Digital Transformation and Urban Green Development: Evidence from China’s Data Factor Marketization
Abstract
:1. Introduction
2. Literature Review and Theoretical Framework
2.1. Literature Review
2.2. Theoretical Framework
3. Design of the Research
3.1. Setting up the Model
3.2. Sample Selection
4. Empirical Results
4.1. Parallel Trend Test
4.2. Baseline Regression
4.3. Robustness Analysis
4.3.1. Placebo Test
4.3.2. Additional Robustness Tests
4.4. Endogeneity Analysis
4.5. Impact Mechanism Test
4.6. Heterogeneity Analysis
4.6.1. Variability in Urban Environmental Pollution Intensity
4.6.2. Variability Based on Urban Location
4.7. Additional Research
4.7.1. Modulatory Mechanism Test
4.7.2. Spatial Spillover Mechanism
- (1)
- Enhanced spatial connectivity and interaction: Establishing DFMs boosts information flow and technology dissemination across regions. First, the data market’s standardization and interoperability have significantly reduced the barriers to data acquisition and application, improving data availability and accessibility while also accelerating information flow. Second, by encouraging open data sharing, DFMs provide valuable resources for scientific research and business innovation while also promoting cross-domain technical cooperation and development. Furthermore, DFMs increase R&D efficiency and accelerate the adoption of new technologies by lowering data acquisition costs. Policy support and the establishment of legal frameworks, such as data protection laws and transparency requirements, help to ensure data flow security and compliance while also facilitating the widespread dissemination of technology and information. In summary, the DFM facilitates the swift propagation of environmental management strategies and pollution control technologies, implying that market developments in one region could substantially influence the environmental landscape of adjacent areas. Consequently, indirect effects are observed to be considerably larger than direct impacts.
- (2)
- Policy and technological spillovers: DFMs might introduce advanced environmental technologies and management practices. Their influence could extend to other regions through collaborative projects, policy emulation, and technology transfers, engendering broad spatial effects.
- (3)
- The Spatial influence of economic structural adjustment: The advent of DFMs fosters regional economic structural optimization, with impacts other areas via market dynamics and supply chain linkages. It includes fostering environmentally friendly industries and adjusting high-pollution sectors, with spatially significant indirect effects.
- (4)
- Variability in regional responses to environmental policies: Implementing DFMs may encourage some regions to adopt more stringent environmental protection measures. These effects could be disseminated to other areas through social networks, economic connections, and demonstrations of the effect of policies, thereby further amplifying the indirect impacts.
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, T.; Du, H.; Lin, Z.; Zuo, J. Spatial spillover effects of environmental regulations on air pollution: Evidence from urban agglomerations in China. J. Environ. Manag. 2020, 272, 110998. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Meng, F. Digital finance mitigation of resource curse’ effect: Evidence from resource-based cities in China. Resour. Policy 2023, 83, 103711. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Y.; Zhang, H.; Liang, C.; Feng, Y.; Hu, F. Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Econ. Model. 2023, 120, 106194. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Si, H.; Wang, H. Can the digital economy promote urban green economic efficiency? Evidence from 273 cities in China. Ecol. Indic. 2023, 155, 110977. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, J. The spatial analysis of digital economy and urban development: A case study in Hangzhou, China. Cities 2022, 123, 103563. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, Q.; Zhang, X.; Li, C. Can Digital Transformation Promote Green Technology Innovation? Sustainability 2022, 14, 7497. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, H.; Li, T.X.; Ling, X.; Shen, Q. How Big Data Affect Urban Low-Carbon Transformation—A Quasi-Natural Experiment from China. Int. J. Environ. Res. Public Health 2022, 19, 16351. [Google Scholar] [CrossRef]
- Tao, C.; Yi, M.; Wang, C. Coupling coordination analysis and Spatiotemporal heterogeneity between data elements and green development in China. Econ. Anal. Policy 2023, 77, 1–15. [Google Scholar] [CrossRef]
- Gao, D.; Yan, Z.; Zhou, X.; Mo, X. Smarter and Prosperous: Digital Transformation and Enterprise Performance. Systems 2023, 11, 329. [Google Scholar] [CrossRef]
- Perelet, R.A. Environmental issues in a digital economy. World New Econ. 2019, 12, 39–45. [Google Scholar] [CrossRef]
- Yousaf, Z.; Radulescu, M.; Sinisi, C.I.; Serbanescu, L.; Păunescu, L.M. Towards Sustainable Digital Innovation of SMEs from the Developing Countries in the Context of the Digital Economy and Frugal Environment. Sustainability 2021, 13, 5715. [Google Scholar] [CrossRef]
- He, Y.C.; Wang, W. Theoretical Explanation of Marketization of Data Elements. Contemp. Econ. Res. 2021, 33–44. [Google Scholar]
- Kong, Y.F.; Liu, J.X.; Zhao, Z.X. Research on Market-oriented Allocation of Data Elements: Connotation Deconstruction, Operation Mechanism and Practice Path. Economist 2021, 24–32. [Google Scholar] [CrossRef]
- Li, M.S.; Sun, X.H.; Sun, R. Factor Marketization, Structural Adjustment and Economic Efficiency. Manag. Rev. 2019, 31, 40–52. [Google Scholar]
- Xu, M.; Deng, C.; Liu, D.Y. Digital Economy Leading High-quality Economic Development: Mechanism and Prospect. Contemp. Econ. Manag. 2023, 45, 66–72. [Google Scholar]
- Xu, S.; Yang, C.; Huang, Z.; Failler, P. Interaction between digital economy and environmental pollution: New evidence from a spatial perspective. Int. J. Environ. Res. Public Health 2022, 19, 5074. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, J.; Wang, H. Does the Development of Digital Economy Affect Environmental Pollution? Sustainability 2023, 15, 9162. [Google Scholar] [CrossRef]
- Hoang, T.; Ky, N.M.; Thuong, N.T.N.; Nhan, H.Q.; Ngan, N.V.C. Artificial intelligence in pollution control and management: Status and future prospects. In Artificial Intelligence and Environmental Sustainability: Challenges and Solutions in the Era of Industry 4.0; Springer: Singapore, 2022; pp. 23–43. [Google Scholar]
- Ye, Z.; Yang, J.; Zhong, N.; Tu, X.; Jia, J.; Wang, J. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Sci. Total Environ. 2020, 699, 134279. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Hou, Y.; Zhou, Q.; Ren, S. Going green in China: How does digital finance affect environmental pollution? Mechanism discussion and empirical test. Environ. Sci. Pollut. Res. 2022, 29, 89996–90010. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Lu, S.; Taghizadeh-Hesary, F. Digital finance and air pollution in China: Evolution characteristics, impact mechanism and regional differences. Resour. Policy 2023, 86, 104073. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Wu, H. Digitalization and environment governance: Does internet development reduce environmental pollution? J. Environ. Plan. Manag. 2023, 66, 1533–1562. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Ren, S.; Ran, Q.; Zhang, J. Does the development of the internet contribute to air pollution control in China? Mechanism discussion and empirical test. Struct. Chang. Econ. Dyn. 2021, 56, 207–224. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, S.; Yuan, S. How does the digitization of government environmental governance affect environmental pollution? Spatial and threshold effects. J. Clean. Prod. 2023, 415, 137670. [Google Scholar] [CrossRef]
- Hu, J. Synergistic effect of pollution reduction and carbon emission mitigation in the digital economy. J. Environ. Manag. 2023, 337, 117755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ran, C. Effect of digital economy on air pollution in China? New evidence from the “National Big Data Comprehensive Pilot Area” policy. Econ. Anal. Policy 2023, 79, 986–1004. [Google Scholar] [CrossRef]
- Wu, D.; Xie, Y.; Lyu, S. Disentangling the complex impacts of urban digital transformation and environmental pollution: Evidence from smart city pilots in China. Sustain. Cities Soc. 2023, 88, 104266. [Google Scholar] [CrossRef]
- Zou, W.; Pan, M. Does the construction of network infrastructure reduce environmental pollution?—Evidence from a quasi-natural experiment in “Broadband China”. Environ. Sci. Pollut. Res. 2023, 30, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fang, L.; Mao, H.; Chen, S. Can e-commerce alleviate agricultural non-point source pollution?—A quasi-natural experiment based on a China’s E-Commerce Demonstration City. Sci. Total Environ. 2022, 846, 157423. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zheng, Q.; Wu, Z.S. The Practical Dilemma and Solutions of China’s Data Trading Platform Construction. Reform Renaiss. Rev. 2022, 76–87. [Google Scholar]
- Tao, Z.; Huang, W.D.; Wen, C.Q. The Inspiration and Prospect of the Typical Model of Market-Based Allocation of Data Element. Reform Econ. Syst. 2021, 37–42. [Google Scholar]
- Wang, D.; Liao, H.; Liu, A.; Li, D. Natural resource saving effects of data factor marketization: Implications for green recovery. Resour. Policy 2023, 85, 104019. [Google Scholar] [CrossRef]
- Liu, Y.J. Empowering Urban Green Innovation Development Through Data Factor Marketization: Empirical Evidence from Chinese Cities. Guizhou Soc. Sci. 2023, 124–133. [Google Scholar]
- Chen, Z.; Liang, M. How do external and internal factors drive green innovation practices under the influence of big data analytics capability: Evidence from China. J. Clean. Prod. 2023, 404, 136862. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, C.; Sun, G. Big data application, factor allocation, and green innovation in Chinese manufacturing enterprises. Technol. Forecast. Soc. Chang. 2023, 192, 122567. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X. Intelligent manufacturing, green technological innovation and environmental pollution. J. Innov. Knowl. 2023, 8, 100384. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, J.; Yue, Q.; Zhang, M.; Wang, L. Industrial agglomeration, technological innovation and air pollution: Empirical evidence from 277 prefecture-level cities in China. Struct. Chang. Econ. Dyn. 2023, 66, 240–252. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, Y. The effects of public attention on the environmental performance of high-polluting firms: Based on big data from web search in China. J. Clean. Prod. 2018, 186, 335–341. [Google Scholar] [CrossRef]
- Liu, M.; Luo, X.; Lu, W. Public perceptions of environmental, social, and governance (ESG) based on social media data: Evidence from China. J. Clean. Prod. 2023, 387, 135840. [Google Scholar] [CrossRef]
- Wei, Y.; Gong, P.; Zhang, J.; Wang, L. Exploring public opinions on climate change policy in” Big Data Era”—A case study of the European Union Emission Trading System (EU-ETS) based on Twitter. Energy Policy 2021, 158, 112559. [Google Scholar] [CrossRef]
- Zhou, B.; Ding, H. How public attention drives corporate environmental protection: Effects and channels. Technol. Forecast. Soc. Chang. 2023, 191, 122486. [Google Scholar] [CrossRef]
- Lu, J.; Xiao, Q.; Wang, T. Does the digital economy generate a gender dividend for female employment? Evidence from China. Telecommun. Policy 2023, 47, 102545. [Google Scholar] [CrossRef]
- Huaping, G.; Binhua, G. Digital economy and demand structure of skilled talents—Analysis based on the perspective of vertical technological innovation. Telemat. Inform. Rep. 2022, 7, 100010. [Google Scholar] [CrossRef]
- Marchesani, F.; Masciarelli, F.; Bikfalvi, A. Smart city as a hub for talent and innovative companies: Exploring the (dis) advantages of digital technology implementation in cities. Technol. Forecast. Soc. Chang. 2023, 193, 122636. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, J.; Li, X.; Xiong, B. China’s regional natural resource allocation and utilization: A DEA-based approach in a big data environment. J. Clean. Prod. 2017, 142, 809–818. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y.Y. Network Infrastructure Construction, Industrial Co-agglomeration, and Urban Industrial Upgrading: Based on the Elements of “People” and “Land”. J. Financ. Econ. 2023, 49, 95–109. [Google Scholar]
- Xu, X.; Zhao, M.F.; Li, T.; Li, S.Z. Data Factor and Enterprise Innovation: The Perspective of R&D Competition. Econ. Res. J. 2023, 58, 39–56. [Google Scholar]
- Bai, T.; Qi, Y.; Li, Z.; Xu, D. Digital economy, industrial transformation and upgrading, and spatial transfer of carbon emissions: The paths for low-carbon transformation of Chinese cities. J. Environ. Manag. 2023, 344, 118528. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.; Zhao, W.; Hou, N.; Liu, W. The digital economy, industrial structure upgrading, and carbon emission intensity—Empirical evidence from China’s provinces. Energy Strategy Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, W.; Zhou, Q.; Wang, K. Industrial structure, urban governance and haze pollution: Spatiotemporal evidence from China. Sci. Total Environ. 2020, 742, 139228. [Google Scholar] [CrossRef]
- Fang, J.C.; Liu, Y.; Gao, H.Y.; Dong, J.C.; Lu, B.F. Does Public Data Access Promote Regional Harmonious Development? On a Quasi-natural Experiment of Government Data Platform Access. J. Manag. World 2023, 39, 124–142. [Google Scholar]
- Xie, Q.; Ma, D.; Raza, M.Y.; Tang, S.; Bai, D. Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance. Energy Econ. 2023, 125, 106841. [Google Scholar] [CrossRef]
- Yu, Y.; Li, K.; Duan, S.; Song, C. Economic growth and environmental pollution in China: New evidence from government work reports. Energy Econ. 2023, 124, 106803. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Du, P.; Wang, J.; Wei, Y.; Qin, J.; Yu, L. The effect of public environmental participation on pollution governance in China: The mediating role of local governments’ environmental attention. Environ. Impact Assess. Rev. 2024, 104, 107345. [Google Scholar] [CrossRef]
- Xu, N.; Zhao, D.; Zhang, W.; Zhang, H.; Chen, W.; Ji, M.; Liu, M. Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China. Land 2022, 11, 1634. [Google Scholar] [CrossRef]
- Chen, T.; Duan, Y.Q.; Wu, J.; Aaker, D.A. Can the Marketization of Data Elements Improve Urban Innovation? Evidence from A Quasi-natural Experiment. Sci. Technol. Prog. Policy 2023, 1–10. [Google Scholar]
- Xie, D.X.; Wei, W.S.; Li, Y.; Zhu, X.W. Data Allocation, Credit Market Competition and Welfare Analysis. China Ind. Econ. 2022, 25–43. [Google Scholar] [CrossRef]
- Lv, K.; Pan, M.; Huang, L.; Song, D.; Qian, X. Can intellectual property rights protection reduce air pollution? A quasi-natural experiment from China. Struct. Chang. Econ. Dyn. 2023, 65, 210–222. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.; Zhang, W. Does digital inclusive finance affect urban carbon emission intensity: Evidence from 285 cities in China. Cities 2023, 142, 104552. [Google Scholar] [CrossRef]
- Baker, A.C.; Larcker, D.F.; Wang, C.C. How much should we trust staggered difference-in-differences estimates? J. Financ. Econ. 2022, 144, 370–395. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Z. Fiscal centralization and urban industrial pollution emissions reduction: Evidence from the vertical reform of environmental administrations in China. J. Environ. Manag. 2023, 347, 119212. [Google Scholar] [CrossRef]
- Guo, K.; Cao, Y.; Wang, Z.; Li, Z. Urban and industrial environmental pollution control in China: An analysis of capital input, efficiency and influencing factors. J. Environ. Manag. 2022, 316, 115198. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Li, X.; Yuan, B.; Li, D.; Chen, X. The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. J. Clean. Prod. 2018, 173, 245–255. [Google Scholar] [CrossRef]
POP | WEALTH | OPEN | GOV | ER | ENERGY | FINA | AGDP | AGG | |
---|---|---|---|---|---|---|---|---|---|
POP | 1 | ||||||||
WEALTH | 0.085 *** | 1 | |||||||
OPEN | 0.155 *** | −0.075 *** | 1 | ||||||
GOV | −0.329 *** | 0.086 *** | −0.036 ** | 1 | |||||
ER | 0.262 *** | 0.510 *** | −0.031 ** | −0.071 *** | 1 | ||||
ENERY | −0.196 *** | 0.009 | −0.057 *** | −0.068 *** | −0.034 ** | 1 | |||
FINA | 0.081 *** | 0.431 *** | 0.069 *** | 0.135 *** | 0.233 *** | −0.144 *** | 1 | ||
AGDP | 0.181 *** | 0.702 *** | 0.152 *** | 0.123 *** | 0.422 *** | −0.179 *** | 0.353 *** | 1 | |
AGG | 0.409 *** | 0.107 *** | 0.288 *** | −0.161 *** | 0.165 *** | −0.197 *** | −0.007 | 0.452 *** | 1 |
Variable | Obs | Mean | SD | Min | Max |
---|---|---|---|---|---|
EP | 3962 | 0.040 | 0.040 | 0 | 0.530 |
DFM | 3962 | 0.020 | 0.140 | 0 | 1 |
POP | 3962 | 5.740 | 0.910 | 1.610 | 7.880 |
WEALTH | 3962 | 10.580 | 0.500 | 8.510 | 12.060 |
OPEN | 3962 | 0.310 | 0.750 | 0 | 24.880 |
GOV | 3962 | 0.800 | 0.040 | 0.610 | 0.980 |
ER | 3962 | 0.530 | 0.300 | 0 | 1 |
ENERGY | 3962 | 22.110 | 19.820 | 0.070 | 244.500 |
FINA | 3962 | 0.880 | 0.560 | 0.080 | 9.620 |
AGDP | 3962 | 10.400 | 0.810 | 7.920 | 13.190 |
AGG | 3962 | 0.860 | 0.480 | 0.0200 | 3.050 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
DFM | −0.0507 *** | −0.0334 *** | −0.0288 *** | −0.0267 *** |
(−9.822) | (−6.544) | (−5.716) | (−5.327) | |
POP | −0.0150 * | −0.0224 *** | ||
(−1.755) | (−2.699) | |||
WEALTH | −0.0159 *** | 0.0169 *** | ||
(−6.498) | (3.641) | |||
OPEN | 0.0002 | 0.0004 | ||
(0.239) | (0.648) | |||
GOV | −0.0064 | 0.0313 ** | ||
(−0.472) | (2.483) | |||
ER | −0.0350 *** | −0.0232 *** | ||
(−17.317) | (−11.322) | |||
ENERGY | −0.00006 | −0.0001 *** | ||
(−1.623) | (−2.956) | |||
FINA | −0.0021 | 0.0024 ** | ||
(−1.641) | (2.237) | |||
AGDP | 0.0107 *** | 0.0060 ** | ||
(4.104) | (2.069) | |||
AGG | 0.0003 | 0.0025 | ||
(0.113) | (1.046) | |||
_cons | 0.0409 *** | 0.2092 *** | 0.0405 *** | −0.0881 |
(109.346) | (4.400) | (122.829) | (−1.353) | |
City fixed effect | YES | YES | YES | YES |
Year fixed effect | NO | NO | YES | YES |
N | 3962 | 3962 | 3962 | 3962 |
r2 | 0.7129 | 0.7679 | 0.7788 | 0.7874 |
r2_a | 0.6908 | 0.7494 | 0.7609 | 0.7697 |
F | 96.4794 | 115.1659 | 32.6721 | 25.7241 |
Comparison | Weight | Average Effect |
---|---|---|
Earlier Treatment compared to Later Control | 0.009 | −0.017 |
Later Treatment compared to Earlier Control | 0.003 | −0.003 |
Treatment compared to Never treated | 0.988 | −0.029 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Two-Stage DID | Replacing Explanatory Variables | Excluding Other Pilot Policies | PSM–DID | Excluding Special Samples | |
DFM | −0.0270 ** | −9.7613 *** | −0.0230 *** | −0.0291 *** | −0.0052 ** |
(0.0130) | (−5.181) | (−4.627) | (−5.633) | (−2.302) | |
LGDOPP | −0.0001 | ||||
(−0.053) | |||||
NBDCEZPP | −0.0099 *** | ||||
(−5.237) | |||||
SCPP | −0.0016 | ||||
(−1.518) | |||||
CCPP | −0.0035 ** | ||||
(−2.101) | |||||
LCCPP | −0.0024 ** | ||||
(−1.997) | |||||
ICPP | −0.0064 *** | ||||
(−3.119) | |||||
GFPP | 0.0090 *** | ||||
(4.836) | |||||
control variables | YES | YES | YES | YES | YES |
_cons | - | −0.0400 *** | −0.0300 | 0.0026 | −0.0224 |
- | (−3.198) | (−0.481) | (0.038) | (−0.393) | |
N | 3962 | 1090 | 3962 | 3483 | 3472 |
r2 | - | 0.9373 | 0.7915 | 0.8023 | 0.7473 |
r2_a | - | 0.9204 | 0.7737 | 0.7850 | 0.7260 |
F | - | 4.6357 | 22.5595 | 22.6339 | 26.5839 |
(1) | (2) | (3) | |
---|---|---|---|
Total Postal and Telecommunications Business in 1984 | Number of Telephones in 1984 | Number of Post Offices in 1984 | |
DFM | −0.0650 *** | −0.0717 *** | −0.1355 *** |
(−9.452) | (−10.319) | (−12.724) | |
control variables | YES | YES | YES |
N | 3122 | 3122 | 3122 |
r2 | 0.2945 | 0.2787 | 0.0019 |
r2_a | 0.2342 | 0.2170 | −0.0835 |
F | 60.6118 | 60.1062 | 47.0990 |
Kleibergen–Paap rk LM statistic | 594.070 *** | 596.250 *** | 336.043 *** |
[0.000] | [0.000] | [0.000] | |
Cragg–Donald Wald F statistic | 50.105 | 50.308 | 35.236 |
{11.520} | {11.520} | {11.490} |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
---|---|---|---|---|---|---|---|---|---|---|
INNOV | EP | CONCER | EP | TALENT | EP | INDUSTR | EP | DIFINA | EP | |
DFM | 2.4003 *** | −0.0225 *** | 26.4183 *** | −0.0081 *** | 1.0709 *** | −0.0245 *** | 0.1326 *** | −0.0266 *** | 5.2195 *** | −0.0175 *** |
(8.213) | (−4.055) | (3.178) | (−3.946) | (7.879) | (−4.707) | (2.907) | (−5.301) | (3.360) | (−5.278) | |
INNOV | −0.0018 ** | |||||||||
(−2.340) | ||||||||||
CONCER | −0.0001 *** | |||||||||
(−5.130) | ||||||||||
TALENT | −0.0021 *** | |||||||||
(−3.113) | ||||||||||
INDUSTR | −0.0010 ** | |||||||||
(−2.409) | ||||||||||
DIFINA | −0.0002 *** | |||||||||
(−2.718) | ||||||||||
control variable | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
_cons | −5.2684 | −0.0973 | −0.0340 ** | −0.0832 | −2.8724 | −0.0941 | 6.1086 *** | −0.0818 | 63.1433 | −0.0522 |
(−0.971) | (−1.455) | (−1.963) | (−1.034) | (−1.600) | (−1.441) | (4.082) | (−1.256) | (1.636) | (−0.600) | |
N | 3962 | 3962 | 2511 | 2511 | 3962 | 3962 | 3962 | 3962 | 2500 | 2500 |
r2 | 0.7591 | 0.7883 | 0.8272 | 0.7502 | 0.6813 | 0.7881 | 0.7964 | 0.7876 | 0.9937 | 0.7763 |
r2_a | 0.7390 | 0.7706 | 0.8041 | 0.7167 | 0.6547 | 0.7703 | 0.7794 | 0.7698 | 0.9928 | 0.7463 |
F | 22.2272 | 23.2666 | 9.1561 | 20.8636 | 26.7345 | 23.8901 | 95.8272 | 23.9648 | 15.4974 | 20.4757 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
10% | 25% | 50% | 75% | 95% | |
DFM | −0.0463 *** | −0.0408 *** | −0.0329 *** | −0.0260 *** | −0.0183 |
(−4.122) | (−5.047) | (−5.481) | (−3.201) | (−1.444) | |
control variable | YES | YES | YES | YES | YES |
N | 3962 | 3962 | 3962 | 3962 | 3962 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Small- or Medium-Sized City | Large Cities | Northern Cities | Southern Cities | Non-Resource-Based Cities | Resource-Based City | |
DFM | −0.0056 *** | −0.0265 *** | −0.0006 | −0.0366 *** | −0.0295 *** | −0.0005 |
(−2.607) | (−4.726) | (−0.210) | (−5.464) | (−5.567) | (−0.133) | |
control variable | YES | YES | YES | YES | YES | YES |
_cons | 0.0684 | −0.3280 ** | 0.2285 ** | −0.3671 *** | −0.1566 | 0.0728 |
(1.091) | (−2.566) | (2.514) | (−3.586) | (−1.409) | (0.933) | |
N | 2002 | 1960 | 1344 | 2618 | 2366 | 1596 |
r2 | 0.6390 | 0.8268 | 0.6778 | 0.8319 | 0.8275 | 0.6783 |
r2_a | 0.6065 | 0.8112 | 0.6467 | 0.8173 | 0.8123 | 0.6483 |
F | 14.2125 | 14.8798 | 17.0056 | 16.6760 | 12.1167 | 22.6761 |
(1) | (2) | |
---|---|---|
DFM | −0.0082 *** | −0.0102 ** |
(−3.155) | (−2.197) | |
DFM × INFAR | −0.0254 *** | |
(−3.459) | ||
INFAR | −0.0037 *** | |
(−3.248) | ||
DFM × TIUP | −0.0202 *** | |
(−2.827) | ||
TIUP | −0.0035 *** | |
(−2.807) | ||
control variable | YES | YES |
_cons | −0.0893 | −0.1108 * |
(−1.365) | (−1.674) | |
N | 3962 | 3948 |
r2 | 0.7892 | 0.7894 |
r2_a | 0.7715 | 0.7718 |
F | 22.4212 | 22.4821 |
Explanatory Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
W1 | |||
DFM | −0.0273 ** | −0.3200 ** | −0.3472 ** |
(−2.117) | (−1.992) | (−2.201) | |
control variable | YES | YES | YES |
N | 3962 | 3962 | 3962 |
W2 | |||
DFM | −0.0224 * | −0.1089 *** | −0.1314 *** |
(−1.849) | (−4.516) | (−4.646) | |
control variable | YES | YES | YES |
N | 3962 | 3962 | 3962 |
W3 | |||
DFM | −0.0273 ** | −0.3208 ** | −0.3481 ** |
(−2.117) | (−1.997) | (−2.205) | |
control variable | YES | YES | YES |
N | 3962 | 3962 | 3962 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Du, X.; Yan, X.-W.; Xu, N. Digital Transformation and Urban Green Development: Evidence from China’s Data Factor Marketization. Sustainability 2024, 16, 4511. https://doi.org/10.3390/su16114511
Li H, Du X, Yan X-W, Xu N. Digital Transformation and Urban Green Development: Evidence from China’s Data Factor Marketization. Sustainability. 2024; 16(11):4511. https://doi.org/10.3390/su16114511
Chicago/Turabian StyleLi, Honghe, Xiaotian Du, Xiang-Wu Yan, and Ning Xu. 2024. "Digital Transformation and Urban Green Development: Evidence from China’s Data Factor Marketization" Sustainability 16, no. 11: 4511. https://doi.org/10.3390/su16114511
APA StyleLi, H., Du, X., Yan, X. -W., & Xu, N. (2024). Digital Transformation and Urban Green Development: Evidence from China’s Data Factor Marketization. Sustainability, 16(11), 4511. https://doi.org/10.3390/su16114511