Bioinspired Coastal Barriers: A Preliminary Laboratory Study on the Hydraulic Performances of Shapes Inspired by Marine Organisms
Abstract
:1. Introduction
2. Design Inspiration and Implementation
3. Experimental Setup and Data Analysis
3.1. Model Prototyping
3.2. Key Hydraulic Parameters, Instrumentation, and Model Setup
3.3. Wave Conditions
3.4. Performance Analysis
4. Results
4.1. Wave Transmission
4.2. Wave Reflection
4.3. Wave Dissipation
5. Discussion
5.1. Usefulness and Application of the Technology
5.2. Additional Hydrodynamic Considerations
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Core Writing Team; Lee, H.; Romero, J. (Eds.) IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Rosskopf, C.M.; Mucerino, L.; Montella, R.; Contestabile, P. Monitoring and modelling coastal vulnerability and mitigation proposal for an archaeological site (Kaulonia, Southern Italy). Sustainability 2018, 10, 2017. [Google Scholar] [CrossRef]
- Bridges, T.; Henn, R.; Komlos, S.; Scerno, D.; Wamsley, T.; White, K. Coastal Risk Reduction and Resilience: Using the Full Array of Measures; US Army Corps of Engineers Civil Works Directorate: Washington, DC, USA, 2013. [Google Scholar]
- Unguendoli, S.; Biolchi, L.G.; Aguzzi, M.; Pillai, U.P.A.; Alessandri, J.; Valentini, A. A modeling application of integrated nature based solutions (NBS) for coastal erosion and flooding mitigation in the Emilia-Romagna coastline (Northeast Italy). Sci. Total Environ. 2023, 867, 161357. [Google Scholar] [CrossRef] [PubMed]
- Haggi, A. Report on underwater excavation at the Phoenician Harbour, Atlit, Israel. Int. J. Naut. Archaeol. 2010, 39, 278–285. [Google Scholar] [CrossRef]
- Franco, L. Ancient Mediterranean harbours: A heritage to preserve. Ocean Coast. Manag. 1996, 30, 115–151. [Google Scholar] [CrossRef]
- ISOPE; Sharifahmadian, A. Numerical Models for Submerged Breakwaters: Coastal Hydrodynamics and Morphodynamics; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Hawkins, S.J.; Burcharth, H.F.; Zanuttigh, B.; Lamberti, A. Environmental Design Guidelines for Low Crested Coastal Structures; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Saengsupavanich, C.; Ariffin, E.H.; Yun, L.S.; Pereira, D.A. Environmental impact of submerged and emerged breakwaters. Heliyon 2022, 8, e12626. [Google Scholar] [CrossRef] [PubMed]
- Perricone, V.; Mutalipassi, M.; Mele, A.; Buono, M.; Vicinanza, D.; Contestabile, P. Nature-based and bioinspired solutions for coastal protection: An overview among key ecosystems and a promising pathway for new functional and sustainable designs. ICES J. Mar. Sci. 2023, 80, 1218–1239. [Google Scholar] [CrossRef]
- Browder, A.E.; Dean, R.G.; Chen, R. Performance of a submerged breakwater for shore protection. In Coastal Engineering 1996; ASCE Library: Reston, VA, USA, 1996; pp. 2312–2323. [Google Scholar]
- THESEUS Project. Available online: https://cordis.europa.eu/project/id/672398 (accessed on 27 May 2024).
- DELOS Project. Available online: https://cordis.europa.eu/project/id/EVK3-CT-2000-00041 (accessed on 27 May 2024).
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van Wesenbeeck, B.; Pontee, N.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, N.; Vicinanza, D.; Contestabile, P. Determining Wave Transmission over Rubble-Mound Breakwaters: Assessment of Existing Formulae through Benchmark Testing. Water 2023, 15, 1111. [Google Scholar] [CrossRef]
- Postacchini, M.; Russo, A.; Carniel, S.; Brocchini, M. Assessing the hydro-morphodynamic response of a beach protected by detached, impermeable, submerged breakwaters: A numerical approach. J. Coast. Res. 2016, 32, 590–602. [Google Scholar]
- Duarte Nemes, D.; Fabián Criado-Sudau, F.; Nicolás Gallo, M. Beach morphodynamic response to a submerged reef. Water 2019, 11, 340. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Turner, I.L. Shoreline response to submerged structures: A review. Coast. Eng. 2006, 53, 65–79. [Google Scholar] [CrossRef]
- Hur, D.S.; Lee, W.D.; Cho, W.C. Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet. Ocean Eng. 2012, 44, 100–116. [Google Scholar] [CrossRef]
- Singhvi, A.; Luijendijk, A.P.; van Oudenhoven, A.P. The grey–green spectrum: A review of coastal protection interventions. J. Environ. Manag. 2022, 311, 114824. [Google Scholar] [CrossRef] [PubMed]
- European Commission, Directorate-General for Research and Innovation. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’: (Full Version); Publications Office: Luxembourg, 2015. [Google Scholar]
- Schoonees, T.; Mancheño, A.G.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Moosavi, S. Ecological coastal protection: Pathways to living shorelines. Procedia Eng. 2017, 196, 930–938. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-based solutions to address global societal challenges. IUCN Gland. 2016, 97, 2016–2036. [Google Scholar]
- Scheres, B.; Schüttrumpf, H. Nature-Based Solutions in Coastal Research–A New Challenge for Coastal Engineers? In Proceedings of the APAC 2019: 10th International Conference on Asian and Pacific Coasts, Hanoi, Vietnam, 25–28 September 2019; Springer: Singapore, 2019; pp. 1383–1389. [Google Scholar]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed]
- Stachew, E.; Houette, T.; Gruber, P. Root Systems Research for Bioinspired Resilient Design: A Concept Framework for Foundation and Coastal Engineering. Front. Robot. AI 2021, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Levy, N.; Berman, O.; Yuval, M.; Loya, Y.; Treibitz, T.; Tarazi, E.; Levy, O. Emerging 3D technologies for future reformation of coral reefs: Enhancing biodiversity using biomimetic structures based on designs by nature. Sci. Total Environ. 2022, 830, 154749. [Google Scholar] [CrossRef]
- Reef Design Lab. Available online: https://www.reefdesignlab.com/ (accessed on 27 May 2024).
- 3DPARE. Available online: https://www.giteco.unican.es/proyectos/3dpare/index.html (accessed on 27 May 2024).
- Bulleri, F.; Chapman, M.G. The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 2010, 47, 26–35. [Google Scholar] [CrossRef]
- McLachlan, A.; Defeo, O.; Short, A.D. Characterising sandy beaches into major types and states: Implications for ecologists and managers. Estuar. Coast. Shelf Sci. 2018, 215, 152–160. [Google Scholar] [CrossRef]
- Barbier, E.B. Progress and challenges in valuing coastal and marine ecosystem services. Rev. Environ. Econ. Policy 2012, 6, 1–19. [Google Scholar] [CrossRef]
- Ondiviela, B.; Losada, I.J.; Lara, J.L.; Maza, M.; Galván, C.; Bouma, T.J.; van Belzen, J. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 2014, 87, 158–168. [Google Scholar] [CrossRef]
- Cavallaro, L.; Viviano, A.; Paratore, G.; Foti, E. Experiments on surface waves interacting with flexible aquatic vegetation. Ocean Sci. J. 2018, 53, 461–474. [Google Scholar] [CrossRef]
- Stratigaki, V.; Manca, E.; Prinos, P.; Losada, I.J.; Lara, J.L.; Sclavo, M.; Sánchez-Arcilla, A. Large-scale experiments on wave propagation over Posidonia oceanica. J. Hydraul. Res. 2011, 49 (Suppl. S1), 31–43. [Google Scholar] [CrossRef]
- Larkum, A.W.; Orth, R.J.; Duarte, C.M.; Koch, E.W.; Ackerman, J.D.; Verduin, J.; Keulen, M.V. Fluid dynamics in seagrass ecology—From molecules to ecosystems. In Seagrasses: Biology, Ecologyand Conservation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 193–225. [Google Scholar]
- Fonseca, M.S.; Cahalan, J.A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar. Coast. Shelf Sci. 1992, 35, 565–576. [Google Scholar] [CrossRef]
- Augustin, L.N.; Irish, J.L.; Lynett, P. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Eng. 2009, 56, 332–340. [Google Scholar] [CrossRef]
- John, B.M.; Shirlal, K.G.; Rao, S.; Rajasekaran, C. Effect of artificial seagrass on wave attenuation and wave run-up. Int. J. Ocean. Clim. Syst. 2016, 7, 14–19. [Google Scholar] [CrossRef]
- Perrin, W.F.; Würsig, B.; Thewissen, J.G.M. (Eds.) Encyclopedia of Marine Mammals; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Jung, S. Swimming, flying, and diving behaviors from a unified 2D potential model. Sci. Rep. 2021, 11, 15984. [Google Scholar] [CrossRef]
- Klopman, G.; Meer, J.W.V.D. Random wave measurements in front of reflective structures. J. Waterw. Port Coast. Ocean. Eng. 1999, 125, 39–45. [Google Scholar] [CrossRef]
- Mansard, E.P.; Funke, E.R. The measurement of incident and reflected spectra using a least squares method. In Proceedings of the 17th International Conference on Coastal Engineering, Sydney, Australia, 23–28 March 1980; ASCE Library: Reston, VA, USA, 1980; pp. 154–172. [Google Scholar]
- Guo, Y.C.; Mohapatra, S.C.; Soares, C.G. Wave energy dissipation of a submerged horizontal flexible porous membrane under oblique wave interaction. Appl. Ocean Res. 2020, 94, 101948. [Google Scholar] [CrossRef]
- Jordan, P.; Fröhle, P. Bridging the gap between coastal engineering and nature conservation? A review of coastal ecosystems as nature-based solutions for coastal protection. J. Coast. Conserv. 2022, 26, 4. [Google Scholar] [CrossRef]
- Morris, R.; Strain, E.M.; Konlechner, T.M.; Fest, B.J.; Kennedy, D.M.; Arndt, S.K.; Swearer, S.E. Developing a nature-based coastal defence strategy for Australia. Aust. J. Civ. Eng. 2019, 17, 167–176. [Google Scholar] [CrossRef]
- Jenkins, C.; Russell, K. Scott’s Point Rock Fillets–Fish Friendly Erosion Mitigation; NSW Department of Primary Industries: Bathurst, Australia, 2017.
- Taylor, M. Options for Stabilising Riparian Estuarine Zones. In Proceedings of the NSW Coastal Conference, Port Stephens, Batemans Bay, Australia, 6–8 November 2017. [Google Scholar]
- Davis, J.L.; Takacs, R.L.; Schnabel, R. Evaluating ecological impacts of living shorelines and shoreline habitat elements: An example from the upper western Chesapeake Bay. In Management, Policy, Science, and Engineering of Nonstructural Erosion Control in the Chesapeake Bay; 2006; p. 55. Available online: https://www.vims.edu/cbnerr/_docs/ctp_docs/ls_docs/06_LS_Full_Proceed.pdf#page=71 (accessed on 27 May 2024).
- Damiani, L.; Petrillo, A.F.; Saponieri, A. Beach Dewatering Systems: Modelling coastal ground-water flow. In Proceedings of the 33RD IAHR Congress Water Engineering for a Sustainable Environment 2009, Vancouver, BC, Canada, 9–14 August 2009; pp. 7304–7311. [Google Scholar]
- Ciavola, P.; Vicinanza, D.; Aristodemo, F.; Contestabile, P. Large-scale morphodynamic experiments on a beach drainage system. J. Hydraul. Res. 2011, 49, 523–528. [Google Scholar] [CrossRef]
a | b | c | d | |
---|---|---|---|---|
C-Type | 27 | 250 | 27 | 50 |
L-Type | 30 | 250 | 20 | 50 |
T-Type | 27 | 250 | 18 | 50 |
HT-Type | 53 | 250 | 18 | 50 |
Regular “Poor” | Regular “Mild” | Regular “Extreme” | ||||||
---|---|---|---|---|---|---|---|---|
H | T | s | H | T | s | H | T | s |
[m] | [s] | [-] | [m] | [s] | [-] | [m] | [s] | [-] |
0.02 | 0.8 | 0.02 | 0.07 | 1.4 | 0.02 | 0.15 | 2 | 0.02 |
0.04 | 1 | 0.03 | 0.1 | 1.6 | 0.03 | 0.15 | 1.4 | 0.05 |
0.05 | 1.2 | 0.02 | 0.12 | 1.8 | 0.02 | 0.19 | 1.6 | 0.05 |
0.05 | 0.8 | 0.05 | 0.07 | 1 | 0.04 | 0.2 | 1.4 | 0.07 |
0.06 | 0.8 | 0.06 | 0.11 | 1.2 | 0.05 | 0.19 | 1.8 | 0.04 |
0.1 | 1 | 0.06 | 0.19 | 2 | 0.03 | |||
0.14 | 1.2 | 0.06 | 0.2 | 1.8 | 0.04 | |||
0.2 | 2 | 0.03 |
Irregular “Storm” | ||
---|---|---|
Hm0 | Tp0,2 | sp |
[m] | [s] | [-] |
0.07 | 0.8 | 0.07 |
0.1 | 1.2 | 0.04 |
0.1 | 1.6 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perricone, V.; Contestabile, P.; Mele, A.; Hassanpour, N.; Vicinanza, D.; Buono, M. Bioinspired Coastal Barriers: A Preliminary Laboratory Study on the Hydraulic Performances of Shapes Inspired by Marine Organisms. Sustainability 2024, 16, 4839. https://doi.org/10.3390/su16114839
Perricone V, Contestabile P, Mele A, Hassanpour N, Vicinanza D, Buono M. Bioinspired Coastal Barriers: A Preliminary Laboratory Study on the Hydraulic Performances of Shapes Inspired by Marine Organisms. Sustainability. 2024; 16(11):4839. https://doi.org/10.3390/su16114839
Chicago/Turabian StylePerricone, Valentina, Pasquale Contestabile, Antonio Mele, Nasrin Hassanpour, Diego Vicinanza, and Mario Buono. 2024. "Bioinspired Coastal Barriers: A Preliminary Laboratory Study on the Hydraulic Performances of Shapes Inspired by Marine Organisms" Sustainability 16, no. 11: 4839. https://doi.org/10.3390/su16114839
APA StylePerricone, V., Contestabile, P., Mele, A., Hassanpour, N., Vicinanza, D., & Buono, M. (2024). Bioinspired Coastal Barriers: A Preliminary Laboratory Study on the Hydraulic Performances of Shapes Inspired by Marine Organisms. Sustainability, 16(11), 4839. https://doi.org/10.3390/su16114839