of soil macrofauna on soil organic carbon content. Environ. Prot. Nat. Resour. 2018, 29, 20–25. [Google Scholar] [CrossRef]
- PN-EN 16169; Sewage Sludge, Treated Biowaste and Soil—Determination of Nitrogen Using the Kjeldahl Method. Polish Committee for Standardization: Szczecin, Poland, 2012.
- PN-EN ISO/IEC 17025:2005; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2005.
- Różycki, S. Geologia Inżynierska W: Podręcznik Inżynierski; Bryła, S., Ed.; Trzaska, Ewert: Michaliski, Warszawa, 1949. [Google Scholar]
- Jung, J.-K.; Jeong, J.-C.; Lee, J.-H. Effects of pitfall trap size and sampling duration on collection of ground beetles (Coleoptera: Carabidae) in temperate forests. Entomol. Res. 2019, 49, 229–236. [Google Scholar] [CrossRef]
- Freude, H.; Harde, K.-W.; Lohse, G.A.; Klausnitzer, B. Die Käfer Mitteleuropas. Bd. 2, Adephaga 1, Carabidae (Laufkäfer). 2. (Erweiterte) Spektrum; Springer: Heidelberg/Berlin, Germany, 2004; p. 521. [Google Scholar]
- Szyszko, J. STN—Efektywna Pułapka do Odłowu Epigeicznych Carabidae w Środowisku Leśnym; Prace Komisji Naukowych PTG; III Komisja Biologii Gleby III; Wyd. Kom. Biol. Gleb. PTG: Warsaw, Poland, 1985; Volume 31, pp. 34–37. [Google Scholar]
- SAS Institute Inc. SAS/STAT 14.3 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Smilauer, P.; Leps, J. Multivariate Analysis of Ecological Data Using CANOCO 5, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107694408. [Google Scholar]
- Amoros, C. The Concept of Habitat Diversity between and within Ecosystems Applied to River Side-Arm Restoration. Environ. Manag. 2001, 28, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Ryszkowski, L.; Karg, J.; Kujawa, K.; Goldyn, H.; Arczynska-Chudy, E. Influence of landscape mosaic structure on diversity of wild plant and animal communities in agricultural landscapes of Poland. In Landscape Ecology in Agrosystems Management; Ryszkowski, L., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2002; pp. 185–217. [Google Scholar] [CrossRef]
- Weibull, A.-C.; Östman, Ö.; Granqvist, Å. Species richness in agroecosystems: The effect of landscape, habitat and farm management. Biodivers. Conserv. 2003, 12, 1335–1355. [Google Scholar] [CrossRef]
- Purtauf, T.; Dauber, J.; Wolters, V. Carabid communities in the spatio-temporal mosaic of a rural landscape. Landsc. Urban Plan. 2004, 67, 185–193. [Google Scholar] [CrossRef]
- Hendrickx, F.; Maelfait, J.-P.; van Wingerden, W.; Schweiger, O.; Speelmans, M.; Aviron, I.; Augenstein, I.; Billeter, R.; Bailey, D.; Bukacek, R.; et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 2007, 44, 340–351. [Google Scholar] [CrossRef]
- Anderson, M.J.; Crist, T.O.; Chase, J.M.; Vellend, M.; Inouye, B.D.; Freestone, A.L.; Sanders, N.J.; Cornell, H.V.; Comita, L.S.; Davies, K.F.; et al. Navigating the multiple meanings of ß diversity: A roadmap for the practicing ecologist. Ecol. Lett. 2011, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Koivula, M.J. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 2011, 100, 287–317. [Google Scholar] [CrossRef] [PubMed]
- Rainio, J.; Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- Avgın, S.S.; Luff, M.L. Ground beetles (Coleoptera: Carabidae) as bioindicators of human impact. Munis Entomol. Zool. 2010, 5, 209–215. [Google Scholar]
- Skłodowski, J. Manual soil preparation and piles of branches can support ground beetles (Coleoptera, Carabidae) better than four different mechanical soil treatments in a clear-cut area of a closed-canopy pine forest in northern Poland. Scand. J. For. Res. 2017, 32, 123–133. [Google Scholar] [CrossRef]
- Schwerk, A.; Wińska-Krysiak, M.; Przybysz, A.; Zaraś-Januszkiewicz, E.; Sikorski, P. Carabid beetle (Coleoptera: Carabidae) response to soil properties of urban wasteland in Warsaw, Poland. Sustainability 2020, 12, 10673. [Google Scholar] [CrossRef]
- Bruce, T.J.A. Interplay between insects and plants: Dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J. Exp. Bot. 2015, 66, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, N.M.; Heil, M. Multitrophic interactions below and above ground: En route to the next level. J. Ecol. 2011, 99, 77–88. [Google Scholar] [CrossRef]
- Ehrnsberger, R. (Ed.) Bodenmesofauna. Bedeutung and Auswirkungen von Anthropogenen Maβnahmen. Informationen zu Maturschutz und Landschaftpflege in Norddeutschland, Bd. 6; Verlag Günter Runge: Cloppenburg, Germany, 1993; 452p. [Google Scholar]
- Morris, M.G. The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol. Conserv. 2000, 95, 129–142. [Google Scholar] [CrossRef]
- Eriksson, O. Species pools in cultural landscapes—Niche construction, ecological opportunity and niche shifts. Ecography 2013, 36, 403–413. [Google Scholar] [CrossRef]
- Valkó, O.; Tóth, K.; Kelemen, A.; Miglécz, T.; Radócz, S.; Sonkoly, J.; Tóthmérész, B.; Török, P.; Deák, B. Cultural heritage and biodiversity conservation—Plant introduction and practical restoration on ancient burial mounds. Nat. Conserv. 2018, 24, 65–80. [Google Scholar] [CrossRef]
- Ríos-Touma, B.; Rosero, P.; Morabowen, A.; Guayasamin, J.M.; Carson, C.; Villamarín-Cortez, S.; Solano-Ugalde, A.; IboTobes, I.; Cuesta, F. Biodiversity responses to land-use change in the equatorial Andes. Ecol. Indic. 2023, 156, 111100. [Google Scholar] [CrossRef]
- Sun, W.; Li, S.; Wang, J.; Fu, G. Effects of grazing on plant species and phylogenetic diversity in alpine grasslands, Northern Tibet. Ecol. Eng. 2020, 170, 106331. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, G. Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet. Land Degrad. Dev. 2021, 32, 1821–1832. [Google Scholar] [CrossRef]
- Huang, S.; Fu, G. Impacts of Climate Change and Human Activities on Plant Species α-Diversity across the Tibetan Grasslands. Remote Sens. 2023, 15, 2947. [Google Scholar] [CrossRef]
- Zha, X.; Tian, Y.; Ouzhu Fu, G. Response of forage nutrient storages to grazing in alpine grasslands. Front. Plant Sci. Sec. Funct. Plant Ecol. 2022, 13, 991287. [Google Scholar] [CrossRef] [PubMed]
- Warda, M.; Krzywiec, D.; Ćwintal, H. Wpływ warunków glebowych na zawartość mikroelementów w roślinności pastwiskowej. Zesz. Probl. Postępu Nauk. Rol. Zesz. 1996, 434, 537–542. [Google Scholar]
- Gustafson, G.M.; Salomon, E.; Jonsson, S.; Steineck, S. Fluxes of K, P and Zn in a conventional and organic dairy farming through feed, animals, manure, and urine—A case study at Ojebyn, Sweden. Eur. J. Agron. 2003, 20, 89–99. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic master stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Bojanowski, D. Determination of heavy metal sources in an agricultural catchment (Poland) using the fingerprinting method. Water 2024, 16, 1209. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Galavi, M.; Rezaei, M. Zinc (Zn) Importance for Crop Production—A Review. Int. J. Agron. Plant Prod. 2013, 4, 64–68. [Google Scholar]
- Milani, M.; Pradell, E.; Heintze, W.; Schäfer, G.; Bender, R. Nitrogen and calcium fertilization on the growth and development of gerbera cultivated in pots for cut flowers; Ornamental. Horticulture 2021, 27, 288–295. [Google Scholar] [CrossRef]
- Chimdi, A.; Bekele, T. Impacts of Land Use Types on Selected Soil Properties: The Case of Dire Enchini District, West Showa Zone, Oromia Regional Sate. Am. Eur. J. Agric. Environ. Sci. 2019, 19, 372–385. [Google Scholar] [CrossRef]
- Kebebew, S.; Bedadi, B.; Erkossa, T.; Yimer, F.; Lemma Wogi, L. Effect of Different Land-Use Types on Soil Properties in Cheha District, South-Central Ethiopia. Sustainability 2022, 14, 1323. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Zhu, P.; Chen, S.; Wan, Y. Spatial variation of soil functions affected by land use type and slope position in agricultural small watershed. Catena 2023, 225, 107029. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Z.; Chang, S.; Wang, Z.; Li, D.; An, Y.; Hou, F.; Ren, J. Growing season grazing promotes the shallow stratification of soil nutrients while non-growing season grazing sequesters the deep soil nutrients in a typical alpine meadow. Geoderma 2022, 426, 116111. [Google Scholar] [CrossRef]
- Liu, J.; Feng, C.; Wang, D.; Wang, L.; Wilsey, B.J.; Zhong, Z. Impacts of grazing by different large herbivores in grassland depend on plant species diversity. J. Appl. Ecol. 2015, 52, 1053–1062. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khosravi, H.; Rigi, M. Short-term grazing exclusion from heavy livestock rangelands affects vegetation cover and soil properties in natural ecosystems of southeastern Iran. Ecol. Eng. 2016, 95, 10–18. [Google Scholar] [CrossRef]
- Szyszko-Podgórska, K.; Dymitryszyn, I.; Jankiewicz, U.; Kondras, M.; Żyfka-Zagrodzińska, E.; Schwerk, A. Assemblage Characteristics of Butterflies and Carabid Beetles as a Function of Soil Characteristics and Plant Diversity in Differently Managed Fields, Forests and Ecotones: A Case Study in Tuczno Forest District, Poland. Land 2021, 11, 25. [Google Scholar] [CrossRef]
- Iľko, I.; Peterková, V. Impact of different methods of wheat cultivation on the occurrence of Carabidae family representatives (Carabidae, Coleoptera). Kahramanmaraş Sütçü İmam Üniversitesi Tarım Doğa Derg. Follow. J. 2023, 26, 1421–1430. [Google Scholar] [CrossRef]
- Vician, V.; Świtok, M.; Svitok, M.; Kočík, K.; Stašiov, S. The influence of agricultural management on the structure of ground beetle (Coleoptera: Carabidae) assemblages. March. Biologia 2015, 70, 240–251. [Google Scholar] [CrossRef]
- Grandchamp, A.C.; Bergamini, A.; Stofer, S.; Niemelä, J.; Duelli, P.; Scheidegger, C. The influence of grassland management on ground beetles (Carabidae, Coleoptera) in Swiss montane meadows. Agric. Ecosyst. Environ. 2005, 110, 307–317. [Google Scholar] [CrossRef]
- Hance, T.; Grégoire-Wibo, C. Effects of agricultural practices on carabid populations. Acta Phytopathol. Entomol. Hung. 1987, 22, 147–160. [Google Scholar]
- Heydemann, B.; Hofmann, W.; Irmler, U. Der Einfluss der Beweidung auf dieWirbellosenfauna im Grünland. Faun-Oekol. Mitt. Suppl. 1998, 24, 45–71. [Google Scholar]
- Pozsgai, G.; Quinzo-Ortega, L.; Littlewood, N.A. Grazing impacts on ground beetle (Coleoptera: Carabidae) abundance and diversity on semi-natural grassland. Insect Conserv. Divers. 2021, 15, 36–47. [Google Scholar] [CrossRef]
- Nijssen, M.; Alders, K.; van der Smissen, N.; Esselink, H. Effects of grass-encroachment and grazing management on carabid assemblages of dry dune grasslands. Proc. Sect. Exp. Appl. Entomol. Neth. Entomol. Soc. (N.E.V.) 2001, 12, 113–120. [Google Scholar]
- Pétillon, J.; Georges, A.; Canard, A.; Ysnel, F. Impact of cutting and sheep grazing on ground—Active spiders and carabids in intertidal salt marshes (Western France). Anim. Biodivers. Conserv. 2007, 2, 201–209. [Google Scholar] [CrossRef]
- Almasy, J.; Essl, F.; Berger, A.; Schulze, C.H. To graze or to mow? The influence of grassland management on grasshoppers (Orthoptera) on a flood protection embankment in the Donau-Auen National Park (Austria). J. Insect Conserv. 2021, 25, 707–717. [Google Scholar] [CrossRef]
- Szyszko-Podgórska, K.; Dymiytyszyn, I.; Kondras, M. Diversity in Landscape Management Affects Butterfly Distribution. Sustainability 2023, 15, 14775. [Google Scholar] [CrossRef]
Element | Form of Use FU | Year Y | FU × Y | |||||
---|---|---|---|---|---|---|---|---|
Meadow | Pasture | F (p) | 2020 | 2021 | 2022 | F (p) | F (p) | |
Ca [g/kg s.m.] | 151 ± 5.9 b | 193 ± 11.6 a | 10.3 (0.008) | 160 ± 9.3 a | 180 ± 19.8 a | 175 ± 12.5 a | 0.8 (0.455) | 0.8 (0.472) |
Mg [g/kg s.m.] | 1.01 ± 0.05 b | 1.28 ± 0.08 a | 6 (0.03) | 1.15 ± 0.04 a | 1.13 ± 0.13 a | 1.15 ± 0.12 a | 0 (0.978) | 0.3 (0.729) |
Na [g/kg s.m.] | 246 ± 15.8 a | 253 ± 18 a | 0.1 (0.788) | 267 ± 17 a | 249 ± 10.4 a | 233 ± 29.5 a | 0.6 (0.588) | 0.2 (0.805) |
K [g/kg s.m.] | 809 ± 58.8 a | 781 ± 83.3 a | 0.1 (0.809) | 718 ± 43.6 a | 868 ± 55.7 a | 799 ± 133.4 a | 0.6 (0.557) | 0.2 (0.865) |
P [g/kg s.m.] | 8.98 ± 1.15 a | 3.74 ± 0.45 a | 19 (0.001) | 7.17 ± 1.49 a | 5.19 ± 0.71 a | 6.72 ± 2.16 a | 1 (0.398) | 1.5 (0.269) |
Cu [g/kg s.m.] | 2.22 ± 0.27 a | 1.91 ± 0.18 a | 1.7 (0.218) | 2.53 ± 0.11 a | 2.22 ± 0.29 ab | 1.45 ± 0.21 b | 7 (0.01) | 1 (0.404) |
Zn [g/kg s.m.] | 26.6 ± 1.9 a | 15.8 ± 1.8 a | 34 (<0.001) | 26.6 ± 2.7 a | 18.2 ± 1.6 b | 18.8 ± 3.9 b | 8.4 (0.005) | 1.7 (0.231) |
TC [% s.m.] | 27.1 ± 1.3 a | 25.7 ± 1.5 a | 1.6 (0.226) | 30.1 ± 0.5 a | 27.4 ± 1.4 a | 21.7 ± 0.7 b | 18.5 (<0.001) | 0.3 (0.77) |
TOC [% s.m.] | 23.2 ± 1.1 a | 20.3 ± 1.2 a | 4.4 (0.058) | 24 ± 0.9 a | 22.1 ± 1.9 ab | 19.2 ± 0.5 b | 4.2 (0.041) | 0.6 (0.549) |
N_og [mg/kg s.m.] | 2.12 ± 0.16 a | 1.82 ± 0.14 a | 2.5 (0.137) | 2.3 ± 0.23 a | 1.93 ± 0.14 a | 1.68 ± 0.07 a | 3.6 (0.061) | 0.2 (0.804) |
Plant Species | 2020 | 2021 | 2022 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | VII | IX | V | VII | IX | V | VII | IX | ||||||||||
m | p | m | p | m | p | m | p | m | p | m | p | m | p | m | p | m | p | |
Festuca rubra (Linnaeus, 1753) | 52.1 | 30.2 | 31.6 | 60.5 | 27.3 | 65.5 | 24.8 | 56.3 | 28.5 | 41.5 | 59.6 | 55.1 | 46.3 | 31.5 | 12.6 | 21 | 1.7 | 43.3 |
Poa pratensis (Linnaeus, 1753) | 0.5 | 1.3 | 5.1 | 21.6 | 4.8 | 20 | 17.6 | 11.1 | 9.31 | 8.2 | 27.7 | 40.5 | 46 | |||||
Holcus lanatus (Linnaeus, 1753) | 23.7 | 62.3 | 8.5 | 14.9 | 20.2 | 13.9 | 14.5 | 11.9 | 5.5 | 3.7 | 12.2 | 7.2 | 13.5 | 9.3 | 7.7 | 6.5 | 10.1 | |
Family Poaceae | 75.8 | 93 | 40.1 | 75.4 | 48.8 | 79.4 | 44.4 | 89.8 | 38.8 | 65.2 | 89.4 | 73.4 | 69.1 | 49 | 48 | 68 | 1.7 | 99.4 |
Carex nigra (Reichard, 1778) | 0.9 | 3.6 | 1.9 | 14.1 | 1.8 | 19.5 | 8.2 | 4.2 | 15.7 | 24.9 | 24.1 | 4.5 | 38.5 | 21.7 | 13 | 94.3 | ||
Family Cyperaceae | 0.9 | 3.6 | 1.9 | 14.1 | 1.8 | 19.5 | 8.2 | 4.2 | 15.7 | 24.9 | 24.1 | 4.5 | 38.5 | 21.7 | 13 | 94.3 | ||
Class monocotyledons—total | 76.7 | 96.6 | 42 | 89.5 | 50.6 | 98.9 | 52.6 | 94 | 54.5 | 90.1 | 89.4 | 97.5 | 73.6 | 87.5 | 69.7 | 81 | 96 | 99.4 |
Taraxacum officinale (Weber and Wiggers) | 6.1 | 1.6 | 1.8 | 8.5 | 0.7 | 0.8 | 3.1 | 0.9 | 2.2 | 2.5 | 0.1 | |||||||
Achillea millefolium (Linnaeus, 1753) | 2.2 | 1.8 | 6.9 | 1.7 | 3.5 | 0.9 | 0.4 | 3.4 | ||||||||||
Family Asteraceae | 8.3 | 1.6 | 1.8 | 8.7 | 10.2 | 0.7 | 4.3 | 3.1 | 1.8 | 2.6 | 5.9 | 0.1 | ||||||
Filipendula ulmaria (Maximowicz, 1879) | 2.8 | 8.4 | 2.7 | 0.8 | 0.5 | 1.1 | ||||||||||||
Family Rosaceae | 2.8 | 8.4 | 2.7 | 0.8 | 0.5 | 1.1 | ||||||||||||
Ranunculus repens (Linnaeus, 1753) | 0.7 | 1.3 | 0.9 | 1.2 | 7.4 | 1.4 | 2.1 | 0.1 | 4 | 0.5 | 0.7 | 0.2 | ||||||
Ranunculus acris (Linnaeus, 1753) | 5 | 0.7 | 6.5 | 4.8 | 17.5 | 2.1 | 3 | 0.9 | 7.2 | 2.6 | ||||||||
Family Ranunculaceae | 5 | 0.7 | 7.2 | 1.3 | 4.8 | 18.4 | 1.2 | 9.5 | 1.4 | 2.1 | 0.1 | 7 | 1.4 | 7.2 | 2.6 | 0.7 | 0.2 | |
Rumex acetosa (Linnaeus, 1753) | 1 | 3.62 | 2.2 | 2.2 | 8.7 | 0.2 | 0.4 | 0.3 | ||||||||||
Family Polygonaceae | 1 | 2.2 | 2.2 | 8.7 | 0.2 | 0.4 | 0.3 | |||||||||||
Trifolium repens (Linnaeus, 1753) | 0.3 | 0.2 | 0.3 | 4.7 | 0.3 | 0.8 | 1.1 | 1.2 | 3.3 | 5.1 | 1.2 | 2.1 | 1 | 0.2 | 5.3 | 0.4 | ||
Family Fabaceae | 0.3 | 0.2 | 0.3 | 4.7 | 0.3 | 0.8 | 1.1 | 1.2 | 3.3 | 5.1 | 1.2 | 2.1 | 1 | 0.2 | 5.3 | 0.4 | ||
Veronica chamaedrys (Linnaeus, 1753) | 1.5 | 3.7 | 6.1 | 0.3 | 1.7 | 4.5 | 0.1 | 1.2 | 0.2 | 5.3 | 3.3 | 0.8 | 0.2 | |||||
Family Scrophulariaceae | 1.5 | 3.7 | 6.1 | 0.3 | 1.7 | 4.5 | 0.1 | 1.2 | 0.2 | 5.3 | 3.3 | 0.8 | 0.2 | |||||
Plantago lanceolata (Linnaeus, 1753) | 4.1 | 8.8 | 20.8 | 2.9 | 19.7 | 1.4 | 2.2 | 8.5 | 2.2 | |||||||||
Family Plantaginaceae | 4.1 | 8.8 | 20.8 | 2.9 | 19.7 | 1.4 | 2.2 | 8.5 | 2.2 | |||||||||
Angelica sylvestris (Linnaeus, 1753) | 28.9 | |||||||||||||||||
Family Apiaceae | 28.9 | |||||||||||||||||
Urtica dioica (Linnaeus, 1753) | 11.1 | |||||||||||||||||
Family Urticaceae | 11.1 | |||||||||||||||||
Class dicotyledons—total | 20.2 | 2.5 | 55.7 | 8.2 | 49.1 | 1.1 | 45.7 | 3.3 | 42.1 | 9.7 | 7.7 | 2.4 | 18.1 | 2 | 27.4 | 18.8 | 3.7 | 0.5 |
Carabidae | Form of Use (FU) | Year (Y) | FU × Y |
---|---|---|---|
All Carabidae (species) | 4.43 (0.035) | 58.79 (<0.001) | 20.17 (<0.001) |
Carabus cancellatus (Illiger, 1798) | 2.35 (0.125) | 25.92 (<0.001) | 12.2 (0.002) |
Anisodactylus binotatus (Fabricius, 1787) | 14.22 (<0.001) | 21.92 (<0.001) | 12.74 (0.002) |
Pterostichus melanarius (Illiger, 1798) | 90.12 (<0.001) | 195.67 (<0.001) | 170.64 (<0.001) |
Carabus granulatus (Linnaeus, 1758 | 7.92 (0.005) | 24.93 (<0.001) | 28.94 (<0.001) |
Harpalus rufipes (De Geer, 1774) | 4.88 (0.027) | 7.14 (0.028) | - 1 |
Poecilus cupreus (Linnaeus, 1758) | 32.43 (<0.001) | 56.39 (<0.001) | - |
Poecilus versicolor (Sturm, 1824) | 12.33 (<0.001) | 8.33 (0.004) | - |
Amara communis (Panzer, 1797) | 0.64 (0.424) | - | - |
Calathus fuscipes (Goeze, 1777) | 2.71 (0.1) | - | - |
Year | Meadow | Pasture | Mean | |
---|---|---|---|---|
All Carabidae (species) | 2020 | 433 ± (20.8) aB | 533 ± (23.1) aA | 480.4 ± (15.5) a |
2021 | 294 ± (17.1) bB | 361 ± (19) bA | 325.8 ± (12.8) c | |
2022 | 436 ± (20.9) aA | 363 ± (19.1) bB | 397.8 ± (14.1) b | |
mean | 381.5 ± (11.4) A | 411.8 ± (11.8) A | ||
Anisodactylus binotatus | 2020 | 33 ± (5.7) bA | 4 ± (2) bB | 11.5 ± (3) b |
2021 | 48 ± (6.9) aA | 21 ± (4.6) aB | 31.7 ± (4.2) a | |
2022 | 11 ± (3.3) cA | 14 ± (3.7) aA | 12.4 ± (2.5) b | |
mean | 25.9 ± (3.3) A | 10.6 ± (2.1) B | ||
Carabus cancellatus | 2020 | 31 ± (5.6) aA | 22 ± (4.7) bA | 26.1 ± (3.6) b |
2021 | 47 ± (6.9) aA | 40 ± (6.3) aA | 43.4 ± (4.7) a | |
2022 | 7 ± (2.6) bB | 27 ± (5.2) abA | 13.7 ± (2.9) c | |
mean | 21.7 ± (3.2) A | 28.7 ± (3.1) A | ||
Carabus granulatus | 2020 | 30 ± (5.5) aA | 10 ± (3.2) cB | 17.3 ± (3.2) b |
2021 | 28 ± (5.3) aA | 52 ± (7.2) aB | 38.2 ± (4.5) a | |
2022 | 2 ± (1.4) bB | 35 ± (5.9) bA | 8.4 ± (3) b | |
mean | 11.9 ± (3) B | 26.3 ± (3.4) A | ||
Pterostichus melanarius | 2020 | 225 ± (15) bB | 452 ± (21.3) aA | 318.9 ± (13) a |
2021 | 23 ± (4.8) cB | 185 ± (13.6) cA | 65.2 ± (7.2) b | |
2022 | 401 ± (20) aA | 263 ± (16.2) bB | 324.8 ± (12.9) a | |
mean | 127.6 ± (9.5) B | 280.2 ± (10) A | ||
Harpalus rufipes | 2020 | 6.2 ± (1.9) a | ||
2021 | 3.2 ± (1.6) ab | |||
2022 | 1.2 ± (0.7) b | |||
mean | 5.5 ± (1.4) A | 1.6 ± (0.9) B | ||
Poecilus cupreus | 2020 | 43.6 ± (6.3) b | ||
2021 | 90.4 ± (7.1) a | |||
2022 | 1.3 ± (0.9) c | |||
mean | 26.8 ± (6.4) A | 11 ± (3.1) B | ||
Poecilus versicolor | 2020 | 23.7 ± (3.5) a | ||
2021 | - | |||
2022 | 11.9 ± (2.4) b | |||
mean | 10.8 ± (2.3) B | 25.9 ± (3.6) A | ||
Amara communis | mean | 2 ± (1.4) A | 4 ± (2) A | |
Calathus fuscipes | mean | 12 ± (3.5) A | 5 ± (2.2) A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyszko-Podgórska, K.; Szweda, Ż.; Świątek, M.; Ukalska, J.; Pietrasz, K.; Pietrasz, M.; Wilk, P.; Orlińska-Woźniak, P.; Szalińska, E.; Rokicki, T.; et al. Impact of Land Use on Peat Soil Elemental Content and Carabidae and Plant Species Composition and Abundance. Sustainability 2024, 16, 4420. https://doi.org/10.3390/su16114420
Szyszko-Podgórska K, Szweda Ż, Świątek M, Ukalska J, Pietrasz K, Pietrasz M, Wilk P, Orlińska-Woźniak P, Szalińska E, Rokicki T, et al. Impact of Land Use on Peat Soil Elemental Content and Carabidae and Plant Species Composition and Abundance. Sustainability. 2024; 16(11):4420. https://doi.org/10.3390/su16114420
Chicago/Turabian StyleSzyszko-Podgórska, Katarzyna, Żaneta Szweda, Marcin Świątek, Joanna Ukalska, Krzysztof Pietrasz, Magdalena Pietrasz, Paweł Wilk, Paulina Orlińska-Woźniak, Ewa Szalińska, Tomasz Rokicki, and et al. 2024. "Impact of Land Use on Peat Soil Elemental Content and Carabidae and Plant Species Composition and Abundance" Sustainability 16, no. 11: 4420. https://doi.org/10.3390/su16114420
APA StyleSzyszko-Podgórska, K., Szweda, Ż., Świątek, M., Ukalska, J., Pietrasz, K., Pietrasz, M., Wilk, P., Orlińska-Woźniak, P., Szalińska, E., Rokicki, T., Tylkowski, S., & Niżnikowski, R. (2024). Impact of Land Use on Peat Soil Elemental Content and Carabidae and Plant Species Composition and Abundance. Sustainability, 16(11), 4420. https://doi.org/10.3390/su16114420