Short Sea Shipping as a Sustainable Modal Alternative: Qualitative and Quantitative Perspectives
Abstract
:1. Background and Introduction
2. Literature Review
3. Study Area and Data Description
3.1. Study Area
3.2. Sample Selection
3.3. Qualitative Data
3.4. Quantitative Data
- Accuracy: In terms of meeting pickup and delivery appointment times;
- Capacity: The current mode has sufficient space for cargo;
- Cost efficiency: Cheaper for the service offered;
- Delivery windows: Supports specific delivery timings;
- Flexibility: Able to accommodate the changes in demand, market fluctuations, and seasonal variations;
- Predictability/Dependability: Meets commitments, does as expected;
- Public benefit: The current mode has fewer externalities toward public health and well-being, including congestion, longer waiting times, accidents, noise, infrastructure wear and tear;
- Quality: Indicates less damage;
- Service: Collaboration, planning, follow-up, friendly customer support, and issue resolution;
- Sustainability: Green supply chain, consumes renewable energy, fewer carbon emissions;
- Speed: Current mode is faster than others;
- Frequency: Available more often.
- Leadership buy-in: Switch to SSS happens only based on the decisions made by the logistics leaders of the firm;
- Emergency: SSS would be used only in case of emergencies or catastrophes to the current mode of operation, examples being catastrophic infrastructure failure, weather, or accident-related shutdowns;
- Public Policy: A strong, supportive public policy is required for the SSS to become a viable option;
- Sustainability: The firm would shift to SSS if there are tangible benefits to the environment in terms of sustainability and green logistics.
4. Methodology
4.1. Qualitative Analysis
4.2. Quantitative Modeling
- yi = level of importance on an ordinal scale of 1 to 4 (1, 2, 3 and 4);
- µi = indicates the thresholds (cuts) between each level of the ordinal scale variable;
- βk = coefficient (Coef.) vector;
- Xk = vector of independent variables.
5. Results, Analysis, and Policy Implications
“It’s probably a few of the port authority’s tariffs; the Port Authority of New York, New Jersey, sets the wharfage and dockages. You could go into economics, whether it’s taxes or whatever it is. So, you have stevedoring costs that are high, and then congestion drives waiting time. If I have a truck that must wait hours and hours to get loaded because it’s busy, you pay for that somewhere”.
Policy Implications
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Sample Size Validation, Experiments, and Preliminary Analysis
Appendix B. Overview of Interviewees
References
- Lučić, A. Measuring sustainable marketing orientation—Scale development process. Sustainability 2020, 12, 1734. [Google Scholar] [CrossRef]
- Kotler, P. Reinventing marketing to manage the environmental imperative. J. Mark. 2011, 75, 132–135. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Lee, P.T.-W.; Kim, H.-J.; Shin, S.-H. Optimization model for transportation of container cargoes considering short sea shipping and external cost: South Korean case. Transp. Res. Rec. 2010, 2166, 99–108. [Google Scholar] [CrossRef]
- Raza, Z.; Svanberg, M.; Wiegmans, B. Modal shift from road haulage to short sea shipping: A systematic literature review and research directions. Transp. Rev. 2020, 40, 382–406. [Google Scholar] [CrossRef]
- Izadi, A.; Nabipour, M.; Titidezh, O. Cost models and cost factors of road freight transportation: A literature review and model structure. Fuzzy Inf. Eng. 2020, 11, 257–278. [Google Scholar] [CrossRef]
- Gu, Y.; Wallace, S.W.; Wang, X. Can an Emission Trading Scheme really reduce CO2 emissions in the short term? Evidence from a maritime fleet composition and deployment model. Transp. Res. Part D Transp. Environ. 2019, 74, 318–338. [Google Scholar] [CrossRef]
- Brooks, M.R.; Hodgson, J.R.; Frost, J. Short Sea Shipping on the East Coast of North America: An Analysis of Opportunities and Issues; Dalhousie University Halifax: Halifax, NS, Canada, 2006. [Google Scholar]
- van den Bos, G.; Wiegmans, B. Short sea shipping: A statistical analysis of influencing factors on SSS in European countries. J. Shipp. Trade 2018, 3, 6. [Google Scholar] [CrossRef]
- Woodburn, A.; Whiteing, A. Transferring freight to ‘greener’ transport modes. In Green Logistics: Improving the Environmental Sustainability of Logistics; Kogan Page: London, UK, 2010; pp. 124–139. [Google Scholar]
- Fancello, G.; Serra, P.; Mancini, S. A network design optimization problem for ro-ro freight transport in the Tyrrhenian area. Transp. Probl. 2019, 14, 63–75. [Google Scholar] [CrossRef]
- López-Navarro, M.Á. Environmental factors and intermodal freight transportation: Analysis of the decision bases in the case of Spanish motorways of the Sea. Sustainability 2014, 6, 1544–1566. [Google Scholar] [CrossRef]
- Perakis, A.N.; Denisis, A. A survey of short sea shipping and its prospects in the USA. Marit. Policy Manag. 2008, 35, 591–614. [Google Scholar] [CrossRef]
- Xu, Z.; Elomri, A.; Kerbache, L.; El Omri, A. Impacts of COVID-19 on global supply chains: Facts and perspectives. IEEE Eng. Manag. Rev. 2020, 48, 153–166. [Google Scholar] [CrossRef]
- Carter, C.R.; Easton, P.L. Sustainable supply chain management: Evolution and future directions. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 46–62. [Google Scholar] [CrossRef]
- Varsei, M.; Soosay, C.; Fahimnia, B.; Sarkis, J. Framing sustainability performance of supply chains with multidimensional indicators. Supply Chain Manag. Int. J. 2014, 19, 242–257. [Google Scholar] [CrossRef]
- Chang, C.-H.; Thai, V.V. Shippers’ choice behaviour in choosing transport mode: The case of South East Asia (SEA) region. Asian J. Shipp. Logist. 2017, 33, 199–210. [Google Scholar] [CrossRef]
- Ng, A.K.Y. Competitiveness of short sea shipping and the role of port: The case of North Europe. Marit. Policy Manag. 2009, 36, 337–352. [Google Scholar] [CrossRef]
- Arof, A.M. Decision making model for Ro-Ro short sea shipping operations in Archipelagic Southeast Asia. Asian J. Shipp. Logist. 2018, 34, 33–42. [Google Scholar] [CrossRef]
- Kruse, C.J.; Bierling, D.H.; Vajdos, N.J. Analysis of Start-Up Cross-Gulf Short Sea Shipping Activities with Mexico Since 1990: Problems and Opportunities; Southwest Region University Transportation Center, Texas Transportation: College Station, TX, USA, 2004. [Google Scholar]
- García-Menéndez, L.; Martínez-Zarzoso, I.; De Miguel, D.P. Determinants of mode choice between road and shipping for freight transport: Evidence for four Spanish exporting sectors. J. Transp. Econ. Policy (JTEP) 2004, 38, 447–466. [Google Scholar]
- Comi, A.; Polimeni, A. Assessing the potential of short sea shipping and the benefits in terms of external costs: Application to the Mediterranean Basin. Sustainability 2020, 12, 5383. [Google Scholar] [CrossRef]
- Batista Santos, P.M.; Santos, T.A. Short Sea Shipping in the Age of Sustainability, Autonomous Navigation and Digitalization. J. Mar. Sci. Eng. 2024, 12, 252. [Google Scholar] [CrossRef]
- Bendall, H.B.; Brooks, M.R. Short sea shipping: Lessons for or from Australia. Int. J. Shipp. Transp. Logist. 2011, 3, 384–405. [Google Scholar] [CrossRef]
- Corbett, J.J.; Deans, E.; Silberman, J.; Morehouse, E.; Craft, E.; Norsworthy, M. Panama Canal expansion: Emission changes from possible US west coast modal shift. Carbon Manag. 2012, 3, 569–588. [Google Scholar] [CrossRef]
- Nealer, R.; Matthews, H.S.; Hendrickson, C. Assessing the energy and greenhouse gas emissions mitigation effectiveness of potential US modal freight policies. Transp. Res. Part A Policy Pract. 2012, 46, 588–601. [Google Scholar] [CrossRef]
- Puckett, S.M.; Hensher, D.A.; Brooks, M.R.; Trifts, V. Preferences for alternative short sea shipping opportunities. Transp. Res. Part E Logist. Transp. Rev. 2011, 47, 182–189. [Google Scholar] [CrossRef]
- Holguín-Veras, J.; Kalahasthi, L.; Campbell, S.; González-Calderón, C.A.; Wang, X. Freight Mode Choice: Results from a Nationwide Qualitative and Quantitative Research Effort. Transp. Res. Part A Policy Pract. 2021, 143, 78–120. [Google Scholar] [CrossRef]
- Wilson, F.; Bisson, B.; Kobia, K. Factors That Determine Mode Choice in the Transportation of General Freight. Transp. Res. Rec. 1987, 1061, 26–31. [Google Scholar]
- Wilson, W.W.; Wilson, W.W.; Koo, W.W. Modal competition in grain transport. J. Transp. Econ. Policy 1988, 22, 319–337. [Google Scholar]
- Larranaga, A.M.; Arellana, J.; Senna, L.A. Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul. Transp. Res. Part A Policy Pract. 2017, 102, 202–211. [Google Scholar] [CrossRef]
- Kim, H.-C.; Nicholson, A.; Kusumastuti, D. Analysing freight shippers’ mode choice preference heterogeneity using latent class modelling. Transp. Res. Procedia 2017, 25, 1109–1125. [Google Scholar] [CrossRef]
- Keya, N.; Anowar, S.; Eluru, N. Joint Model of Freight Mode Choice and Shipment Size: A Copula-Based Random Regret Minimization Framework. Transp. Res. Part E Logist. Transp. Rev. 2019, 125, 97–115. [Google Scholar] [CrossRef]
- Stinson, M.; Pourabdollahi, Z.; Livshits, V.; Jeon, K.; Nippani, S.; Zhu, H. A Joint Model of Mode and Shipment Size Choice Using the First Generation of Commodity Flow Survey Public Use Microdata. Int. J. Transp. Sci. Technol. 2017, 6, 330–343. [Google Scholar] [CrossRef]
- Arof, A.; Hanafiah, R.M.; Ooi, I. A Delphi study on the potential benefits and obstacles of interstate short sea shipping in Archipelagic Southeast Asia. Int. J. E-Navig. Marit. Econ. 2016, 5, 97–110. [Google Scholar] [CrossRef]
- Christodoulou, A.; Woxenius, J. Sustainable short sea shipping. Sustainability 2019, 11, 2847. [Google Scholar] [CrossRef]
- Theofanis, S.; Boile, M.; Laventhal, W. Trends in Global Port Operations and Their Influence on Port Labor: Challenges and Implications for US East Coast Longshoremen. In Proceedings of the 50th Annual Forum on Transportation Research, Portland, OR, USA, 16–18 March 2009. [Google Scholar]
- Holguín-Veras, J.; Sánchez-Díaz, I.; Browne, M. Sustainable urban freight systems and freight demand management. Transp. Res. Procedia 2016, 12, 40–52. [Google Scholar] [CrossRef]
- Xu, L.; Zou, Z.; Chen, J.; Fu, S. Effects of emission control areas on sulfur-oxides concentrations——Evidence from the coastal ports in China. Mar. Pollut. Bull. 2024, 200, 116039. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zou, Z.; Liu, L.; Xiao, G. Influence of Emission-Control Areas on the Eco-Shipbuilding Industry: A Perspective of the Synthetic Control Method. J. Mar. Sci. Eng. 2024, 12, 149. [Google Scholar] [CrossRef]
- Xiao, G.; Yang, D.; Xu, L.; Li, J.; Jiang, Z. The Application of Artificial Intelligence Technology in Shipping: A Bibliometric Review. J. Mar. Sci. Eng. 2024, 12, 624. [Google Scholar] [CrossRef]
- Jorgenson, J.G. The Justification for Federal Assistance in Emerging United States Surface Freight Transportation Modes: The Case for America’s Marine Highways; State University of New York College of Maritime: Bronx, NY, USA, 2021. [Google Scholar]
- Hallock, S. What factors impact logistics cluster benefits for firms? In Proceedings of the Australasian Transport Research Forum (ATF 2017), Auckland, New Zealand, 27–29 November 2017. [Google Scholar]
- Porter, M.E.; Advantage, C. Creating and sustaining superior performance. Compet. Advant. 1985, 167, 167–206. [Google Scholar]
- Rodrigue, J.-P.; Hempstead, N. The Insertion of BostWash Within the Global and National Freight Frameworks. In Anticipating 2025 in Northeast Corridor Transportation; University of Delaware: Newark, DE, USA, 2008; p. 27. [Google Scholar]
- Frittelli, J. Can Marine Highways Deliver; Congressional Research Service, Library of Congress: Washington, DC, USA, 2011.
- Denisis, A. An Economic Feasibility Study of Short Sea Shipping including the Estimation of Externalities with Fuzzy Logic; University of Michigan: Ann Arbor, MI, USA, 2009. [Google Scholar]
- United States Department of Transportation Maritime Administration. America’s Marine Highway Route Designations; United States Department of Transportation Maritime Administratio: Washington, DC, USA, 2021.
- Rago, G. Trucks and Trains Still Dominate. But a Modest Barge Carries a Growing Share of Virginia’s Port Traffic. 2020. Available online: https://www.pilotonline.com/business/shipyards/vp-nw-fz20-port-richmond-barge-20201130-sht3e4dfybfcbdzp7fvz4g7riy-story.html (accessed on 29 November 2022).
- Grabow, C.; Manak, I.; Ikenson, D.J. The Jones Act: A Burden America Can No Longer Bear; Cato Institute Policy Analysis: Washington, DC, USA, 2018. [Google Scholar]
- Baú, V. A narrative approach in evaluation:“Narratives of change” method. Qual. Res. J. 2016, 16, 374–387. [Google Scholar] [CrossRef]
- McKelvey, R.D.; Zavoina, W. A Statistical Model for the Analysis of Ordinal Level Dependent Variables. J. Math. Sociol. 1975, 4, 103–120. [Google Scholar] [CrossRef]
- Gesé Aperte, X.; Baird, A.J. European Motorways of the sea: Lessons from the Spanish experience. Int. J. Ocean Syst. Manag. 2012, 1, 395–419. [Google Scholar] [CrossRef]
- Holguın-Veras, J.; Wang, C.; Kalahasthi, L.; Campbell, S.; Lawrence, M.; Skolnik, J.; Silvergleit, I.; Gonzalez-Calderon, C.; Wojtowicz, J.; Ramirez-Rios, D. Impacts of Policy-Induced Freight Modal Shifts, NCHRP/NCFRP; Transportation Research Board: Washington, DC, USA, 2019; NCFRP Report. [Google Scholar]
- Dugan, A.; Mayer, J.; Thaller, A.; Bachner, G.; Steininger, K.W. Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies. Ecol. Econ. 2022, 193, 107304. [Google Scholar] [CrossRef]
- Fang, X.; Cao, C.; Chen, Z.; Chen, W.; Ni, L.; Ji, Z.; Gan, J. Using mixed methods to design service quality evaluation indicator system of railway container multimodal transport. Sci. Prog. 2020, 103, 0036850419890491. [Google Scholar] [CrossRef] [PubMed]
- Tiznado-Aitken, I.; Lucas, K.; Muñoz, J.C.; Hurtubia, R. Understanding accessibility through public transport users’ experiences: A mixed methods approach. J. Transp. Geogr. 2020, 88, 102857. [Google Scholar] [CrossRef]
- Lancsar, E.; Louviere, J. Conducting discrete choice experiments to inform healthcare decision making: A user’s guide. Pharmacoeconomics 2008, 26, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Pearmain, D.; Kroes, E.P. Stated Preference Techniques: A Guide to Practice; Hague Consulting Group: The Hague, The Netherlands, 1990. [Google Scholar]
- Assele, S.Y.; Meulders, M.; Vandebroek, M. Sample size selection for discrete choice experiments using design features. J. Choice Model. 2023, 49, 100436. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Holguín-Veras, J. Discrete choice with spatial correlation: A spatial autoregressive binary probit model with endogenous weight matrix (SARBP-EWM). Transp. Res. Part B Methodol. 2016, 94, 440–455. [Google Scholar] [CrossRef]
- Schmid, J.; Wang, X. Geographic Heterogeneity of Home Deliveries in the US. In Proceedings of the Transportation Research Board (TRB) 98th Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- Orme, B. Sample size issues for conjoint analysis studies. In Sequim: Sawtooth Software Technical Paper; Sawtooth Software: Provo, UT, USA, 1998. [Google Scholar]
- Whitehead, J. Sample size calculations for ordered categorical data. Stat. Med. 1993, 12, 2257–2271. [Google Scholar] [CrossRef] [PubMed]
No. | Reference | Factors in Mode | Mode Choice | GHG Emissions | SSS in Europe | SSS in the US | Port as Mode | Barriers to SSS | Drivers to SSS |
---|---|---|---|---|---|---|---|---|---|
[4] | Z. Raza, M. Svanberg, and B. Wiegmans, (2020) | √ | √ | √ | |||||
[5] | A. Izadi, M. Nabipour, and O. Titidezh (2020) | √ | |||||||
[7] | M. R. Brooks, J. R. Hodgson, and J. Frost (2006) | √ | √ | ||||||
[10] | G. Fancello, P. Serra, and S. Mancini (2019) | √ | |||||||
[12] | A. N. Perakis and A. Denisis (2008) | √ | √ | ||||||
[17] | A. K. Y. Ng (2009) | √ | |||||||
[19] | C. J. Kruse, D. H. Bierling, and N. J. Vajdos (2004) | √ | |||||||
[20] | L. García-Menéndez, et. al (2004) | √ | |||||||
[21] | A. Comi and A. Polimeni (2020) | √ | √ | ||||||
[23] | H. B. Bendall and M. R. Brooks (2011) | √ | |||||||
[24] | J. J. Corbett, et. al (2012) | √ | |||||||
[25] | R. Nealer, H. S. Matthews, and C. Hendrickson (2012) | √ | |||||||
[26] | S. M. Puckett, et. al (2011) | √ | |||||||
[27] | J. Holguín-Veras, et. Al (2021) | √ | √ | ||||||
[28] | F. Wilson, B. Bisson, and K. Kobia (1987) | √ | |||||||
[29] | W. W. Wilson, W. W. Wilson, and W. W. Koo (1988) | √ | |||||||
[30] | A. M. Larranaga, J. Arellana, and L. A. Senna (2017) | √ | |||||||
[31] | H.-C. Kim, A. Nicholson, and D. Kusumastut (2017) | √ | |||||||
[32] | N. Keya, S. Anowar, and N. Eluru (2019) | √ | |||||||
[33] | M. Stinson, et al. (2017) | √ | |||||||
[34] | A. M. Arof (2018) | √ | |||||||
[34] | A. Arof, R. M. Hanafiah, and I. Ooi (2016) | √ | |||||||
[35] | A. Christodoulou and J. Woxenius (2019) | ||||||||
[36] | S. Theofanis, M. Boile, and W. Laventhal (2009) | ||||||||
[37] | J. Holguín-Veras, et. al (2016) | ||||||||
[38] | Xu, L., Zou, Z., Chen, J., & Fu, S. (2024) | √ | |||||||
[39] | Xu, L., Zou, Z., Liu, L., & Xiao, G. (2024). | √ | |||||||
[40] | Xiao, G., Yang, D., Xu, L., Li, J., & Jiang, Z. (2024) | ||||||||
This paper | √ | √ | √ | √ | √ |
Sector | Firm | NAICS (6-Digit) | Description | Truck | Rail | Inland Water-Ways | Ocean | Air |
---|---|---|---|---|---|---|---|---|
Manufacturing | S1 | 321920 | Wood container pallets & skids | √ | ||||
S2 | 325199 | All other basic organic chemical | √ | √ | √ | |||
325211 | Plastics material and resin | |||||||
S3 | 331529 | Other nonferrous metal foundries | √ | √ | ||||
S4 | 333611 | Turbine and turbine generator | √ | √ | √ | |||
S5 | √ | √ | √ | √ | ||||
S6 | 335999 | All other miscellaneous electrical equipment and component manufacturing | √ | √ | ||||
Transport & Ware-Housing | S7 | 488310 | Port and harbor operations | √ | ||||
S8 | 488320 | Marine cargo handling | √ | |||||
S9 | 488390 | Support for water transportation | √ | √ | ||||
S10 | 488510 | Freight forwarding & customs broker | √ | √ | ||||
S11 | √ | √ | √ | |||||
S12 | √ | √ | √ |
No | Variable | Description | Obs. | % |
---|---|---|---|---|
1 | Predominant mode (Pred. Mode) | Truck | 22 | 45.80% |
Vessel | 11 | 22.90% | ||
Air | 5 | 10.40% | ||
Intermodal | 5 | 10.40% | ||
Train | 2 | 4.20% | ||
Barge | 1 | 2.10% | ||
Small Package | 1 | 2.10% | ||
No response | 1 | 2.10% | ||
2 | Domestic/International (Freight Type) | Domestic | 12 | 23.08% |
International | 8 | 15.38% | ||
Domestic and International | 32 | 61.54% | ||
3 | Import Frequency (Import Freq.) | 0 | 6 | 12.50% |
1–4 | 13 | 27.10% | ||
5–9 | 6 | 12.50% | ||
10–14 | 5 | 10.40% | ||
15–19 | 4 | 8.30% | ||
20–50 | 6 | 12.50% | ||
>50 | 8 | 16.70% | ||
4 | Export Frequency (Export Freq.) | 0 | 12 | 25.00% |
1–4 | 13 | 27.08% | ||
5–9 | 3 | 6.25% | ||
10–14 | 5 | 10.42% | ||
15–19 | 1 | 2.08% | ||
20–50 | 5 | 10.42% | ||
>50 | 9 | 18.75% | ||
5 | Value of Freight (Value) | High (Electronics, Retail, Perishables) | 25 | 50.00% |
Medium (Standard Freight) | 22 | 44.00% | ||
Low (Bulk, Commodity) | 3 | 6.00% | ||
6 | Industry Sector (Industry) | Accommodation & Food (72) | 3 | 6.00% |
Agriculture, Forestry (11) | 1 | 2.00% | ||
Construction (23) | 4 | 8.00% | ||
Mining, Quarrying & Oil, Gas (21) | 1 | 2.00% | ||
Manufacturing (31–33) | 13 | 26.00% | ||
Retail (44) | 1 | 2.00% | ||
Transportation and Warehousing (48–49) | 17 | 34.00% | ||
Utilities/Energy (22) | 5 | 10.00% | ||
Others | 5 | 10.00% | ||
7 | Is current mode of shipping economical? | Yes | 27 | 71.00% |
No | 11 | 29.00% | ||
8 | % reduction in the transportation cost required for sustainable modal shift | Same cost; Better service | 7 | 14.60% |
1% to 4% | 5 | 10.40% | ||
5% to 9% | 10 | 20.80% | ||
10% to 14% | 13 | 27.10% | ||
15% to 19% | 0 | 0.00% | ||
>20% | 2 | 4.20% | ||
“Not up to me” | 10 | 20.80% | ||
No response | 1 | 2.10% |
No. | Attributes of Current Mode | Extremely Dissatisfied | Dissatisfied | Neither Satisfied or Dissatisfied | Satisfied | Extremely Satisfied | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Obs. | % | Obs. | % | Obs. | % | Obs. | % | Obs. | % | ||
1 * | Accuracy | 0 | 0.00% | 7 | 14.58% | 8 | 16.67% | 29 | 60.42% | 4 | 8.33% |
2 ** | Capacity | 3 | 6.25% | 6 | 12.50% | 9 | 18.75% | 27 | 56.25% | 3 | 6.25% |
3 ** | Cost efficiency | 3 | 6.25% | 8 | 16.67% | 21 | 43.75% | 14 | 29.17% | 2 | 4.17% |
4 | Delivery windows | 1 | 2.08% | 5 | 10.42% | 17 | 35.42% | 25 | 52.08% | 0 | 0.00% |
5 | Flexibility and demand | 1 | 2.08% | 6 | 12.50% | 22 | 45.83% | 19 | 39.58% | 0 | 0.00% |
6 ** | Dependability or predictability | 1 | 2.08% | 9 | 18.75% | 16 | 33.33% | 17 | 35.42% | 5 | 10.42% |
7 | Public benefit | 1 | 2.08% | 3 | 6.25% | 30 | 62.50% | 12 | 25.00% | 2 | 4.17% |
8* | Quality | 0 | 0.00% | 2 | 4.17% | 15 | 31.25% | 28 | 58.33% | 3 | 6.25% |
9 | Service (collaboration/follow-up) | 0 | 0.00% | 5 | 10.42% | 13 | 27.08% | 26 | 54.17% | 4 | 8.33% |
10 | Sustainability (green supplychain) | 0 | 0.00% | 7 | 14.58% | 28 | 58.33% | 11 | 22.92% | 2 | 4.17% |
11 | Speed (transport cycle time) | 0 | 0.00% | 6 | 12.50% | 17 | 35.42% | 21 | 43.75% | 4 | 8.33% |
12 * | Frequency of service | 0 | 0.00% | 1 | 2.08% | 16 | 33.33% | 25 | 52.08% | 6 | 12.50% |
(A) | |||||||||
---|---|---|---|---|---|---|---|---|---|
No. | Factors Influencing Switch to SSS | High Importance | Low Importance | ||||||
Highest | Higher | High | Total | Lowest | Lower | Low | Total | ||
1 * | Accuracy | 28.3% | 13.0% | 17.4% | 58.7% | 0.0% | 2.2% | 0.0% | 2.2% |
2 | Administrative Ease | 4.3% | 2.2% | 2.2% | 8.7% | 19.6% | 2.2% | 4.3% | 26.1% |
3 | Capacity | 4.3% | 8.7% | 8.7% | 21.7% | 4.3% | 0.0% | 0.0% | 4.3% |
4 | Cash flow | 0.0% | 2.2% | 2.2% | 4.3% | 6.5% | 10.9% | 10.9% | 28.3% |
5* | Cost | 34.8% | 28.3% | 13.0% | 76.1% | 0.0% | 2.2% | 0.0% | 2.2% |
6 | Delivery windows | 0.0% | 2.2% | 4.3% | 6.5% | 2.2% | 6.5% | 6.5% | 15.2% |
7 | Flexibility/ /Seasonality | 0.0% | 4.3% | 2.2% | 6.5% | 6.5% | 8.7% | 6.5% | 21.7% |
8 | Frequency of Service | 2.2% | 8.7% | 6.5% | 17.4% | 2.2% | 2.2% | 4.3% | 8.7% |
9 ** | IT Systems | 0.0% | 2.2% | 0.0% | 2.2% | 15.2% | 10.9% | 17.4% | 43.5% |
10 * | Predictability/Dependability | 8.7% | 13.0% | 15.2% | 37.0% | 0.0% | 0.0% | 0.0% | 0.0% |
11 ** | Public Benefit | 4.3% | 2.2% | 2.2% | 8.7% | 28.3% | 23.9% | 17.4% | 69.6% |
12 | Quality | 4.3% | 4.3% | 2.2% | 10.9% | 2.2% | 6.5% | 10.9% | 19.6% |
13 | Service | 2.2% | 4.3% | 10.9% | 17.4% | 0.0% | 2.2% | 2.2% | 4.3% |
14 ** | Sustainability | 2.2% | 0.0% | 4.3% | 6.5% | 13.0% | 19.6% | 15.2% | 47.8% |
15 | Transportation Cycle Time | 4.3% | 4.3% | 8.7% | 17.4% | 0.0% | 2.2% | 4.3% | 6.5% |
(B) | |||||||||
No | Attribute | Importance given to shift from current mode to Short See Shipping (SSS) | |||||||
Very | Somewhat | Less | Least | ||||||
Obs. | % | Obs. | % | Obs. | % | Obs. | % | ||
1 | Leadership | 26 | 55.32% | 10 | 21.28% | 6 | 12.77% | 5 | 10.64% |
2 | Emergency | 15 | 31.91% | 20 | 42.55% | 9 | 19.15% | 3 | 6.38% |
3 | Public policy | 6 | 12.77% | 5 | 10.64% | 14 | 29.79% | 22 | 46.81% |
4 | Sustainability | 0 | 0.00% | 12 | 25.53% | 18 | 38.30% | 17 | 36.17% |
(A) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models /Variables | 1. Pred. Mode | 2. Freight Type | 3. Import Frequency | 4. Export Frequency | 5. Value | 6. Industry | 7. All | ||||||||
Coef | Z | Coef | Z | Coef | Z | Coef | Z | Coef | Z | Coef | Z | Coef | Z | ||
Pred. Mode | Truck | −0.96 | −1.23 | ||||||||||||
Waterways | −1.74 | −2.07 | −1.69 | −2.32 | |||||||||||
Freight type | Domestic | −1.85 | −2.55 | −0.86 | −0.94 | ||||||||||
International | −0.89 | −1.13 | |||||||||||||
Import Freq | 1–4 | 0.77 | 1.10 | ||||||||||||
5–9 | 1.02 | 1.03 | |||||||||||||
10–14 | 1.58 | 1.27 | 1.99 | 1.38 | |||||||||||
15–19 | −1.06 | −0.91 | |||||||||||||
>50 | 1.30 | 1.35 | |||||||||||||
Export Freq | 1–4 | 1.53 | 2.02 | 1.24 | 1.33 | ||||||||||
>50 | 1.32 | 1.45 | 0.87 | 0.83 | |||||||||||
Value | High | 1.42 | 2.35 | 0.72 | 0.92 | ||||||||||
Cuts | 4.0/3.0 | −3.17 | −3.99 | −2.92 | −4.72 | −1.53 | −2.68 | −1.67 | −3.31 | −1.52 | −2.89 | −2.46 | −2.90 | ||
3.0/2.0 | −0.15 | −0.36 | −0.10 | −0.23 | −0.17 | −0.40 | −0.17 | −0.39 | −0.14 | −0.32 | −0.03 | −0.06 | |||
2.0/1.0 | 0.11 | 0.37 | 0.20 | 0.67 | 0.11 | 0.36 | 0.14 | 0.50 | 0.12 | 0.40 | 0.41 | 1.38 | |||
GoF | Obs | 46 | 46 | 46 | 46 | 46 | 46 | ||||||||
AIC | 109.90 | 107.70 | 115.10 | 108.90 | 106.70 | 107.90 | |||||||||
BIC | 119.00 | 116.80 | 127.90 | 118.00 | 114.00 | 126.20 | |||||||||
LL | −49.94 | −48.85 | −50.55 | −49.44 | −49.36 | −43.95 | |||||||||
(B) | |||||||||||||||
Pred. Mode | Air | −2.01 | −2.24 | 2.34 | −1.96 | ||||||||||
Intermodal | 1.58 | 1.53 | −2.60 | −2.21 | |||||||||||
Freight type | Domestic | 1.48 | 2.05 | ||||||||||||
Import Freq | 1–4 | −1.41 | −1.78 | −1.17 | −1.14 | ||||||||||
5–9 | −1.31 | −1.47 | −1.59 | −1.39 | |||||||||||
10–14 | −2.10 | −2.21 | −3.03 | −2.47 | |||||||||||
>50 | −1.99 | −2.30 | −2.64 | −2.13 | |||||||||||
Export Freq | 1–4 | −2.82 | −3.34 | −2.74 | −2.67 | ||||||||||
5–9 | −3.33 | −2.79 | |||||||||||||
10–14 | −1.18 | −1.15 | |||||||||||||
>50 | −2.48 | −2.81 | −1.78 | −1.49 | |||||||||||
Value | Medium | 0.92 | 1.57 | −1.24 | −1.49 | ||||||||||
Industry | Mining | −2.08 | −1.29 | −2.33 | −1.25 | ||||||||||
Retail | −0.94 | −1.03 | |||||||||||||
Cuts | 4.0/3.0 | −3.29 | −4.78 | −2.49 | −4.12 | −4.06 | −4.92 | −4.88 | −5.44 | −2.39 | −3.87 | −2.91 | −4.55 | −7.40 | −4.81 |
3.0/2.0 | 0.59 | 1.80 | 0.51 | 1.57 | 0.53 | 1.63 | 0.61 | 1.92 | 0.49 | 1.47 | 0.53 | 1.61 | 0.85 | 2.61 | |
2.0/1.0 | 0.66 | 3.25 | 0.64 | 3.19 | 0.71 | 3.45 | 0.90 | 4.13 | 0.61 | 3.05 | 0.61 | 3.04 | 1.01 | 4.66 | |
GoF | Obs | 46 | 46 | 46 | 46 | 46 | 46 | 46 | |||||||
AIC | 116.10 | 116.50 | 118.90 | 109.40 | 118.40 | 120.50 | 110.80 | ||||||||
BIC | 125.20 | 123.80 | 131.70 | 122.20 | 125.80 | 129.60 | 134.50 | ||||||||
LL | −53.05 | −54.23 | −52.44 | −47.70 | −55.22 | −55.24 | −42.38 | ||||||||
(C) | |||||||||||||||
Pred. Mode | Truck | −0.44 | −0.79 | −0.94 | −1.44 | ||||||||||
Freight type | International | 0.28 | 0.32 | ||||||||||||
Imprt Freq | 15–19 | 0.84 | 0.73 | 1.90 | 1.37 | ||||||||||
Export Freq | 1–4 | 0.93 | 1.28 | 2.29 | 2.47 | ||||||||||
20–50 | 1.04 | 1.19 | 1.80 | 1.78 | |||||||||||
>50 | 1.55 | 1.99 | 2.59 | 2.72 | |||||||||||
Value | High | −0.93 | −1.65 | −2.24 | −2.89 | ||||||||||
Industry | Agriculture | 2.64 | 1.68 | ||||||||||||
Manufacturing | 1.00 | 1.41 | |||||||||||||
Transportation | 1.39 | 1.96 | |||||||||||||
Cuts | 4.0/3.0 | −0.28 | −0.73 | −0.06 | −0.18 | −0.04 | −0.13 | 0.64 | 1.27 | 0.62 | −1.41 | 0.67 | 1.35 | −0.22 | −0.35 |
3.0/2.0 | 0.31 | 1.34 | 0.31 | 1.30 | 0.32 | 1.32 | 0.41 | 1.70 | 0.36 | 1.48 | 0.43 | 1.75 | 0.61 | 2.48 | |
2.0/1.0 | −0.20 | −0.46 | −0.19 | −0.43 | −0.19 | −0.43 | −0.18 | −0.41 | −0.15 | −0.36 | −0.12 | −0.29 | −0.07 | −0.17 | |
GoF | Obs | 46 | 46 | 46 | 46 | 46 | 46 | 46 | |||||||
AIC | 117.50 | 118.00 | 117.60 | 117.70 | 115.40 | 116.50 | 112.70 | ||||||||
BIC | 124.80 | 125.40 | 124.90 | 128.70 | 122.70 | 127.50 | 129.20 | ||||||||
LL | −54.76 | −55.02 | −54.81 | −52.84 | −53.69 | −52.26 | −47.36 | ||||||||
(D) | |||||||||||||||
Pred. Mode | Air | 2.22 | 2.03 | 1.61 | 1.33 | ||||||||||
Truck | 1.03 | 1.24 | 1.25 | 1.44 | |||||||||||
Waterways | 1.60 | 1.71 | 1.36 | 1.42 | |||||||||||
Freight type | International | 0.25 | 0.36 | ||||||||||||
Import Freq | 20–50 | −0.71 | −0.85 | ||||||||||||
Export Freq | exp_20_50 | −2.24 | −1.93 | −2.26 | −1.87 | ||||||||||
exp_5_9 | 1.86 | 1.50 | 1.47 | 1.07 | |||||||||||
Value | Medium | 1.41 | 1.11 | ||||||||||||
High | 1.67 | 1.33 | |||||||||||||
Industry | Construction | 0.95 | 0.92 | ||||||||||||
Cuts | 4.0/3.0 | 0.45 | 0.63 | −0.58 | −1.75 | −0.73 | −2.18 | −0.81 | −2.30 | 0.81 | 0.68 | −0.57 | −1.78 | 0.25 | 0.33 |
3.0/2.0 | 0.60 | 2.87 | 0.52 | 2.50 | 0.52 | 2.54 | 0.63 | 0.21 | 0.54 | 2.63 | 0.53 | 2.55 | 0.68 | 3.26 | |
GoF | Obs | 46 | 46 | 46 | 46 | 46 | 46 | 46 | |||||||
AIC | 104.70 | 105.70 | 105.10 | 99.78 | 105.80 | 105.00 | 102.90 | ||||||||
BIC | 113.80 | 111.20 | 110.60 | 107.10 | 113.10 | 110.40 | 115.70 | ||||||||
LL | −47.33 | −49.84 | −49.54 | −45.89 | −48.89 | −49.48 | −44.47 |
(A) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models /Variables | 1. Pred. Mode | 2. Freight Type | 3. Import Frequency | 4. Export Frequency | 5. Value | 6. Industry | 7. All | ||||||||
Coef | Z | Coef | Z | Coef | Z | Coef | Z | Coef | Z | Coef | Z | Coef | Z | ||
Pred. Mode | Truck | −0.44 | −0.79 | −0.94 | −1.44 | ||||||||||
Freight type | International | 0.28 | 0.32 | ||||||||||||
Imprt Freq | 15–19 | 0.84 | 0.73 | 1.90 | 1.37 | ||||||||||
Export Freq | 1–4 | 0.93 | 1.28 | 2.29 | 2.47 | ||||||||||
20–50 | 1.04 | 1.19 | 1.80 | 1.78 | |||||||||||
>50 | 1.55 | 1.99 | 2.59 | 2.72 | |||||||||||
Value | High | −0.93 | −1.65 | −2.24 | −2.89 | ||||||||||
Industry | Agriculture | 2.64 | 1.68 | ||||||||||||
Manufacturing | 1.00 | 1.41 | |||||||||||||
Transportation | 1.39 | 1.96 | |||||||||||||
Cuts | 4.0/3.0 | −0.28 | −0.73 | −0.06 | −0.18 | −0.04 | −0.13 | 0.64 | 1.27 | −0.62 | −1.41 | 0.67 | 1.35 | −0.22 | −0.35 |
3.0/2.0 | 0.31 | 1.34 | 0.31 | 1.30 | 0.32 | 1.32 | 0.41 | 1.70 | 0.36 | 1.48 | 0.43 | 1.75 | 0.61 | 2.48 | |
2.0/1.0 | −0.20 | −0.46 | −0.19 | −0.43 | −0.19 | −0.43 | −0.18 | −0.41 | −0.15 | −0.36 | −0.12 | −0.29 | −0.07 | −0.17 | |
GoF | Obs | 46 | 46 | 46 | 46 | 46 | 46 | 46 | |||||||
AIC | 117.50 | 118.00 | 117.60 | 117.70 | 115.40 | 116.50 | 112.70 | ||||||||
BIC | 124.80 | 125.40 | 124.90 | 128.70 | 122.70 | 127.50 | 129.20 | ||||||||
LL | −54.76 | −55.02 | −54.81 | −52.84 | −53.69 | −52.26 | −47.36 | ||||||||
(B) | |||||||||||||||
Pred. Mode | Air | 2.22 | 2.03 | 1.61 | 1.33 | ||||||||||
Truck | 1.03 | 1.24 | 1.25 | 1.44 | |||||||||||
Waterways | 1.60 | 1.71 | 1.36 | 1.42 | |||||||||||
Freight type | International | 0.25 | 0.36 | ||||||||||||
Import Freq | 20–50 | −0.71 | −0.85 | ||||||||||||
Export Freq | exp_20_50 | −2.24 | −1.93 | −2.26 | −1.87 | ||||||||||
exp_5_9 | 1.86 | 1.50 | 1.47 | 1.07 | |||||||||||
Value | Medium | 1.41 | 1.11 | ||||||||||||
High | 1.67 | 1.33 | |||||||||||||
Industry | Construction | 0.95 | 0.92 | ||||||||||||
Cuts | 4.0/3.0 | 0.45 | 0.63 | −0.58 | −1.75 | −0.73 | −2.18 | −0.81 | −2.30 | 0.81 | 0.68 | −0.57 | −1.78 | 0.25 | 0.33 |
3.0/2.0 | 0.60 | 2.87 | 0.52 | 2.50 | 0.52 | 2.54 | 0.63 | 0.21 | 0.54 | 2.63 | 0.53 | 2.55 | 0.68 | 3.26 | |
GoF | Obs | 46 | 46 | 46 | 46 | 46 | 46 | 46 | |||||||
AIC | 104.70 | 105.70 | 105.10 | 99.78 | 105.80 | 105.00 | 102.90 | ||||||||
BIC | 113.80 | 111.20 | 110.60 | 107.10 | 113.10 | 110.40 | 115.70 | ||||||||
LL | −47.33 | −49.84 | −49.54 | −45.89 | −48.89 | −49.48 | −44.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izdebski, M.J.; Kalahasthi, L.K.; Regal-Ludowieg, A.; Holguín-Veras, J. Short Sea Shipping as a Sustainable Modal Alternative: Qualitative and Quantitative Perspectives. Sustainability 2024, 16, 4515. https://doi.org/10.3390/su16114515
Izdebski MJ, Kalahasthi LK, Regal-Ludowieg A, Holguín-Veras J. Short Sea Shipping as a Sustainable Modal Alternative: Qualitative and Quantitative Perspectives. Sustainability. 2024; 16(11):4515. https://doi.org/10.3390/su16114515
Chicago/Turabian StyleIzdebski, Michael J., Lokesh Kumar Kalahasthi, Andrés Regal-Ludowieg, and José Holguín-Veras. 2024. "Short Sea Shipping as a Sustainable Modal Alternative: Qualitative and Quantitative Perspectives" Sustainability 16, no. 11: 4515. https://doi.org/10.3390/su16114515
APA StyleIzdebski, M. J., Kalahasthi, L. K., Regal-Ludowieg, A., & Holguín-Veras, J. (2024). Short Sea Shipping as a Sustainable Modal Alternative: Qualitative and Quantitative Perspectives. Sustainability, 16(11), 4515. https://doi.org/10.3390/su16114515