Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Night Sky Quality
3.2. Electromagnetic Spectrum and Correlated Color Temperature
3.3. Power Quality in Dimming
3.4. Lighting Design Proposal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peña-García, A.; Sędziwy, A. Optimizing lighting of rural roads and protected areas with white light: A compromise among light pollution, energy savings, and visibility. Leukos 2019, 16, 147–156. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 2011, 92, 2714–2722. [Google Scholar] [CrossRef] [PubMed]
- Kayumov, D.; Bulatbaev, F.; Kayumova, I.; Breido, J.; Bulatbayeva, Y. An engineering approach for the qualitative assessment of the luminous flux of led lamps. Int. J. Energy A Clean Environ. 2023, 24, 31–43. [Google Scholar] [CrossRef]
- Yoomak, S.; Jettanasen, C.; Ngaopitakkul, A.; Bunjongjit, S.; Leelajindakrairerk, M. Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system. Energy Build. 2018, 159, 542–557. [Google Scholar] [CrossRef]
- Baig, M.S. Carbon Footprint and Economic Assessment of LED Bulbs Recycling. In Environmental Assessment of Recycled Waste; Environmental Footprints and Eco-Design of Products and Processes; Springer: Singapore, 2023; pp. 29–41. [Google Scholar]
- Djuretic, A.; Kostic, M. Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting. Energy 2018, 157, 367–378. [Google Scholar] [CrossRef]
- Yoomak, S.; Ngaopitakkul, A. Optimisation of lighting quality and energy efficiency of LED luminaires in roadway lighting systems on different road surfaces. Sustain. Cities Soc. 2018, 38, 333–347. [Google Scholar] [CrossRef]
- Cao, M.; Xu, M.; Yin, M. Understanding light pollution: Recent advances on its health threats and regulations. J. Environ. Sci. 2023, 127, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Hermoso-Orzáez, M.J.; Rojas-Sola, J.I.; Gago-Calderón, A. Electrical consequences of large-scale replacement of metal halide by LED luminaires. Light. Res. Technol. 2018, 50, 282–293. [Google Scholar] [CrossRef]
- Khanna, V.K. Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Uddin, S.; Shareef, H.; Mohamed, A. Power quality performance of energy-efficient low-wattage LED lamps. Measurement 2013, 46, 3783–3795. [Google Scholar] [CrossRef]
- Jin, H.; Jin, S.; Chen, L.; Cen, S.; Yuan, K. Research on the lighting performance of LED street lights with different color temperatures. IEEE Photonics 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Fontoynont, M. LED lighting, ultra-low-power lighting schemes for new lighting applications. Comptes Rendus Phys. 2018, 19, 159–168. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [PubMed]
- Campisi, D.; Gitto, S.; Morea, D. Economic feasibility of energy efficiency improvements in street lighting systems in Rome. J. Clean. Prod. 2018, 175, 190–198. [Google Scholar] [CrossRef]
- Ryu, G.-H.; Ryu, H.-Y. Analysis of the temperature dependence of phosphor conversion efficiency in white light-emitting diodes. J. Opt. Soc. Korea 2015, 19, 311–316. [Google Scholar] [CrossRef]
- Rabaza, O.; Gómez-Lorente, D.; Pérez-Ocón, F.; Peña-García, A. A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis. Energy 2016, 107, 831–842. [Google Scholar] [CrossRef]
- Moo, C.S.; Chen, Y.J.; Yang, W.C. An efficient driver for dimmable LED lighting. IEEE Trans. Power Electron. 2012, 27, 4613–4618. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, J.H. Effect of LED lighting illuminance and correlated color temperature on working memory. Int. J. Opt. 2020, 2020, 3250364. [Google Scholar] [CrossRef]
- De, K. A review of solid state white light emitting diode and its potentials for replacing conventional lighting technologies in developing countries. Appl. Phys. Res. 2014, 6, 95. [Google Scholar]
- Khan, M.F.; Reddy, S.; Swanson, A.G. Replacement of HPS luminaires with LED luminaires for the lighting requirements of an outdoor electrical substation. In Proceedings of the IEEE Sustainable Smart Lighting World Conference & Expo (LS18), Mumbai, India, 8–10 June 2023. [Google Scholar]
- Bhattacharya, S.; Majumder, S.; Roy, S. Modelling of the effects of luminaire installation geometries and other factors on road illumination system photometric parameters and energy efficiency. World J. Eng. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, X.; Ren, Q.; Du, L.; Pei, M.; Hai, O. Design efficient energy transfer Ca2Al2SiO7: Bi3+, Eu3+ phosphors by cationic substitution for full-spectrum W-LED lighting. Ceram. Int. 2023, 49, 18852–18860. [Google Scholar] [CrossRef]
- Hossain, N. Advances and significances of nanoparticles in semiconductor applications—A review. Results Eng. 2023, 19, 101347. [Google Scholar] [CrossRef]
- Kim, Y.P.; Kim, Y.S.; Ko, S.C. Thermal characteristics and fabrication of silicon sub-mount based LED package. Microelectron. Reliab. 2016, 56, 53–60. [Google Scholar] [CrossRef]
- Bieber, C. LED Light Emission as a Function of Thermal Conditions. In Proceedings of the Twenty-Fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 16–20 March 2008. [Google Scholar]
- Chen, H.T.; Tan, S.C.; Hui, S.Y. Color variation reduction of gan-based white light-emitting diodes via peak-wavelength stabilization. IEEE Trans. Power Electron. 2014, 29, 3709–3719. [Google Scholar] [CrossRef]
- Seunarine, K.; Haymoor, Z.; Spence, M. Recent advances and perspectives in photometry in the era of LED lighting. Meas. Sci. Technol. 2023, 35, 021001. [Google Scholar]
- Chen, Y.; Ma, T.; Ye, Z.; Li, Z. Effect of illuminance and colour temperature of LED lighting on asthenopia during reading. Ophthalmic Physiol. Opt. 2023, 43, 73–82. [Google Scholar] [CrossRef]
- Avci, A.N.; Memikoğlu, İ. Effects of LED lighting on visual comfort with respect to the reading task. Int. J. Electr. Comput. Eng. 2017, 11, 974–978. [Google Scholar]
- Commission Internationale de L’Eclairage/International Commission on Illumination/Internationale Beleuchtungskommission. CIE 015:2018 Colorimetry; International Commission on Illumination: Vienna, Austria, 2018. [Google Scholar]
- Zhao, H. White light emitting devices with high color rendering index and electrically adjustable color temperature. Appl. Phys. Lett. 2023, 123, 151901. [Google Scholar] [CrossRef]
- Satvaya, P.; Mazumdar, S. Performance analysis of a variable flux and CCT-based outdoor LED luminaire. J. Opt. 2023, 52, 1305–1317. [Google Scholar] [CrossRef]
- Jiang, H.; Huang, M.; Yang, F.S.; Liu, Y. Evaluation of Color Rendering Index for LED and Fluorescent Light Sources. Appl. Mech. Mater. 2015, 731, 22–26. [Google Scholar] [CrossRef]
- Schledermann, K.M.; Hansen, T.S.; Bjørner, T. Perceived visual comfort and usefulness of a circadian lighting system implemented at a nursing home. Multimed. Tools Appl. 2023, 82, 5253–5269. [Google Scholar] [CrossRef]
- Fu, X.; Feng, D.; Jiang, X.; Wu, T. The effect of correlated color temperature and illumination level of LED lighting on visual comfort during sustained attention activities. Sustainability 2023, 15, 3826. [Google Scholar] [CrossRef]
- Trop, T.; Shoshany Tavory, S.; Portnov, B.A. Factors affecting pedestrians’ perceptions of safety, comfort, and pleasantness induced by public space lighting: A systematic literature review. Environ. Behav. 2023, 55, 3–46. [Google Scholar] [CrossRef]
- Najjar, G.A.; Akkad, K.; Almahdaly, A.H. Classification of lighting design aspects in relation to employees’ productivity in Saudi Arabia. Sustainability 2023, 15, 3614. [Google Scholar] [CrossRef]
- Chen, R.; Tsai, M.C.; Tsay, Y.S. Effect of color temperature and illuminance on psychology, physiology, and productivity: An experimental study. Energies 2022, 15, 4477. [Google Scholar] [CrossRef]
- Azman, M.I.; Dalimin, M.N.; Mohamed, M.; Abu Bakar, M.F. A brief overview on light pollution. IOP Conf. Ser. Earth Environ. Sci. 2019, 269, 012014. [Google Scholar] [CrossRef]
- Barentine, J.C.; Wallner, S.; Kocifaj, M. Towards future challenges in the measurement and modelling of night sky brightness. Mon. Not. R. Astron. Soc. 2023, 527, 5553–5558. [Google Scholar] [CrossRef]
- Angeloni, R.; Uchima-Tamayo, J.; Arancibia, M. Toward a Spectrophotometric Characterization of the Chilean Night Sky. A First Quantitative Assessment of ALAN across the Coquimbo Region. Astron. J. 2024, 167, 67. [Google Scholar] [CrossRef]
- Kocifaj, M.; Wallner, S.; Barentine, J.C. Measuring and monitoring light pollution: Current approaches and challenges. Science 2023, 380, 1121–1124. [Google Scholar] [CrossRef]
- Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters. J. Quant. Spectrosc. Radiat. Transf. 2018, 210, 91–100. [Google Scholar] [CrossRef]
- Kolláth, Z.; Jechow, A. Natural variation of the colour and spectrum of the night sky observed at a potential european reference site for dark skies. J. Quant. Spectrosc. Radiat. Transf. 2023, 303, 108592. [Google Scholar] [CrossRef]
- Commission Internationale de L’Eclairage/International Commission on Illumination/Internationale Beleuchtungskommission (CIE). CIE 126-1997 Guidelines for Minimizing Sky Glow; International Commission on Illumination: Vienna, Austria, 1997. [Google Scholar]
- Pothukuchi, K. City Light or Star Bright: City light or star bright: A review of urban light pollution, impacts, and planning implications. J. Plan. Lit. 2021, 36, 155–169. [Google Scholar] [CrossRef]
- Gaston, K.J.; Davies, T.W.; Bennie, J.; Hopkins, J. REVIEW: Reducing the ecological consequences of night-time light pollution: Options and developments. J. Appl. Ecol. 2012, 49, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Laforge, A.; Pauwels, J.; Faure, B.; Bas, Y.; Kerbiriou, C.; Fonderflick, J.; Besnard, A. Reducing light pollution improves connectivity for bats in urban landscapes. Landsc. Ecol. 2019, 34, 793–809. [Google Scholar] [CrossRef]
- Luginbuhl, C.B.; Boley, P.A.; Davis, D.R. The impact of light source spectral power distribution on sky glow. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 21–26. [Google Scholar] [CrossRef]
- Commission Internationale de L’Eclairage/International Commission on Illumination/Internationale Beleuchtungskommission (CIE). Test Method for LED Lamps, LED Luminaires and LED Modules|CIE S025; International Commission on Illumination: Vienna, Austria, 2019. [Google Scholar]
- Illuminating Engineering Society of North America (IES). Approved Method: Optical and Electrical Measurements of Solid-State Lighting Products ANSI/IES LM-79-19; Illuminating Engineering Society of North America: New York, NY, USA, 2019. [Google Scholar]
- Shahzad, K.; Čuček, L.; Sagir, M.; Ali, N.; Rashid, M.; Nazir, R.; Nizami, A.; Al-Turaif, H.A.; Ismail, I.M.I. An ecological feasibility study for developing sustainable street lighting system. J. Clean. Prod. 2018, 175, 683–695. [Google Scholar] [CrossRef]
- Coleman, J.L.; Lum, D.W.H.; Yao, X. From sodium-vapour to LEDs: How an outdoor lighting retrofit affects insects in Singapore. J. Urban Ecol. 2023, 9, juad009. [Google Scholar] [CrossRef]
- Lee, K.E.M.; Lum, W.H.D.; Coleman, J.L. Ecological impacts of the LED-streetlight retrofit on insectivorous bats in Singapore. PLoS ONE 2021, 16, e0247900. [Google Scholar] [CrossRef]
- Altermatt, F.; Ebert, D. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol. Lett. 2016, 12, 20160111. [Google Scholar] [CrossRef]
- Bolliger, J.; Hennet, T.; Wermelinger, B.; Blum, S.; Haller, J.; Obrist, M.K. Low impact of two LED colors on nocturnal insect abundance and bat activity in a peri-urban environment. J. Insect Conserv. 2020, 24, 625–635. [Google Scholar] [CrossRef]
- Bolliger, J.; Haller, J.; Wermelinger, B.; Blum, S.; Obrist, M.K. Contrasting effects of street light shapes and LED color temperatures on nocturnal insects and bats. Basic Appl. Ecol. 2022, 64, 1–12. [Google Scholar] [CrossRef]
- Falcón, J.; Torriglia, A.; Attia, D.; Viénot, F.; Gronfier, C.; Behar-Cohen, F.; Martinsons, C.; Hicks, D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front. Neurosci. 2020, 14, 602796. [Google Scholar] [CrossRef]
- Briolat, E.S.; Gaston, K.J.; Bennie, J.; Rosenfeld, E.J.; Troscianko, J. Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators. Nat. Commun. 2021, 12, 4163. [Google Scholar] [CrossRef]
- Marangoni, L.F.B.; Davies, T.; Smyth, T.; Rodríguez, A.; Hamann, M.; Duarte, C.; Pendoley, K.; Berge, J.; Maggi, E.; Levy, O. Impacts of artificial light at night in marine ecosystems—A review. Glob. Chang. Biol. 2022, 28, 5346–5367. [Google Scholar] [CrossRef]
- Singhal, R.K.; Chauhan, J.; Jatav, H.S.; Rajput, V.D.; Singh, G.S.; Bose, B. Artificial night light alters ecosystem services provided by biotic components. Biol. Futur. 2021, 72, 169–185. [Google Scholar] [CrossRef]
- Burt, C.S.; Kelly, J.F.; Trankina, G.E.; Silva, C.L.; Khalighifar, A.; Jenkins-Smith, H.C.; Fox, A.S.; Fristrup, K.M.; Horton, K.G. The effects of light pollution on migratory animal behavior. Trends Ecol. Evol. 2023, 38, 355–368. [Google Scholar] [CrossRef]
- McLaren, J.D.; Buler, J.J.; Schreckengost, T.; Smolinsky, J.A.; Boone, M.; Emiel van Loon, E.; Dawson, D.K.; Walters, E.L. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 2018, 21, 356–364. [Google Scholar] [CrossRef]
- Mansfield, K.P. Architectural lighting design: A research review over 50 years. Light. Res. Technol. 2018, 50, 80–97. [Google Scholar] [CrossRef]
- Brusil, C.; Arcos, H.; Espin, F.; Velasquez, C. Analysis of harmonic distortion of led luminaires connected to utility grid. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020. [Google Scholar]
- Rymarczyk, T.; Korzeniewska, E.; Wantuch, A.; Olesiak, M. Effect of LED Lighting on Selected Quality Parameters of Electricity. Sensors 2023, 23, 1582. [Google Scholar] [CrossRef]
- Swami, H.; Jain, A.K.; Azad, I.H.; Meena, N. Evaluation of input harmonic characteristics of LED lamps connected to utility grid. In Proceedings of the 2018 IEEMA Engineer Infinite Conference, New Delhi, India, 3–14 March 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018. [Google Scholar]
- Velásquez, C.; Castro, M.A.; Rodríguez, F.; Espin, F.; Falconi, N. Optimization of the Calibration Interval of a Luminous Flux Measurement System in HID and SSL Lamps Using a Gray Model Approximation. In Proceedings of the ETCM 2021—5th Ecuador Technical Chapters Meeting, Quito, Ecuador, 12–15 October 2021. [Google Scholar]
- Pinto, M.F.; Mendonça, T.R.F.; Duque, C.A.; Braga, H.A.C. Street lighting system for power quality monitoring and energy-efficient illumination control. In Proceedings of the IEEE International Symposium on Industrial Electronics, Santa Clara, CA, USA, 8–10 June 2016. [Google Scholar]
- Albu, H.; Beu, D.; Rus, T.; Moldovan, R.; Domniţa, F.; Vilčeková, S. Life cycle assessment of LED luminaire and impact on lighting installation—A case study. Alex. Eng. J. 2023, 80, 282–293. [Google Scholar] [CrossRef]
- Velásquez, C.; Espín, F.; Rodríguez, F.; Castro, M.A. Heat transfer modeling in road lighting LED luminaire. In Proceedings of the 11th International Conference On Mathematical Modeling in Physical Sciences, Belgrade, Serbia, 5–8 September 2022. [Google Scholar]
- McCamy, C.S. Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 1992, 17, 142–144. [Google Scholar] [CrossRef]
- NOM-031-ENER-2019; Eficiencia Energética Para Luminarios con Led Para Iluminación de Vialidades y Áreas Exteriores Públicas. Especificaciones y Métodos de Prueba. Comité Consultivo Nacional de Normalización para la Preservación y Uso Racional de los Recursos Energéticos; Secretaría de Gobernación de México-Diario Oficial de la Federación: Mexico City, Mexico, 2019.
- Valetti, L.; Floris, F.; Pellegrino, A. Renovation of Public Lighting Systems in Cultural Landscapes: Lighting and Energy Performance and Their Impact on Nightscapes. Energies 2021, 14, 509. [Google Scholar] [CrossRef]
- Iacomussi, P.; Radis, M.; Rossi, G.; Rossi, L. Visual Comfort with LED Lighting. In Proceedings of the 6th International Building Physics Conference, Torino, Italy, 14–17 June 2015. [Google Scholar]
- IEC 61000-2-2:2002; Electromagnetic Compatibility (EMC)—Part 2-2: Environment—Compatibility Levels for Low-Frequency Conducted Disturbances and Signalling in Public Low-Voltage Power Supply Systems. International Electrotechnical Commission: Geneva, Switzerland, 2002.
- IEC 61000-3-2:2018; Electromagnetic Compatibility (EMC)—Part 3-2: Limits—Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A per Phase). International Electrotechnical Commission: Geneva, Switzerland, 2018.
- Iacomussi, P.; Valpreda, F. Lighting a smart society. In Proceedings of the XXII International Symposium on High Power Laser Systems and Applications, Frascati, Italy, 9–12 October 2018. [Google Scholar]
Street Arrangement | Lighting Performance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stage | CCT [K] | Luminous Flux (Luminaire) [lm] | Luminaire Wattage [W] | Efficiency [lm/W] | Height [m] | Overhang [m] | Boom Angle [°] | Boom Length [m] | Lav [cd/m2] | U0 | Ul | TI [%] |
≥0.30 | ≥0.35 | ≥0.40 | ≤15 | |||||||||
Actual | 6051 | 4672 | 44.0 | 106.2 | 8.250 | −0.650 | 15.0 | 0.5 | 0.38 | 0.37 | 0.4 | 8 |
Proposed | 2960 | 2960 | 23.9 | 123.8 | 7.482 | −0.650 | 0.0 | 0.5 | 0.3 | 0.47 | 0.43 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velásquez, C.; Espín, F.; Castro, M.Á.; Rodríguez, F. Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas. Sustainability 2024, 16, 5113. https://doi.org/10.3390/su16125113
Velásquez C, Espín F, Castro MÁ, Rodríguez F. Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas. Sustainability. 2024; 16(12):5113. https://doi.org/10.3390/su16125113
Chicago/Turabian StyleVelásquez, Carlos, Francisco Espín, María Ángeles Castro, and Francisco Rodríguez. 2024. "Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas" Sustainability 16, no. 12: 5113. https://doi.org/10.3390/su16125113
APA StyleVelásquez, C., Espín, F., Castro, M. Á., & Rodríguez, F. (2024). Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas. Sustainability, 16(12), 5113. https://doi.org/10.3390/su16125113