Efficiency of the Integrated Production Systems: Evidence from the Winegrowing Firms in Italy
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. The Economic Data
3.2. The Empirical Model
- H0: βij = 0 (the translog function can be reduced to a Cobb–Douglas function);
- H0: γ = δ0 = δ1 = … = δm (there are no determinants of technical inefficiency, so the sampled farms are fully efficient);
- H0: δ1; δ2; δ3; δ4; δ5; δ6; δ7; δ8; δ9; δ10; δ11; δ12 = 0 (no effect on technical inefficiency by each determinant considered).
4. Results
5. Discussion and Conclusions
- impact of the costs of production factors and inputs on revenues;
- relationship between quality systems and economic sustainability of firms;
- relationship between environmental and economic sustainability.
- to train administrations to increase their technical knowledge;
- to improve governance in terms of the better distribution of roles, resources, and responsibilities between the public and private actors involved;
- to manage information in terms of transmission, homogenisation, and certification, for providing solid foundations in the evaluation process;
- to ensure a third-party opinion by using an Evaluation Authority;
- to improve research aimed at providing positive and normative tools for the different needs of evaluators.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pe’er, G.; Dicks, L.V.; Visconti, P.; Arlettaz, R.; Báldi, A.; Benton, T.G.; Collins, S.; Dieterich, M.; Gregory, R.D.; Hartig, F.; et al. EU agricultural reform fails on biodiversity. Science 2014, 344, 1090–1092. [Google Scholar] [CrossRef] [PubMed]
- Szymczak, L.S.; de Faccio Carvalho, P.C.; Lurette, A.; de Moraes, A.; de Albuquerque Nunes, P.A.; Martins, A.P.; Moulin, C.-H. System diversification and grazing management as resilience-enhancing agricultural practices: The case of crop-livestock integration. Agric. Syst. 2020, 184, 102904. [Google Scholar] [CrossRef]
- Roese, A.D.; Ribeiro, P.J.; de Mio, L.L.M. Microclimate in agrosilvopastoral system enhances powdery mildew severity compared to agropastoral and non-integrated crop. Trop. Plant. Pathol. 2017, 42, 382–390. [Google Scholar] [CrossRef]
- de Souza Almeida, L.L.; Frazão, L.A.; Lessa, T.A.M.; Fernandes, L.A.; de Carvalho Veloso, Á.L.; Lana, A.M.Q.; de Souza, I.A.; Pegoraro, R.F.; Ferreira, E.A. Soil carbon and nitrogen stocks and the quality of soil organic matter under silvopastoral systems in the Brazilian Cerrado. Soil Till. Res. 2021, 205, 104785. [Google Scholar] [CrossRef]
- Leite-Moraes, A.E.; Gladys Rossato, F.; Susaeta, A.; Binotto, E.; Cunha Malafaia, G.; Barros de Azevedo, D. Environmental impacts in integrated production systems: An overview. J. Clean. Prod. 2023, 420, 138400. [Google Scholar] [CrossRef]
- Munthali, M.G.; Davis, N.; Adeola, A.M.; Botai, J.O.; Kamwi, J.M.; Chisale, H.L.W.; Orimoogunje, O.O.I. Local perception of drivers of land-use and land-cover change dynamics across dedza district, Central Malawi region. Sustainability 2019, 11, 832. [Google Scholar] [CrossRef]
- Istat. Agricoltura. 2023. Available online: https://www.istat.it/it/agricoltura?dati (accessed on 26 April 2024).
- Apulia Region. Disciplinare di Produzione Integrata. 2023. Available online: https://filiereagroalimentari.regione.puglia.it/documents/1662405/4764262/DET_23_13_2_2023.pdf/32aa2169-f87f-be84-22f4-2c976cc98697?t=1677663365867 (accessed on 26 April 2024).
- Špička, J.; Vintr, T.; Aulová, R.; Macháčková, J. Trade-off between the economic and environmental sustainability in Czech dual farm structure. Agric. Econ. Czech 2020, 66, 243–250. [Google Scholar] [CrossRef]
- Constantin, M.; Sapena, J.; Apetrei, A.; Pătărlăgeanu, S.R. Deliver Smart, Not More! Building Economically Sustainable Competitiveness on the Ground of High Agri-Food Trade Specialization in the EU. Foods 2023, 12, 232. [Google Scholar] [CrossRef] [PubMed]
- Baylis, K.; Peplow, S.; Rausser, G.; Simon, L. Agrienvironmental policies in the EU and United States: A comparison. Ecol. Econ. 2008, 65, 753–764. [Google Scholar] [CrossRef]
- Ogle, S.M.; Olander, L.; Wollenberg, L.; Rosenstock, T.; Tubiello, F.; Paustian, K.; Buendia, L.; Nihart, A.; Smith, P. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: Providing the basis for action. Glob. Chang. Biol. 2014, 20, 1–6. [Google Scholar] [CrossRef]
- Coderoni, S.; Esposti, R. Is there a long-term relationship between agricultural GHG emissions and productivity growth? A dynamic panel data approach. Environ. Resour. Econ. 2014, 58, 273–302. [Google Scholar] [CrossRef]
- Fikadu, A.A.; Gebre, G.G. Technical efficiency of teff farms in Ethiopia: Do neighborhood effects matter? A copula stochastic frontier and spatial Durbin regression. Heliyon 2024, 10, e31166. [Google Scholar] [CrossRef] [PubMed]
- Akite, I.; Okello, D.M.; Kasharu, A.; Mugonola, B. Estimation of profit efficiency of smallholder rice farmers in Uganda: A stochastic frontier approach. J. Agric. Food Res. 2022, 8, 100315. [Google Scholar] [CrossRef]
- Kitole, F.A.; Tibamanya, F.Y.; Sesabo, K. Exploring the nexus between health status, technical efficiency, and welfare of small-scale cereal farmers in Tanzania: A stochastic frontier analysis. J. Agric. Food Res. 2024, 15, 100996. [Google Scholar] [CrossRef]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating input use efficiency in agriculture through a stochastic frontier production: An application on a case study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar] [CrossRef]
- González-Flores, M.; Bravo-Ureta, B.E.; Solís, D.; Winters, P. The impact of high value markets on smallholder productivity in the Ecuadorean Sierra: A Stochastic Production Frontier approach correcting for selectivity bias. Food Policy 2014, 44, 237–247. [Google Scholar] [CrossRef]
- Alropy, E.T.; Desouki, N.E.; Alnafissa, M.A. Economics of technical efficiency in white honey production: Using stochastic frontier production function. Saudi J. Biol. Sci. 2019, 26, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Vasco Silva, J.; Reidsma, P.; Laborte, A.G.; van Ittersum, M.K. Explaining rice yields and yield gaps in Central Luzon, Philippines: An application of stochastic frontier analysis and crop modelling. Eur. J. Agron. 2017, 82, 223–241. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Zhang, X.-H.; Tian, X.; Geng, X.-H.; Zhang, P.; Yan, B.-J. Technical and environmental efficiency of hog production in China—A stochastic frontier production function analysis. J. Integr. Agric. 2015, 14, 1069–1080. [Google Scholar] [CrossRef]
- Chiang, F.-S.; Suna, C.-H.; Yub, J.-M. Technical efficiency analysis of milkfish (Chanos chanos) production in Taiwan—An application of the stochastic frontier production function. Aquaculture 2004, 230, 99–116. [Google Scholar] [CrossRef]
- Laureti, T.; Benedetti, I.; Branca, G. Water use efficiency and public goods conservation: A spatial stochastic frontier model applied to irrigation in Southern Italy. Socioecon. Plann. Sci. 2021, 73, 100856. [Google Scholar] [CrossRef]
- Bopp, C.; Jara-Rojas, R.; Bravo-Ureta, B.; Engler, A. Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards. Agric. Water Manag. 2022, 271, 10776. [Google Scholar] [CrossRef]
- Bravo-Ureta, B.E.; Higgins, D.; Arslan, A. Irrigation infrastructure and farm productivity in the Philippines: A stochastic Meta-Frontier analysis. World Dev. 2020, 135, 105073. [Google Scholar] [CrossRef]
- Arshada, M.; Amjath-Babua, T.S.; Aravindakshanb, S.; Krupnikc, T.J.; Toussainta, V.; Kächelea, H.; Müllera, K. Climatic variability and thermal stress in Pakistan’s rice and wheat systems: A stochastic frontier and quantile regression analysis of economic efficiency. Ecol. Indic. 2018, 89, 496–506. [Google Scholar] [CrossRef]
- Ojo, T.O.; Baiyegunhi, L.J.S. Impact of climate change adaptation strategies on rice productivity in South-west, Nigeria: An endogeneity corrected stochastic frontier model. Sci. Total Environ. 2020, 745, 141151. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Li, Q.; Zhang, L. Managing Agricultural Water Use in a Changing Climate in China. Sustain. Prod. Consum. 2022, 33, 978–990. [Google Scholar]
- Ngango, J.; Hong, S. Assessing production efficiency by farm size in Rwanda: A zero-inefficiency stochastic frontier approach. Sci. Afr. 2022, 16, e01143. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Gessesse, A.T.; Dunya, R. The Nexus of Agricultural Credit, Farm Size and Technical Efficiency in Sindh, Pakistan: A Stochastic Production Frontier Approach. J. Saudi Soc. Agric. Sci. 2019, 18, 348–354. [Google Scholar] [CrossRef]
- Ali, I.; Huo, X.-X.; Khan, I.; Ali, H.; Khan, B.; Khan, S.U. Technical efficiency of hybrid maize growers: A stochastic frontier model approach. J. Integr. Agric. 2019, 18, 2408–2421. [Google Scholar] [CrossRef]
- Twumasi, M.A.; Jiang, Y.; Fosu, P.; Addai, B.; Hackman Kwamena Essel, C. The impact of credit constraint on artisanal fishers’ technical efficiency: Stochastic frontier and instrumental variable approach. Reg. Stud. Mar. Sci. 2022, 50, 102149. [Google Scholar]
- Appiah-Twumasi, M.; Donkoh, S.A.; Ansah, I.G.K. Innovations in smallholder agricultural financing and economic efficiency of maize production in Ghana’s northern region. Heliyon 2022, 8, e12087. [Google Scholar] [CrossRef] [PubMed]
- Workneh, W.M.; Kumar, R. The technical efficiency of large-scale agricultural investment in Northwest Ethiopia: A stochastic frontier approach. Heliyon 2023, 9, e19572. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Parker, E. Labor productivity and migration in Chinese agriculture A stochastic frontier approach. China Econ. Rev. 1999, 10, 59–74. [Google Scholar] [CrossRef]
- Djuraeva, M.; Bobojonov, I.; Kuhn, L.; Glauben, T. The impact of agricultural extension type and form on technical efficiency under transition: An empirical assessment of wheat production in Uzbekistan. Econ. Anal. Policy 2023, 77, 203–221. [Google Scholar] [CrossRef]
- Julien, J.C.; Bravo-Ureta, B.E.; Rada, N.E. Gender and agricultural Productivity: Econometric evidence from Malawi, Tanzania, and Uganda. World Dev. 2023, 171, 106365. [Google Scholar] [CrossRef]
- Huang, W.; Manevska-Tasevska, G.; Hansson, H. Does ecologization matter for technical efficiency in crop production? A case of Swedish agriculture. Land Use Policy 2024, 138, 107068. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Xub, Q.; Ying, L.; Lai, C.; Li, A. Evaluation of soil and water conservation performance under promotion incentive based on stochastic frontier function model. Alex. Eng. J. 2022, 61, 855–862. [Google Scholar] [CrossRef]
- De Azevedo Junior, W.C.; Rodrigues, M.; Costa Correia Silva, D. Does agricultural efficiency contribute to slowdown of deforestation in the Brazilian Legal Amazon? J. Nat. Conserv. 2022, 65, 126092. [Google Scholar] [CrossRef]
- Steiner, R. Agriculture Course: The Birth of the Biodynamic Method; Rudolf Steiner Press: East Sussex, UK, 2013; ISBN 978-1-85584-353-0. [Google Scholar]
- Rouault, A.; Beauchet, S.; Renaud-Gentie, C.; Jourjon, F. Life cycle assessment of viticultural technical Management routes (tmrs): Comparison between an organic and an integrated management route. J. Int. Sci. Vigne Vin 2016, 50, 77–89. [Google Scholar] [CrossRef]
- Masotti, P.; Zattera, A.; Malagoli, M.; Bogoni, P. Environmental Impacts of Organic and Biodynamic Wine Produced in Northeast Italy. Sustainability 2022, 14, 6281. [Google Scholar] [CrossRef]
- Durham, T.C.; Mizik, T. Comparative Economics of Conventional, Organic, and Alternative Agricultural Production Systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Qiao, Y.; Halberg, N.; Vaheesan, S.; Scott, S. Assessing the social and economic benefits of organic and fair trade tea production for small-scale farmers in Asia: A comparative case study of China and Sri Lanka. Renew. Agric. Food Syst. 2016, 31, 246–257. [Google Scholar] [CrossRef]
- Bolwig, S.; Gibbon, P.; Jones, S. The economics of smallholder organic contract farming in tropical Africa. World Dev. 2009, 37, 1094–1104. [Google Scholar] [CrossRef]
- DeVetter, L.W.; Granatstein, D.; Kirby, E.; Brady, M. Opportunities and Challenges of Organic Highbush Blueberry Production in Washington State. Horttechnology 2015, 25, 796–804. [Google Scholar] [CrossRef]
- Jánský, J.; Živĕlová, I.; Novak, P. Economic efficiency of agricultural enterprises in the system of organic farming. Agric. Econ. Czech 2003, 49, 242–246. [Google Scholar] [CrossRef]
- Brozova, I.; Vanek, J. Assessment of economic efficiency of conventional and organic agricultural enterprises in a chosen region. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 297–307. [Google Scholar] [CrossRef]
- Náglová, Z.; Vlasicova, E. Economic performance of conventional, organic, and biodynamic farms. J. Agric. Sci. Technol. Iran 2016, 18, 881–894. [Google Scholar]
- Forster, D.; Rajeev Verma, C.A.; Zundel, C.; Messmer, M.M.; Mäder, P. Yield and Economic Performance of Organic and Conventional Cotton-Based Farming Systems—Results from a Field Trial in India. PLoS ONE 2013, 8, e81039. [Google Scholar] [CrossRef] [PubMed]
- Idda, L.; Furesi, R.; Pulina, P. Economia Dell’allevamento Ovino da latte. Produzione, Trasformazione, Mercato; Franco Angeli: Milano, Italy, 2010. [Google Scholar]
- Bozoğlu, M.; Ceyhan, V. Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey. Agric. Syst. 2007, 94, 649–656. [Google Scholar] [CrossRef]
- Hansson, H.; Öhlmér, B. The effect of operational managerial practices on economic, technical and allocative efficiency at Swedish dairy farms. Livest. Sci. 2008, 118, 34–43. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Kuyvenhoven, A.; Qu, F. Impact of land fragmentation on rice producers’ technical efficiency in South-East China. NJAS Wagening. J. Life Sci. 2010, 57, 117–123. [Google Scholar] [CrossRef]
- Sardaro, R.; La Sala, P. The technical efficiency of the Apulian winegrowing farms with different irrigation water supply systems. Food Econ. 2020, 22, 1–24. [Google Scholar] [CrossRef]
- Sardaro, R.; De Pascale, G.; Ingrao, C.; Faccilongo, N. Latent relationships between environmental impacts of cultivation practices and land market: Evidences from a spatial quantile regression analysis in Italy. J. Clean. Prod. 2021, 279, 123648. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Wang, H.J.; Horncastle, A.P. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University Press: Cambridge, UK, 2015; p. 359. [Google Scholar]
- Ali, M.; Flinn, J.C. Profit efficiency among Basmati rice producers in Pakistan Punjab. Am. J. Agric. Econ. 1989, 71, 303–310. [Google Scholar] [CrossRef]
- Wang, J.; Cramer, G.L.; Wailes, E.J. Production efficiency in Chinese agriculture: Evidence from rural household survey data. Agric. Econ. 1996, 15, 17–28. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A Stochastic Frontier Production Function Incorporating a Model for Technical Inefficiency Effects; Working Paper 93/05; Department of Econometrics, University of New England: Armidale, Australia, 1993; pp. 1–22. [Google Scholar]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Kluwer Academic Publishers: Boston, MA, USA, 2005; p. 349. [Google Scholar]
- Kodde, D.A.; Palm, F.C. Wald criteria for jointly testing equality and inequality restrictions. Econometrica 1986, 54, 1243–1248. [Google Scholar] [CrossRef]
- Sardaro, R.; Faccilongo, N.; Contò, F.; La Sala, P. Adaption Actions to Cope with Climate Change: Evidence from Farmers’ Preferences on an Agrobiodiversity Conservation Programme in the Mediterranean Area. Sustainability 2021, 13, 5977. [Google Scholar] [CrossRef]
- Sardaro, R.; La Sala, P. New Value to Wool: Innovative Garments for Preservation of Sheep Landraces in Italy. Animals 2021, 11, 731. [Google Scholar] [CrossRef]
- Duan, W.; Jiang, M.; Qi, J. Agricultural certification, market access and rural economic growth: Evidence from poverty-stricken counties in China. Econ. Anal. Policy 2024, 81, 99–114. [Google Scholar] [CrossRef]
- Giganti, P.; Borrello, M.; Falcone, P.M.; Cembalo, L. The impact of blockchain technology on enhancing sustainability in the agri-food sector: A scoping review. J. Clean. Prod. 2024, 456, 142379. [Google Scholar] [CrossRef]
- Taishykov, Z.; Tolysbayeva, M.; Zhumanazarov, K.; Ibraimova, S.; Mizambekova, Z. Management of innovation processes in agriculture. World Dev. Perspect. 2024, 33, 100566. [Google Scholar] [CrossRef]
- De Boer, J.; Aiking, H. EU consumer awareness of food safety and healthy diets: Are there synergies to benefit a sustainable protein transition? Food Qual. Prefer. 2023, 111, 104981. [Google Scholar] [CrossRef]
- Costa, M.J.; Sousa, I.; Pinto Mour, A.; Teixeira, J.A.; Cunha, L.M. Food Fraud Conceptualization: An Exploratory Study with Portuguese Consumers. J. Food Prot. 2024, 87, 100301. [Google Scholar] [CrossRef]
Variables | U.M. | Expected Sign | |
---|---|---|---|
Output | |||
Production value | Pv | EUR/ha | |
Inputs | |||
Cultivated area | Ca | ha | + |
Machineries value | Mv | EUR/ha | + |
Labour costs | Lc | EUR/ha | + |
Fertilisers costs | Fc | EUR/ha | + |
Pesticides costs | Pc | EUR/ha | + |
Irrigation water costs | Wc | EUR/ha | + |
Determinants of the technical inefficiency | |||
Entrepreneur age | Age | Years | + |
Dummy = 1: Credit access during the period 2019–2023 | Credit | 0–1 | - |
Number of plots | Plots | N. | + |
Average land slope | Slope | % | + |
Dummy = 1: Management of organic matter in the soil | Organic | 0–1 | - |
Dummy = 1: Use of grape varieties that are resistant and/or tolerant to the main plant diseases | Varieties | 0–1 | - |
Dummy = 1: Management of soil for preserving and improving its structure and fertility, avoiding compaction, erosion, degradation, and the stagnation of rainwater | Soil | 0–1 | - |
Dummy = 1: use of grassing in the inter-row (also by spontaneous vegetation managed by mowing) in areas with a slope between 10% and 30% | Grassing | 0–1 | - |
Dummy = 1: Assessment of the maximum quantities of fertilisers for vines through a fertilisation plan | Fertilisation | 0–1 | - |
Dummy = 1: Estimation of water volumes through a water balance based on the phenological phases of vines, the characteristics of the soil, and the climatic conditions | Irrigation | 0–1 | - |
Dummy = 1: Use of meteorological instruments or climatic data from the Regional Agrometeorological Network (www.agrometeopuglia.it, accessed on 26 April 2024) | Agrometeorological | 0–1 | - |
Dummy = 1: Use of pesticides in compliance with the maximum quantities allowed by the regional IPRs | Pesticides | 0–1 | - |
Variables | Use of the Variable a | U.M. | Sample Farms | Regional Farms (FADN Data) | t-Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | S.D. | Min. | Max. | Mean | S.D. | ||||
Pv | O | EUR /ha | 7.66 | 17.33 | 14.21 | 9.21 | 8.48 | 20.46 | 15.67 | 8.19 | *** |
Ca | I | ha | 0.14 | 13.19 | 5.04 | 11.44 | 0.12 | 12.09 | 5.41 | 13.22 | *** |
Mv | I | EUR /ha | 0.64 | 2.88 | 1.93 | 2.78 | 0.71 | 2.76 | 2.12 | 3.16 | *** |
Lc | I | EUR /ha | 1.33 | 6.06 | 3.81 | 3.15 | 1.02 | 7.28 | 4.79 | 2.65 | ** |
Fc | I | EUR /ha | 1.38 | 2.29 | 2.15 | 3.96 | 1.45 | 2.56 | 2.95 | 5.88 | ** |
Pc | I | EUR /ha | 0.77 | 1.89 | 1.21 | 1.83 | 0.59 | 2.19 | 1.42 | 2.37 | *** |
Wc | I | EUR /ha | 0.38 | 1.82 | 0.94 | 1.75 | 0.34 | 2.11 | 1.67 | 2.19 | ** |
Age | In | Years | 18 | 67 | 48.18 | 26.11 | 18 | 68 | 49.21 | 24.88 | ** |
Credit | In | 0–1 | 0 | 1 | 0.34 | 0.51 | 0 | 1 | 0.47 | 0.43 | ** |
Plot | In | n. | 1 | 7 | 3.07 | 3.29 | 1 | 12 | 3.60 | 4.05 | *** |
Slope | In | % | 0 | 7.21 | 2.95 | 3.66 | |||||
Organic | In | 0–1 | 0 | 1 | 0.14 | 0.13 | |||||
Varieties | In | 0–1 | 0 | 1 | 0.26 | 0.28 | |||||
Soil | In | 0–1 | 0 | 1 | 0.34 | 0.49 | |||||
Grassing | In | 0–1 | 0 | 1 | 0.19 | 0.22 | |||||
Fertilisation | In | 0–1 | 0 | 1 | 0.18 | 0.26 | |||||
Irrigation | In | 0–1 | 0 | 1 | 0.24 | 0.21 | |||||
Agrometeorological | In | 0–1 | 0 | 1 | 0.11 | 0.15 | |||||
Pesticides | In | 0–1 | 0 | 1 | 0.22 | 0.35 |
Restrictions | Area A | ||||
---|---|---|---|---|---|
λ | f.d. | * | Decision on H0 | ||
(1) | H0: βij = 0 | 12.37 | 21 | 32.08 | Not rejected |
(2) | H0: γ = δ0 = δ1 = … = δm | 36.98 | 12 | 20.41 | Rejected |
(3) | H0: δ1; δ2; δ3; δ4; δ5; δ6; δ7; δ8; δ9; δ10; δ11; δ12 = 0 | 9.32 < λ < 21.75 | 1 | 2.71 | Rejected |
Variable | Parameter | Coeff. | Std. Err. | Sign. |
---|---|---|---|---|
PSF Model | ||||
Constant | β0 | 2.883 | 0.349 | *** |
ln(Ca) | β1 | 0.248 | 0.041 | *** |
ln(Mv) | β2 | 0.381 | 0.051 | *** |
ln(Lc) | β3 | 0.375 | 0.070 | *** |
ln(Fc) | β4 | 0.645 | 0.076 | *** |
ln(Pc) | β5 | 0.513 | 0.084 | *** |
ln(Wc) | β6 | 0.886 | 0.092 | *** |
Inefficiency model | ||||
Constant | δ0 | 1.332 | 0.207 | *** |
Age | δ1 | 0.268 | 0.046 | *** |
Credit | δ2 | −0.383 | 0.138 | ** |
Plot | δ3 | 0.259 | 0.050 | *** |
Slope | δ4 | 0.286 | 0.110 | ** |
Organic | δ5 | −0.245 | 0.107 | ** |
Varieties | δ6 | −0.881 | 0.141 | *** |
Soil | δ7 | −0.364 | 0.143 | ** |
Grassing | δ8 | −0.145 | 0.083 | |
Fertilisation | δ9 | −0.413 | 0.165 | ** |
Irrigation | δ10 | 0.825 | 0.088 | *** |
Agrometeorological | δ11 | 0.481 | 0.196 | ** |
Pesticides | δ12 | 0.660 | 0.159 | *** |
Variance parameters | ||||
0.158 | ||||
0.056 | ||||
0.214 | 0.030 | *** | ||
0.738 | 0.116 | *** | ||
0.506 | ||||
Log-likelihood | −283.26 | |||
N. firms | 317 | |||
Technical efficiency | ||||
Mean | 0.748 | |||
Min. | 0.465 | |||
Max. | 0.959 | |||
Std. dev. | 0.620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardaro, R.; Panio, D.; Chmieliński, P.; La Sala, P. Efficiency of the Integrated Production Systems: Evidence from the Winegrowing Firms in Italy. Sustainability 2024, 16, 4726. https://doi.org/10.3390/su16114726
Sardaro R, Panio D, Chmieliński P, La Sala P. Efficiency of the Integrated Production Systems: Evidence from the Winegrowing Firms in Italy. Sustainability. 2024; 16(11):4726. https://doi.org/10.3390/su16114726
Chicago/Turabian StyleSardaro, Ruggiero, Daniela Panio, Paweł Chmieliński, and Piermichele La Sala. 2024. "Efficiency of the Integrated Production Systems: Evidence from the Winegrowing Firms in Italy" Sustainability 16, no. 11: 4726. https://doi.org/10.3390/su16114726
APA StyleSardaro, R., Panio, D., Chmieliński, P., & La Sala, P. (2024). Efficiency of the Integrated Production Systems: Evidence from the Winegrowing Firms in Italy. Sustainability, 16(11), 4726. https://doi.org/10.3390/su16114726