Assessing the Link between Wildfires, Vulnerability, and Climate Change: Insights from the Regions of Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Vulnerability Assessment and Multicriteria Methods
- Step 1: We calculate the normalized decision matrix P with elements
- Step 2: We calculate the weight of each criterion using Equations (1)–(3). Equation (1) represents entropy which, in information theory, is a measure of the amount of uncertainty presented by a discrete probability distribution:
- Step 3: We calculate the ideal () and anti-ideal () solution as
- Step 4: We compute the weighted Euclidean distances between each alternative and , and between each alternative and as
- Step 5: We calculate the relative proximity of each alternative to the ideal solution. The relative proximity of alternative with respect to is defined as
2.2. Modelling the Arrival of Forest Fires
2.3. Regional Forest Fires in Greece
- The number of fires in each region that burned: between 10 and 50 ha; between 50 and 100 ha; between 100 and 1000 ha; above 1000 ha (four attributes);
- The total area burned for each category (four attributes);
- The total area burned for the whole region (including small fires that burned between 0 and 0.1 km2) (one attribute).
3. Results
3.1. Vulnerability of Greek Regions to Forest Fires
- a.
- (i) Unadjusted physical vulnerability , and (ii) adjusted regional area physical vulnerability . is the number of fires or the area burned in a given region, and is the same quantity divided by the area of the region. The former quantifies aggregate losses in ecosystem services, while the latter captures losses per regional unit area. Therefore, large regions are relatively less vulnerable in terms of this metric for a similar number of fires or area burned.
- b.
- Economic vulnerability, , defined per regional GDP and obtained by dividing the attribute by the GDP of the region. Regions with relatively higher GDP are less vulnerable in terms of this metric.
- c.
- Social vulnerability, , defined per inhabitant of the region and obtained by dividing the attribute by the population of the region.
- d.
- Socioeconomic vulnerability, , which is obtained by calculating the quantity
- e.
- Vulnerability with respect to regional population density, . Vulnerability per capita that reflects damages from forest fires per person might not provide the whole picture with respect to the effects of the wildfires. This is because, apart from provisioning services and some cultural services, important regulating and supporting services have public good characteristics, and their loss affects most or even the whole regional population. Furthermore, the smoke from wildfires also has public good characteristics and, in densely populated regions, affects relatively more people and therefore generates higher aggregate damages (which could become even higher if the diffusion of smoke from wildfires in neighboring regions is taken into account). Thus, a region with high population density could experience relatively higher impacts compared to regions with low population density. is defined then as the attribute multiplied by the regional population density (inhabitants per km2).
- Attica, which is the smallest region in terms of area but the most heavily populated both in terms of absolute number and density and has the highest GDP per capita, is the most vulnerable region in terms of density, , and per unit area, . This exemplifies the public good aspect of damages from wildfires.
- Peloponnese is highly vulnerable in almost every vulnerability type except . This indicates that the area-adjusted indices should be interpreted carefully. This is because although the region is vulnerable in most of the indices, it is not vulnerable in the area-adjusted, , because it is a large region.
- Central Greece shows a similar pattern to Peloponnese.
- Eastern Macedonia and Thrace shows higher socioeconomic vulnerability at high preferences for equal distribution (). This suggests that damages in this region disproportionally affect relatively poor communities.
- For Central Greece, the vulnerability of almost all types increased during the period 2011–2022 relative to the previous period.
3.2. Forest Fires and Fire Weather Index
3.3. Climate Change and Expected Forest Fires: Greece
3.4. Climate Change and Expected Forest Fires: Greek Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Climate Simulations
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; Working Group II Contribution to the IPCC Sixth Assessment Report; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Jones, M.W.; Smith, A.; Betts, R.; Canadell, J.G.; Prentice, I.C.; Le Quéré, C. Climate Change Increases the Risk of Wildfires; ScienceBrief Review. 2020, Volume 116. Available online: https://ueaeprints.uea.ac.uk/id/eprint/77982/ (accessed on 29 April 2024).
- Pronto, L. Research for REGI Committee—Forest Fires of Summer 2022, European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. 2023. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2023/747280/IPOL_STU(2023)747280_EN.pdf (accessed on 2 January 2024).
- Robinne, F.-N. Impacts of Disasters on Forests, in Particular Forest Fires. UNFFS Background Paper. 2021. Available online: https://www.un.org/esa/forests/wp-content/uploads/2021/08/UNFF16-Bkgd-paper-disasters-forest-fires_052021.pdf (accessed on 10 November 2021).
- Arianoutsou, M.; Zerefos, C.; Kalabokidis, K.; Poupkou, A.; Aravanopoulos, F. Climate change and resilience of forest ecosystems. In Resilience of Forest Ecosystems of Greece to Climate Change; Committee for the Resilience of the Greek Forest Ecosystems to Climate Change (EADO); Arianoutsou, M., Zerefos, C., Kalabokidis, K., Poupkou, A., Aravanopoulos, F., Eds.; Academy of Athens: Athens, Greece, 2023. [Google Scholar]
- Kassomenos, P. Synoptic circulation control on wild fire occurrence. Phys. Chem. Earth Parts A/B/C 2010, 35, 544–552. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Paschalidou, A.K.; Kassomenos, P.A.; McGregor, G. Investigating the relationship of meteorological/climatological conditions and wildfires in Greece. Theor. Appl. Climatol. 2013, 112, 113–126. [Google Scholar] [CrossRef]
- Koutsias, N.; Xanthopoulos, G.; Founda, D.; Xystrakis, F.; Nioti, F.; Pleniou, M.; Mallinis, G.; Arianoutsou, M. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int. J. Wildland Fire 2012, 22, 493–507. [Google Scholar] [CrossRef]
- Sarris, D.; Christopoulou, A.; Angelonidi, E.; Koutsias, N.; Fulé, P.Z.; Arianoutsou, M. Increasing extremes of heat and drought associated with recent severe wildfires in southern Greece. Reg. Environ. Change 2014, 14, 1257–1268. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- TEEB. The Economics of Ecosystems and Biodiversity. Ecological and Economic Foundations; Kumar, P., Ed.; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- De Groot, R.; Brander, L.; Solomonides, S. Ecosystem Services Valuation Database (ESVD) Version June 2020. Available online: https://www.es-partnership.org/wp-content/uploads/2020/08/ESVD_Global-Update-FINAL-Report-June-2020.pdf (accessed on 29 April 2024).
- Enríquez-de-Salamanca, Á. Valuation of ecosystem services: A source of financing Mediterranean loss-making forests. Small-Scale For. 2023, 22, 167–192. [Google Scholar]
- Xepapadeas, A. Cost-benefit analysis of the increase in the resilience of Forests. In Resilience of Forest Ecosystems of Greece to Climate Change; Committee for the Resilience of the Greek Forest Ecosystems to Climate Change (EADO); Arianoutsou, M., Zerefos, C., Kalabokidis, K., Poupkou, A., Aravanopoulos, F., Eds.; Academy of Athens: Athens, Greece, 2023. [Google Scholar]
- Arrow, K.J.; Dasgupta, P.; Goulder, L.H.; Mumford, K.J.; Oleson, K. Sustainability and the measurement of wealth. Environ. Dev. Econ. 2012, 17, 317–353. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhuang, Q.; Mandallaz, D. Modeling large fire frequency and burned area in Canadian terrestrial ecosystems with Poisson models. Environ. Model. Assess. 2012, 17, 483–493. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Page Kyle, G.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef]
- Triantaphyllou, E. Multi-criteria decision making methods. In Multi-Criteria Decision Making Methods: A Comparative Study; Applied Optimization; Springer: Boston, MA, USA, 2000; Volume 44, pp. 5–21. [Google Scholar]
- Papathanasiou, J.; Ploskas, N. Multiple Criteria Decision Aid. Methods, Examples and Python Implementations; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Huang, J. Combining entropy weight and TOPSIS method for information system selection. In Proceedings of the 2008 IEEE Conference on Cybernetics and Intelligent Systems, Chengdu, China, 21–24 September 2008; pp. 1281–1284. [Google Scholar]
- Kim, Y.; Chung, E.S. Assessing climate change vulnerability with group multi-criteria decision making approaches. Clim. Chang. 2013, 121, 301–315. [Google Scholar] [CrossRef]
- Andersen, L.M.; Sugg, M.M. Geographic multi-criteria evaluation and validation: A case study of wildfire vulnerability in Western North Carolina, USA following the 2016 wildfires. Int. J. Disaster Risk Sci. 2019, 39, 101123. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, Q.; Fang, Q. Analysis of green traffic development in Zhoushan based on entropy weight TOPSIS. Sustainability 2021, 13, 8109. [Google Scholar] [CrossRef]
- Chen, P. Effects of the entropy weight on TOPSIS. Expert Syst. Appl. 2021, 168, 114186. [Google Scholar] [CrossRef]
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata, 3rd ed.; Stata Press: College Station, TX, USA, 2014. [Google Scholar]
- Hilbe, J.M. Negative Binomial Regression, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; Defries, R.S.; Kinney, P.; Bowman, D.M.; Brauer, M. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Gould, C.F.; Heft-Neal, S.; Johnson, M.; Aguilera, J.; Burke, M.; Nadeau, K. Health effects of wildfire smoke exposure. Ann. Rev. Med. 2023, 75, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Workman, A.; Russell, M.A.; Williamson, M.; Pan, H.; Reifels, L. The long-term impact of bushfires on the mental health of Australians: A systematic review and meta-analysis. Eur. J. Psychotraumatol. 2022, 13, 2087980. [Google Scholar] [CrossRef] [PubMed]
- OECD. Cost-Benefit Analysis and the Environment: Further Developments and Policy Use; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Im, U.; Brandt, J.; Geels, C.; Hansen, K.M.; Christensen, J.H.; Andersen, M.S.; Solazzo, E.; Kioutsioukis, I.; Alyuz, U.; Balzarini, A.; et al. Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3. Atmos. Chem. Phys. 2018, 18, 5967–5989. [Google Scholar] [CrossRef] [PubMed]
- Spanos, K.; Skouteri, A.; Gaitanis, D.; Petrakis, P.; Meliadis, I.; Michopoulos, P.; Solomou, A.; Koulelis, P.; Avramidou, E. Forests of Greece, their multiple functions and uses, sustainable management and biodiversity conservation in the face of climate change. Open J. Ecol. 2021, 11, 374–406. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics Using STATA, 2nd ed.; Stata Press: College Station, TX, USA, 2022; Volumes 1–2. [Google Scholar]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Canadian Forestry Technical Report 35; Canadian Forestry Service: Ottawa, ON, Canada, 1987. [Google Scholar]
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.V.; McAlpine, R.S.; Lynham, T.J.; Dube, D.E. The Canadian forest fire danger rating system: An overview. For. Chron. 1989, 65, 450–457. [Google Scholar] [CrossRef]
- Viegas, D.X.; Bovio, G.; Ferreira, A.; Nosenzo, A.; Sol, B. Comparative study of various methods of fire danger evaluation in southern Europe. Int. J. Wildland Fire 1999, 9, 235–246. [Google Scholar] [CrossRef]
- Moriondo, M.; Good, P.; Durao, R.; Bindi, M.; Giannakopoulos, C.; Corte-Real, J. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 2006, 31, 85–95. [Google Scholar] [CrossRef]
- Good, P.; Moriondo, M.; Giannakopoulos, C.; Bindi, M. The meteorological conditions associated with extreme fire risk in Italy and Greece: Relevance to climate model studies. Int. J. Wildland Fire 2008, 17, 155–165. [Google Scholar] [CrossRef]
- Rovithakis, A.; Grillakis, M.G.; Seiradakis, K.D.; Giannakopoulos, C.; Karali, A.; Field, R.D.; Lazaridis, M.; Voulgarakis, A. Future climate change impact on wildfire danger over the Mediterranean: The case of Greece. Environ. Res. Lett. 2022, 17, 045022. [Google Scholar] [CrossRef]
- Kapsomenakis, J.; Douvis, C.; Poupkou, A.; Zerefos, S.; Solomos, S.; Stavraka, T.; Melis, N.S.; Kyriakidis, E.; Kremlis, G.; Zerefos, C. Climate change threats to cultural and natural heritage UNESCO sites in the Mediterranean. Environ. Dev. Sustain. 2023, 25, 14519–14544. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service, Climate Data Store. Fire Danger Indices Historical Data from the Copernicus Emergency Management Service. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.0e89c522?tab=overview (accessed on 27 October 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on pressure levels from 1940 to present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 5 November 2023).
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Bøssing Christensen, O.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Kohler, U.; Kreuter, F. Data Analysis Using Stata, 3rd ed.; Stata Press: College Station, TX, USA, 2012. [Google Scholar]
- Karali, A.; Giannakopoulos, C.; Roussos, A.; Lemesios, G. Assessing Vulnerability of Greek Forests to Fires within the Context of Climate Change. In Proceedings of the AdaptToClimate International Conference; 2014. Available online: http://uest.ntua.gr/adapttoclimate/proceedings/full_paper/karali_et_al.pdf (accessed on 10 December 2023).
- Lemesios, G.; Karali, A.; Papadaskalopoulou, C.; Pitsari, S.; Malamis, D.; Ioannou, K.; Zachariou-Dodou, M.; Giannakopoulos, C.; Petrakis, M.; Loizidou, M. Future Vulnerability Assessment of Forest Fire Sector to Climate Change Impacts in Cyprus. In Proceedings of the AdaptToClimate International Conference; 2014. Available online: http://uest.ntua.gr/adapttoclimate/proceedings/full_paper/Lemesiosetal.pdf (accessed on 10 December 2023).
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire 2019, 2, 50. [Google Scholar] [CrossRef]
- Alloza, J.A.; Baeza, M.J.; De la Riva, J.; Duguy, B.; Echeverria, M.T.; Ibarra, P.; Llovet, J.; Perez-Cabello, F.; Rovira, P.; Vallejo, V.R. A model to evaluate the ecological vulnerability to forest fires in Mediterranean ecosystems. For. Ecol. Manag. 2006, 234, S203. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Burke, M. Global warming has increased global economic inequality. Proc. Natl Acad. Sci. USA 2019, 116, 9808–9813. [Google Scholar] [CrossRef]
- Callahan, C.W.; Mankin, J.S. National attribution of historical climate damages. Clim. Chang. 2022, 172, 40. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Chang. Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Mann, M.L.; Batllori, E.; Moritz, M.A.; Waller, E.K.; Berck, P.; Flint, A.L.; Flint, L.E.; Dolfi, E. Incorporating anthropogenic influences into fire probability models: Effects of human activity and climate change on fire activity in California. PLoS ONE 2016, 11, e0153589. [Google Scholar] [CrossRef] [PubMed]
- Michetti, M.; Pinar, M. Forest fires across Italian regions and implications for climate change: A panel data analysis. Environ. Resour. Econ. 2019, 72, 207–246. [Google Scholar] [CrossRef]
- Ntinopoulos, N.; Spiliotopoulos, M.; Vasiliades, L.; Mylopoulos, N. Contribution to the study of forest fires in semi-arid regions with the use of Canadian fire weather index application in Greece. Climate 2022, 10, 143. [Google Scholar] [CrossRef]
- Mullainathan, S.; Spiess, J. Machine learning: An applied econometric approach. J. Econ. Perspect. 2017, 31, 87–106. [Google Scholar] [CrossRef]
Vulnerability Attributes | … | ||||
---|---|---|---|---|---|
Weights | |||||
Regions | … | ||||
… | |||||
… | |||||
… | … | … | … | … | … |
… |
Vulnerability Types 1 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical VP2 | Economic VE | Social VS | Socioeconomic VSE | Density VPD | Physical VP1 | |||||||||||||
2000–2010 | 2011–2022 | 2000–2010 | 2011–2022 | 2000–2010 | 2011–2022 | η = 0 | η = 1 | η = 2 | η = 3 | 2000–2010 | 2011–2022 | 2000–2010 | 2011–2022 | |||||
Regions | 2000–2010 | 2011–2022 | 2000–2010 | 2011–2022 | 2000–2010 | 2011–2022 | 2000–2010 | 2011–2022 | ||||||||||
Eastern Maced & Thrace | 0.080 | 0.152 | 0.185 | 0.462 | 0.148 | 0.331 | 0.177 | 0.498 | 0.190 | 0.658 | 0.202 | 0.848 | 0.214 | 0.929 | 0.019 | 0.025 | 0.119 | 0.370 |
Central Maced | 0.002 | 0.032 | 0.011 | 0.044 | 0.002 | 0.030 | 0.049 | 0.174 | 0.052 | 0.214 | 0.054 | 0.262 | 0.054 | 0.273 | 0.017 | 0.027 | 0.030 | 0.144 |
Western Maced | 0.100 | 0.028 | 0.252 | 0.172 | 0.245 | 0.158 | 0.113 | 0.048 | 0.103 | 0.049 | 0.094 | 0.056 | 0.085 | 0.052 | 0.006 | 0.001 | 0.086 | 0.055 |
Epirus | 0.145 | 0.038 | 0.356 | 0.204 | 0.289 | 0.148 | 0.200 | 0.096 | 0.215 | 0.138 | 0.230 | 0.190 | 0.245 | 0.217 | 0.017 | 0.003 | 0.128 | 0.073 |
Thessaly | 0.147 | 0.047 | 0.248 | 0.152 | 0.199 | 0.111 | 0.315 | 0.179 | 0.318 | 0.222 | 0.320 | 0.273 | 0.321 | 0.290 | 0.049 | 0.011 | 0.211 | 0.144 |
Central Greece | 0.273 | 0.381 | 0.439 | 0.889 | 0.526 | 0.917 | 0.419 | 0.919 | 0.337 | 0.892 | 0.272 | 0.864 | 0.219 | 0.769 | 0.068 | 0.053 | 0.427 | 0.945 |
Ionian Islands | 0.454 | 0.361 | 0.273 | 0.378 | 0.344 | 0.332 | 0.087 | 0.117 | 0.068 | 0.123 | 0.053 | 0.135 | 0.041 | 0.124 | 0.040 | 0.019 | 0.094 | 0.116 |
Western Greece | 0.667 | 0.139 | 0.744 | 0.289 | 0.764 | 0.210 | 0.857 | 0.337 | 0.868 | 0.424 | 0.878 | 0.529 | 0.887 | 0.569 | 0.265 | 0.027 | 0.864 | 0.266 |
Peloponnese | 0.458 | 0.240 | 0.800 | 0.663 | 0.797 | 0.578 | 0.830 | 0.681 | 0.792 | 0.737 | 0.755 | 0.794 | 0.718 | 0.752 | 0.130 | 0.036 | 0.747 | 0.612 |
Attica | 0.519 | 0.855 | 0.010 | 0.047 | 0.023 | 0.064 | 0.110 | 0.385 | 0.059 | 0.250 | 0.031 | 0.161 | 0.016 | 0.088 | 1.000 | 1.000 | 0.184 | 0.567 |
North Aegean | 0.489 | 0.289 | 0.830 | 0.620 | 0.631 | 0.471 | 0.324 | 0.215 | 0.325 | 0.277 | 0.325 | 0.358 | 0.326 | 0.398 | 0.046 | 0.014 | 0.194 | 0.166 |
South Aegean | 0.241 | 0.153 | 0.150 | 0.206 | 0.287 | 0.222 | 0.077 | 0.102 | 0.051 | 0.086 | 0.033 | 0.075 | 0.021 | 0.057 | 0.031 | 0.013 | 0.122 | 0.118 |
Crete | 0.038 | 0.062 | 0.040 | 0.102 | 0.043 | 0.079 | 0.029 | 0.100 | 0.027 | 0.115 | 0.025 | 0.135 | 0.023 | 0.134 | 0.009 | 0.011 | 0.025 | 0.088 |
- Legend: Most vulnerable; 2nd most; vulnerable; 3rd most vulnerable; Least vulnerable.
Characteristic | Region | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Attica | Central Greece | Central Macedonia | Crete | E. Macedonia & Thrace | Epirus | Ionian Islands | North Aegean | Peloponnese | South Aegean | Thessaly | W. Greece | W. Macedonia | Greece | |
Summer temp (°C) | 25.6 | 23.5 | 24.20 | 24.1 | 22.7 | 21.8 | 23.7 | 24.3 | 23.6 | 25.0 | 23.9 | 23.6 | 21.3 | 23.3 |
Summer prec. (mm) | 35.8 | 92.5 | 139.5 | 15.8 | 143.5 | 110.4 | 32.3 | 9.8 | 59.1 | 3.1 | 112.2 | 82.9 | 120.0 | 102.4 |
Spring prec. (mm) | 111.6 | 200.0 | 206.2 | 102.0 | 228.1 | 308.7 | 173.8 | 154.9 | 168.4 | 92.6 | 209.9 | 251.5 | 210.6 | 209.6 |
High forests & forest lands cover (%) 1 | 50.9 | 74.75 | 63.57 | 50.06 | 65.76 | 54.55 | 55.25 | 64.78 | 55.88 | 61.48 | 82.07 | 58.64 | 63.57 | 61.48 |
N100 2 | 2.13 | 3.87 | 0.83 | 0.91 | 1.52 | 0.83 | 2.08 | 0.86 | 4.21 | 0.69 | 1.48 | 1.35 | 0.87 | 20.65 |
N50 | 3.13 | 5.91 | 1.65 | 1.61 | 2.22 | 1.61 | 3.96 | 1.13 | 6.70 | 1.22 | 2.82 | 2.48 | 1.30 | 34.13 |
N10 | 8.61 | 17.04 | 6.0 | 5.39 | 9.22 | 7.13 | 13.8 | 3.0 | 18.0 | 3.91 | 10.78 | 10.04 | 6.30 | 114.04 |
Area burned N100 (ha) | 2105.41 | 3859.67 | 416.59 | 195.28 | 1233.99 | 490.08 | 1148.48 | 1228.67 | 4213.56 | 821.41 | 887.29 | 4053.59 | 355.65 | 20,276.89 |
Area burned N50 (ha) | 2166.76 | 3992.73 | 464.73 | 236.54 | 1279.13 | 539.22 | 1268.03 | 1246.76 | 4369.71 | 851.41 | 965.71 | 4124.59 | 383.91 | 21,120.34 |
Area burned N10 (ha) | 2270.35 | 4213.05 | 549.03 | 302.01 | 1416.82 | 637.21 | 1451.15 | 1280.71 | 4584.71 | 904.05 | 1104.68 | 4266.94 | 469.92 | 22,619.53 |
GDP per capita (€ current prices) | 23.225 | 16.225 | 13.69 | 14.958 | 12.373 | 12.466 | 16.289 | 12.988 | 14.28 | 18.786 | 13.168 | 12.995 | 15.832 | 17.368 |
Area (ha) | 38,080 | 155,490 | 191,410 | 83,360 | 141,570 | 140,370 | 23,070 | 38,360 | 154,990 | 52,860 | 92,030 | 113,500 | 94,510 | 1,319,510 |
Dependent Variable | VP1 (BE) | VP1 (PA) | VSE, η = 1 (PA) | VSE, η = 1 (RE) 1 |
---|---|---|---|---|
Constant | 0.1819487 | 0.1820646 | 0.7478916 | 0.7530574 |
0.03 | 0.0 | 0.010 | 0.0014 | |
avg_dens | 0.0004962 | 0.0004953 | ||
0.013 | 0.01 | |||
avg_gdp | −0.00003 | −0.0000303 | ||
0.108 | 0.124 | |||
Wald χ2(1) | 8.68 | 10.22 | 2.58 | 2.36 |
P > χ2 | 0.013 | 0.0014 | 0.1083 | 0.1241 |
Fires/Year That Burned… | More Than 100 ha | More Than 50 ha | More Than 10 ha | |||
---|---|---|---|---|---|---|
Days per Year with… | FWI > 30 | FWI > 45 | FWI > 30 | FWI > 45 | FWI > 30 | FWI > 45 |
E. Macedonia & Thrace | 0.322 | 0.270 | 0.365 | 0.259 | 0.370 | 0.222 |
Central Macedonia | 0.594 | 0.506 | 0.653 | 0.710 | 0.681 | 0.686 |
Western Macedonia | 0.292 | 0.606 | 0.344 | 0.622 | 0.374 | 0.509 |
Epirus | 0.457 | 0.600 | 0.530 | 0.474 | 0.624 | 0.505 |
Thessaly | 0.255 | 0.408 | 0.329 | 0.450 | 0.478 | 0.469 |
North Aegean | 0.204 | 0.082 | 0.221 | 0.160 | 0.073 | 0.058 |
South Aegean | 0.407 | 0.460 | 0.372 | 0.518 | 0.186 | 0.212 |
Central Greece | 0.383 | 0.570 | 0.476 | 0.524 | 0.501 | 0.459 |
Western Greece | 0.434 | 0.652 | 0.505 | 0.572 | 0.607 | 0.494 |
Peloponnese | 0.594 | 0.563 | 0.690 | 0.688 | 0.736 | 0.741 |
Ionian Islands | 0.208 | 0.068 | 0.414 | 0.061 | 0.375 | 0.308 |
Crete | 0.024 | 0.173 | 0.061 | 0.232 | 0.240 | 0.364 |
Attica | 0.329 | 0.413 | 0.510 | 0.620 | 0.342 | 0.491 |
Greece | 0.561 | 0.772 | 0.652 | 0.709 | 0.686 | 0.552 |
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
N100 | 20.6 | 19.175 | 1.0 | 78.0 |
N50 | 34.1 | 27.501 | 6.0 | 120.0 |
N10 | 114.0 | 64.056 | 36.0 | 321.0 |
tsum | 23.29 | 0.7067 | 22.24 | 25.014 |
psum | 102.42 | 42.52 | 37.518 | 224.436 |
tspr | 12.26 | 0.778 | 10.89 | 14.296 |
pspr | 209.55 | 34.482 | 147.659 | 268.986 |
Dependent Variable | N10 (GPR) | N50 (GPR) | N100 (PR) |
---|---|---|---|
tsum | 0.2049 | 0.4941 | 0.2227 |
0.071 | 0.023 | 0.0 | |
psum | −0.0065 | −0.006 | −0.0086 |
0.0 | 0.015 | 0.0 | |
pspr | −0.0033 | −0.0023 | −0.0067 |
0.096 | 0.466 | 0.0 | |
Constant | 1.2315 | −6.99 | |
0.659 | 0.187 | ||
Wald χ2(3) | 35.92 | 17.48 | 4844.8 |
Pseudo | 0.46 | 0.64 | 0.30 |
MNF Est. | 105.4 | 30.3 | 18.1 |
MNF data (Table 6) | 114 | 34.1 | 20.6 |
2031–2060 RCP 4.5 | 190.387 (67.01%) | 72.5404 (112.73%) | 39.6955 (92.7%) |
2071–2100 RCP 4.5 | 218.535 (91.7%) | 97.783 (186.75%) | 47.2403 (129.32%) |
2031–2060 RCP 8.5 | 210.161 (84.35%) | 89.9841 (163.88%) | 44.9298 (118.11%) |
2071–2100 RCP 8.5 | 394.921 (246.42%) | 344.548 (910.41%) | 95.4483 (363.34%) |
Variable | Panel Data | |||
---|---|---|---|---|
Fixed Effects 2 13 Regions | PA Estimator 3 13 Regions | ZINB 4 13 Regions | Fixed Effects 2 9 Regions | |
tsum | 0.3839 | 0.0544 | 0.0537 | 0.5052 |
0.0 | 0.0 | 0.0 | 0.0 | |
psum | −0.0071 | −0.0048 | −0.0045 | −0.0041 |
0.01 | 0.007 | 0.016 | 0.063 | |
pspr | −0.0061 | −0.0027 | −0.0027 | −0.0061 |
0.0 | 0.003 | 0.05 | 0.001 | |
Constant | −7.2102 | −9.9985 | ||
0.003 | 0.0 | |||
Wald χ2(3) | 61.45 | 12.95 | 37.81 | 23.0 |
0.338 | ||||
0.049 | ||||
MNF Est | 1.23 | 1.54 | 1.56 | 1.70 |
MNF Data | 1.59 | 1.59 | 1.59 | 1.84 |
2031–2060 RCP4.5 | 1.846 (16.09%) | 1.73 (9.03%) | 1.74 (9.61%) | 2.6 (41.22%) |
2071–2100 RCP4.5 | 2.404 (51.18%) | 1.82 (14.4%) | 1.83 (14.95%) | 3.64 (97.95%) |
2031–2060 RCP8.5 | 2.231 (40.29%) | 1.79 (12.8%) | 1.80 (13.35%) | 3.31 (79.99%) |
2071–2100 RCP8.5 | 6.951 (337.162%) | 2.25 (41.31%) | 2.25 (41.28%) | 13.67 (643.17%) |
Region | Attica | Central Greece | Central Macedonia | Crete | E. Macedonia & Thrace | North Aegean | Peloponnese | Western Greece | Western Macedonia |
---|---|---|---|---|---|---|---|---|---|
Est. Meth. | GPR | PR | PR | ZIPR | ZINB | ZIPR | PR | PR | ZINB |
Dep. Var. | N100 | N100 | N50 | N50 | N50 | N50 | N100 | N50 | N50 |
tsum | 0.4878 | 0.1242 | 0.6039 | 0.63524 | 0.04691 | 0.07767 | 0.16103 | 0.09753 | 0.152441 |
0.035 | 0.0 | 0.05 | 0.01 | 0.0 | 0.001 | 0.0 | 0.0 | 0.018 | |
psum | −0.00956 | −0.01409 | −0.029586 | ||||||
0.02 | 0.0 | 0.040 | |||||||
pspr | −0.00993 | −0.00404 | −0.0073 | −0.00687 | −0.01198 | −0.00998 | −0.00574 | ||
0.029 | 0.095 | 0.077 | 0.111 | 0.01 | 0.0 | 0.012 | |||
Constant | −10.746 | −12.77 | |||||||
0.072 | 0.014 | ||||||||
Wald | 8.92 | 210.4 | 23.28 | 12.3 | 274.52 | 61.58 | 6.31 | ||
Prob > | 0.011 | 0.0 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.047 | ||
Pseudo | 0.11 | 0.16 | 0.14 | 0.10 | 0.19 | 0.20 | 0.07 | 0.49 | |
LR | 11.57 | 15.44 | |||||||
Prob > | 0.0031 | 0.001 | |||||||
MNF Est. | 2.13 | 3.4 | 1.4 | 2.28 | 2.21 | 1.47 | 3.59 | 2.35 | 0.74 |
MNF Smpl. | 1.91 | 3.8 | 1.6 | 2.04 | 2.09 | 1.13 | 4.21 | 2.48 | 1.3 |
2031–2060 RCP4.5 | 2.78 (45.73%) | 5.39 (41.82%) | 2.73 (70.45%) | 1.83 (−10.54%) | 3.08 (47.43%) | 1.303 (15.34%) | 5.98 (42.16%) | 2.42 (−2.46%) | 1.87 (43.54%) |
2071–2100 RCP4.5 | 4.02 (110.48%) | 6.08 (59.9%) | 4.1 (156.15%) | 2 (−1.95%) | 3.16 (51.29%) | 1.53 (35.56%) | 7.61 (80.93%) | 2.75 (11.08%) | 1.96 (50.84%) |
2031–2060 RCP8.5 | 3.71 (94.29%) | 6.04 (59.06%) | 3.48 (117.45%) | 1.97 (−3.61%) | 3.15 (50.58%) | 1.5 (32.52%) | 7.33 (74.1%) | 2.72 (9.61%) | 1.8 (38.23%) |
2071–2100 RCP8.5 | 12.82 (571.1%) | 9.5 (149.85%) | 18.47 (1054.61%) | 2.69 (31.93%) | 3.55 (69.79%) | 1.97 (74.13%) | 15.1 (258.65%) | 4.12 (66.18%) | 4.11 (216.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xepapadeas, P.; Douvis, K.; Kapsomenakis, I.; Xepapadeas, A.; Zerefos, C. Assessing the Link between Wildfires, Vulnerability, and Climate Change: Insights from the Regions of Greece. Sustainability 2024, 16, 4822. https://doi.org/10.3390/su16114822
Xepapadeas P, Douvis K, Kapsomenakis I, Xepapadeas A, Zerefos C. Assessing the Link between Wildfires, Vulnerability, and Climate Change: Insights from the Regions of Greece. Sustainability. 2024; 16(11):4822. https://doi.org/10.3390/su16114822
Chicago/Turabian StyleXepapadeas, Petros, Kostas Douvis, Ioannis Kapsomenakis, Anastasios Xepapadeas, and Christos Zerefos. 2024. "Assessing the Link between Wildfires, Vulnerability, and Climate Change: Insights from the Regions of Greece" Sustainability 16, no. 11: 4822. https://doi.org/10.3390/su16114822
APA StyleXepapadeas, P., Douvis, K., Kapsomenakis, I., Xepapadeas, A., & Zerefos, C. (2024). Assessing the Link between Wildfires, Vulnerability, and Climate Change: Insights from the Regions of Greece. Sustainability, 16(11), 4822. https://doi.org/10.3390/su16114822