Groundwater and Dissolved Gases Geochemistry in the Pesaro-Urbino Province (Northern Marche, Central Italy) as a Tool for Seismic Surveillance and Sustainability
Abstract
:1. Introduction
2. Geological and Seismo-Tectonic Background
3. Materials and Methods
4. Results
4.1. Water Chemical and Isotopic Composition
4.2. Dissolved Gases Chemical and Isotopic Composition
5. Discussion
5.1. Local Meteoric Water Line and Water Recharge Origin
5.2. Processes Governing the Water Composition
5.2.1. Ca-HCO3 and Ca-HCO3(SO4) Waters
5.2.2. Ca-SO4 Waters
5.2.3. Na-HCO3 Waters
- 2CH2O (organic matter) + SO42− + 2H+ → 2CO2 + H2S + 2H2O;
- 2CH2O (organic matter) + SO42− → H2S + 2HCO3−;
- CH4 + SO42− → HS− + HCO3− + H2O.
5.2.4. Na-Cl and Waters with Mixed Composition
5.3. Origin of Dissolved Gases
6. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Center for Research on the Epidemiology of Disasters (CRED). Economic Losses, Poverty, and Disasters (1998–2017); CRED: Bengaluru, India; Institute of Health and Society (IRSS): Newcastle, UK; The United Nations Office for Disaster Risk Reduction (UNISDR): Geneva, Switzerland, 2018. [Google Scholar]
- Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Vannucchi, A.; Falciani, F.; Cenni, N. Assetto Tettonico e Potenzialità Sismogenetica dell’Appennino Tosco-Umbro-Marchigiano; Università di Siena: Siena, Italy, 2018. [Google Scholar]
- Calamita, F.; Coltorti, M.; Piccinini, D.; Pierantoni, P.P.; Pizzi, A.; Ripepe, M.; Scisciani, V.; Turco, E. Quaternary faults and seismicity in the Umbro-Marchean Apennines (Central Italy): Evidence from the 1997 Colfiorito earthquake. J. Geodyn. 2000, 29, 245–264. [Google Scholar] [CrossRef]
- De Luca, G.; Di Carlo, G.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci. Rep. 2018, 18, 15982. [Google Scholar] [CrossRef] [PubMed]
- DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A Compilation of Potential Sources for Earthquakes Than M 5.5 in Italy and Surrounding Areas; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Sezione di Catania, Italy, 2021. [Google Scholar]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Italian Parametric Earthquake Catalogue (CPTI15), Version 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Sezione di Catania, Italy, 2022. [Google Scholar]
- Monachesi, G.; Caselli, V.; Vasapollo, N. Historical earthquakes in Central Italy: Case histories in the Marche area. Tectonophysics 1991, 193, 95–107. [Google Scholar] [CrossRef]
- King, C.-Y. Gas geochemistry applied to earthquake prediction: An overview. J. Geophys. Res. 1986, 91, 12269–12281. [Google Scholar] [CrossRef]
- Thomas, D. Geochemical precursors to seismic activity. Pure Appl. Geophys. 1988, 126, 241–266. [Google Scholar] [CrossRef]
- King, C.-Y.; Basler, D.; Presser, T.S.; Evans, W.C.; Minissale, A. In search of earthquake related hydrologic and chemical changes along Hayward fault. Appl. Geochem. 1994, 9, 83–91. [Google Scholar] [CrossRef]
- Italiano, F.; Caracausi, A.; Favara, R.; Innocenzi, P.; Martinelli, G. Geochemical monitoring of cold waters during seismicity: Implications for earthquake-induced modifications in shallow aquifers. Terr. Atmos. Ocean. Sci. 2005, 16, 709–729. [Google Scholar] [CrossRef]
- Italiano, F.; Martinelli, G.; Nuccio, P.M. Anomalies of mantle-derived helium during the 1997–1998 seismic swarm of Umbria-Marche, Italy. Geophys. Res. Lett. 2001, 28, 839–842. [Google Scholar] [CrossRef]
- Claesson, L.; Skelton, A.; Graham, C.; Dieti, C.; Mörth, C.-M.; Torssander, P.; Kockum, I. Hydrogeochemical changes before and after a major earthquake. Geology 2004, 32, 641–644. [Google Scholar] [CrossRef]
- Cicerone, R.D.; Ebel, J.E.; Britton, J. A systematic compilation of earthquake precursors. Tectonophysics 2009, 476, 371–396. [Google Scholar] [CrossRef]
- Skelton, A.; Andrén, M.; Kristmannsdóttir, H.; Stockmann, G.; Mörth, C.-M.; Sveinbjörnsdòttir, A.; Jónsson, S.; Sturkell, E.; Guorúnardóttir, H.-R.; Hjartarson, H.; et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci. 2014, 7, 752. [Google Scholar] [CrossRef]
- Skelton, A.; Claesson, L.; Wästeby, N.; Andrén, M.; Stockmann, G.; Sturkell, E.; Mörth, C.-M.; Stefansson, A.; Tollefsen, E.; Siegmund, H.; et al. Hydrochemical changes before and after earthquakes based on long-term measurements of multiple parameters at two sites in Northern Iceland—A review. J. Geophys. Res. Solid Earth 2019, 124, 2702–2720. [Google Scholar] [CrossRef]
- Manga, M.; Wang, C.-Y.; Shirzaei, M. Increased stream discharge after 3 September 2016 Mw 5.8 Pawnce, Oklahoma earthquake. Geophys. Res. Lett. 2016, 43, 11588–11594. [Google Scholar] [CrossRef]
- Sano, Y.; Takahata, N.; Kagoshima, T.; Shibata, T.; Onoue, T.; Zhao, D. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan. Sci. Rep. 2016, 6, 37939. [Google Scholar] [CrossRef]
- Barberio, M.D.; Barbieri, M.; Billi, A.; Doglioni, C.; Petitta, M. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Sci. Rep. 2017, 7, 11735. [Google Scholar] [CrossRef] [PubMed]
- Barberio, M.D.; Gori, F.; Barbieri, M.; Billi, A.; Caracausi, A.; De Luca, G.; Franchini, S.; Petitta, M.; Doglioni, C. New observations in Central Italy of groundwater responses to worldwide seismicity. Sci. Rep. 2020, 10, 17850. [Google Scholar] [CrossRef] [PubMed]
- Hosono, T.; Yamada, C.; Shibata, T.; Tawara, Y.; Wang, C.-Y.; Manga, M.; Rahman, A.T.M.S.; Shimada, J. Coseismic groundwater drawdown along crustal ruptures during the 2016 Mw 7.0 Kumamoto earthquake. Water Resour. Res. 2019, 55, 5891–5903. [Google Scholar] [CrossRef]
- Hosono, T.; Yamada, C.; Manga, M.; Wang, C.-Y.; Tanimizu, M. Stable isotopes show that earthquakes enhance permeability and release water from mountains. Nat. Commun. 2020, 11, 2776. [Google Scholar] [CrossRef] [PubMed]
- Hosono, T.; Masaki, Y. Post-seismic hydrochemical changes in regional groundwater flow systems in response to the 2016 Mw 7.0 Kumamoto earthquake. J. Hydrol. 2020, 580, 124340. [Google Scholar] [CrossRef]
- Barbieri, M.; Franchini, S.; Barberio, M.D.; Billi, A.; Boschetti, T.; Giansante, L.; Gori, F.; Jónsson, S.; Petitta, M.; Skelton, A.; et al. Changes in groundwater trace element concentrations before seismic and volcanic activities in Iceland during 2010–2018. Sci. Total Environ. 2021, 793, 14863. [Google Scholar] [CrossRef]
- Franchini, F.; Agostini, S.; Barberio, M.D.; Barbieri, M.; Billi, A.; Boschetti, T.; Pennisi, M.; Petitta, M. HydroQuakes, central Apennines: Towards a hydrogeochemical monitoring network for seismic precursors and the hydro-seismo-sensitivity of boron. J. Hydrol. 2021, 598, 125754. [Google Scholar] [CrossRef]
- Lee, H.A.; Hamm, S.-Y.; Woo, N.C. Groundwater monitoring network for earthquake surveillance and prediction. Econ. Environ. Geol. 2017, 50, 401–414. [Google Scholar]
- Lee, H.A.; Hamm, S.-Y.; Woo, N.C. Pilot-scale groundwater monitoring network for earthquake surveillance and forecasting research in Korea. Water 2021, 13, 2448. [Google Scholar] [CrossRef]
- Martinelli, G. Previous, current and future trends in research into earthquake precursors in geofluids. Geosciences 2020, 10, 189. [Google Scholar] [CrossRef]
- Martinelli, G.; Tamburello, G. Geological and geophysical factors constraining the occurrence of earthquake precursors in geofluids. Front. Earth Sci. 2020, 8, 596050. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Manga, M. Water and Earthquakes; Springer Nature: Heidelberg, Germany, 2021. [Google Scholar]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Fault on-off versus coseismic fluid reactions. Geosci. Front. 2014, 5, 767–780. [Google Scholar] [CrossRef]
- Manga, M.; Rowland, J.C. Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes. Geofluids 2009, 9, 237–250. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Manga, M. New streams and springs after the 2014 Mw 6.0 South Napa earthquake. Nat. Commun. 2015, 6, 7597. [Google Scholar] [CrossRef] [PubMed]
- Yasuoka, Y.; Igarashi, G.; Ishikawa, T.; Tokanami, S.; Shinogi, M. Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration. Appl. Geochem. 2006, 21, 1064–1072. [Google Scholar] [CrossRef]
- Fu, C.C.; Yang, T.F.; Tsai, M.C.; Lee, L.C.; Liu, T.K.; Walia, V.; Chen, C.H.; Chang, W.Y.; Kumar, A.; Lai, T.H. Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan. Chem. Geol. 2017, 469, 163–175. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Koizumi, N.; Takahashi, M.; Matsumoto, N.; Sato, T. Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M9.0). Earth Planets Space 2006, 58, 173–179. [Google Scholar] [CrossRef]
- Sil, S.; Freymueller, J.T. Water level changes in Fairbanks, Alaska, due to the great Sumatra-Andaman earthquake. Earth Planets Space 2006, 651, 232–241. [Google Scholar] [CrossRef]
- Nanni, T.; Vivalda, P. The aquifers of the Umbria-Marche Adriatic region: Relationships between structural setting and groundwater chemistry. Boll.-Soc. Geol. Ital. 2005, 124, 523–542. [Google Scholar]
- Bison, P.; Mariotti, C.; Pieroni, M.; Piovesana, F.; Priante, M.; Pugi, S. Valutazione e protezione delle risorse idriche sotterranee nella dorsale carbonatica Mt. Catria-Mt. Nerone (Marche). Ing. Geol. Degli Acquiferi 1995, 5, 13–24. [Google Scholar]
- Capaccioni, B.; Didero, M.; Paletta, C.; Salvadori, P. Hydrogeochemistry of groundwaters from carbonate formations with basal gypsiferous layers: An example from the Mt. Catria-Mt. Nerone ridge (Northern Apennines, Italy). J. Hydrol. 2001, 253, 14–26. [Google Scholar] [CrossRef]
- Capaccioni, B.; Nesci, O.; Sacchi, E.M.; Savelli, D.; Troiani, F. Caratterizzazione idrochimica di un acquifero superficiale: Il caso della circolazione idrica nei corpi di frana nella dorsale carbonatica di M. Pietralata—M. Paganuccio (Appennino Marchigiano). Il Quat. 2004, 17, 585–595. [Google Scholar]
- Centamore, E.; Chiocchini, M.; Deiana, G.; Micarelli, A.; Pieuriccini, U. Contributo alla conoscenza del Giurassico dell’Appennino umbro-marchigiano. Studi Geol. Camerti 1971, 1, 7–89. [Google Scholar]
- Centamore, E.; Deiana, G.; Micarelli, A.; Potetti, M. Il Trias-Paleogene delle Marche. In Studi Geologici Camerti, Volume Speciale “La Geologia delle Marche”; Università di Camerino: Camerino, Italy, 1986; pp. 7–27. [Google Scholar]
- Centamore, E.; Fumanti, F.; Nisio, S. The Central-Northern Apennines geological evolution from Triassic to Neogene time. Boll. Soc. Geol. Ital. 2002, 121, 181–197. [Google Scholar]
- Centamore, E.; Micarelli, A. Stratigrafia. In L’Ambiente Fisico delle Marche; Minetti, A., Nanni, T., Perilli, F., Polonara, L., Principi, M., Eds.; Regione Marche, Assessorato Urbanistica e Ambiente: Ancona, Italy, 1991; pp. 5–58. [Google Scholar]
- Capuano, N. Note Illustrative della Carta Geologica d’Italia alla Scala 1:50.000 “Foglio 279—Urbino”; Servizio Geologico d’Italia: Roma, Italy, 2009. [Google Scholar]
- Capuano, N.; Tonelli, G.; Veneri, F. Ricostruzione dell’evoluzione paleogeografica del margine appennino nell’area feltresca (Marche settentrionali) durante il Pliocene Inferiore e Medio. Mem. Soc. Geol. Ital. 1986, 35, 163–170. [Google Scholar]
- Cresta, S.; Monechi, S.; Parisi, G. Mesozoic-Cenozoic Stratigraphy in the Umbria-Marche Area. In Memorie Descrittive della Carta Geologica d’Italia; Servizio Geologico d’Italia: Roma, Italy, 1989; Volume 39. [Google Scholar]
- Barchi, M.; Minelli, G.; Pialli, G. The CROP 03 profile: A synthesis of results on deep structures of the Northern Apennines. Mem. Soc. Geol. Ital. 1998, 52, 383–400. [Google Scholar]
- Barchi, M.; Landuzzi, A.; Minelli, G.; Pialli, G. Outer Northern Apennines. In Anatomy of an Orogen, the Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 215–254. [Google Scholar]
- Conti, P.; Cornamusini, G.; Carmignani, L. An outline of the geology of the Northern Apennines (Italy), with geological map 1:250,000 scale. Ital. J. Geosci. 2020, 139, 149–194. [Google Scholar] [CrossRef]
- Meyer, L.; Menichetti, M.; Nesci, O.; Savelli, D. Morphotectonic approach to the drainage analysis in the North Marche region, central Italy. Quat. Int. 2003, 101–102, 157–167. [Google Scholar] [CrossRef]
- Lavecchia, G.; Boncio, P.; Creati, N. A lithospheric-scale seismogenic thrust in Central Italy. J. Geodyn. 2003, 36, 79–94. [Google Scholar] [CrossRef]
- Lavecchia, G.; Barchi, M.; Brozzetti, F.; Menichetti, M. Sismicità e tettonica nell’area umbro-marchigiana. Boll. Soc. Geol. Ital. 1994, 113, 483–500. [Google Scholar]
- Boncio, P.; Brozzetti, F.; Lavecchia, G. Architecture and seismotectonics of regional low-angle normal fault zone in Central Italy. Tectonics 2000, 19, 1038–1055. [Google Scholar] [CrossRef]
- Boncio, P.; Brozzetti, F.; Ponziani, F.; Barchi, M.; Lavecchia, G.; Pialli, G. Seismicity and extensional tectonics in the Northern Umbria-Marche Apennines. Mem. Soc. Geol. Ital. 1998, 52, 539–555. [Google Scholar]
- De Donatis, M.; Alberti, M.; Cipicchia, M.; Munoz-Guerrero, N.; Pappafico, G.F.; Susini, S. Workflow of digital field mapping and drone-aided survey for the identification and characterization of capable faults: The case of normal fault system in the Mt. Nerone area (Northern Apennines, Italy). Int. J. Geo-Inf. 2020, 9, 616. [Google Scholar] [CrossRef]
- Mazzoli, S.; Machiavelli, C.; Ascione, A. The 2013 Marche off-shore earthquakes: New insights into the active tectonic setting of the outer-northern Apennines. J. Geol. Soc. 2014, 171, 457–460. [Google Scholar] [CrossRef]
- Mazzoli, S.; Pierantoni, P.P.; Borraccini, F.; Paltrinieri, W.; Deiana, G. Geometry, segmentation pattern and displacement variations along a major Apennine thrust zone, central Italy. J. Struct. Geol. 2005, 27, 1940–1953. [Google Scholar] [CrossRef]
- Mazzoli, S.; Santini, S.; Macchiavelli, C.; Ascione, A. Active tectonics of the outer Northern Apennines: Adriatic vs. Po Plain seismicity. J. Geodyn. 2015, 84, 62–76. [Google Scholar] [CrossRef]
- Pierantoni, P.P.; Chicco, J.; Costa, M.; Invernizzi, C. Plio-Quaternary transpressive tectonics: A key factor in the structural evolution of the outer Apennine-Adriatic system, Italy. J. Geol. Soc. 2019, 176, 1273–1283. [Google Scholar] [CrossRef]
- Maesano, F.E.; Buttinelli, M.; Maffucci, R.; Toscani, G.; Basili, R.; Bonini, L.; Burrato, P.; Fedorik, J.; Fracassi, U.; Panara, Y.; et al. Buried alive: Imaging of the 9 November 2022, M2 5.5 earthquake source on the Offshore Adriatic blind thrust front of the Northern Apennines (Italy). Geophys. Res. Lett. 2023, 50, e2022GL102299. [Google Scholar] [CrossRef]
- Pezzo, G.; Billi, A.; Carminati, E.; De Gori, P.; Devoti, R.; Lucente, F.P.; Palano, M.; Petracchini, L.; Serpelloni, E.; Tavani, S.; et al. Seismic source of identification of the 9 November 2022 Mw 5.5 offshore Adriatic Sea (Italy) earthquake from GNSS data and aftershock relocation. Sci. Rep. 2023, 13, 11474. [Google Scholar] [CrossRef] [PubMed]
- Anelli, L.; Gorza, M.; Pieri, M.; Riva, M. Subsurface well data in the northern Apennines (Italy). Mem. Soc. Geol. Ital. 1994, 48, 461–471. [Google Scholar]
- Martinis, B.; Pieri, M. Alcune notizie sulla formazione evaporitica del Triassico superiore nell’Italia centrale e meridionale. Mem. Soc. Geol. Ital. 1964, 4, 649–678. [Google Scholar]
- Barchi, M.R.; De Feyter, A.; Magnani, M.B.; Minelli, G.; Pialli, G.; Sotera, B.M. The structural style of the Umbria-Marche fold and thrust belt. Mem. Soc. Geol. Ital. 1998, 52, 557–578. [Google Scholar]
- VIDEPI Project. 2009. Available online: https://www.videpi.com (accessed on 1 March 2024).
- Donatelli, U.; Tramontana, M. Platform-to-basin facies transition and tectono-sedimentary processes in the Jurassic deposits of the Furlo area (Umbria-Marche Apennines, Italy). Facies 2013, 60, 541–560. [Google Scholar] [CrossRef]
- Donatelli, U.; Tramontana, M. Jurassic carbonate depositional systems of the Mt. Catria-Mt. Acuto area (Umbria-Marche Apennines, Italy). Ital. J. Geosci. 2012, 131, 3–18. [Google Scholar] [CrossRef]
- Santantonio, M. Facies associations and evolution of pelagic carbonate platform/basin systems: Examples from the Italian Jurassic. Sedimentology 1993, 40, 1039–1067. [Google Scholar] [CrossRef]
- Ricci Lucchi, F. The Oligocene to recent foreland basins of the Northern Apennines. In Foreland Basins; Allen, P.A., Homewood, P., Eds.; Special Publications; International Association of Sedimentologists: Belgium, Brussel; Blackwell Scientific Publications: Oxford, UK, 1986; Volume 8, pp. 105–139. [Google Scholar]
- Argnani, A.; Ricci Lucchi, F. Tertiary silicoclastic turbidite systems of the Northern Apennines. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 327–350. [Google Scholar]
- Tavernelli, E. Structural evolution of a foreland fold-and-thrust belt: The Umbria-Marche Apennines, Italy. J. Struct. Geol. 1997, 19, 523–534. [Google Scholar] [CrossRef]
- Nesci, O.; Savelli, D.; Troiani, F. Evoluzione tardo quaternaria dell’area di foce del Fiume Metauro (Marche Settentrionali). In Collana dell’Autorità di Bacino della Basilicata, Proceedings of the Coste: Prevenire, Programmare, Pianificare Conference, Maratea, Italy, 15–17 May 2008; Autorità di Bacino della Basilicata: Potenza, Italy, 2008; Volume 9, pp. 443–451. [Google Scholar]
- Gallerini, G.; De Donatis, M. 3D modeling using geognostic data: The case of the low valley of the Foglia river (Italy). Comput. Geosci. 2009, 35, 146–164. [Google Scholar] [CrossRef]
- Taussi, M.; Borghi, W.; Gliaschera, M.; Renzulli, A. Defining the shallow geothermal heat-exchange potential for a lower fluvial plain of the central Apennines: The Metauro Valley (Marche region, Italy). Energies 2021, 14, 768. [Google Scholar] [CrossRef]
- Morelli, S.; Bonì, R.; Guidi, E.; De Donatis, M.; Pappafico, G.; Francioni, M. L’Alluvione delle Marche del 15 Settembre 2022, cause e conseguenze. In La Dinamica Fluviale. La Conoscenza del Fiume per la Pianificazione e la Salvaguardia del Territorio; Cencetti, C., Di Matteo, L., Eds.; Culture Territori Linguaggi, 2023; Volume 24, pp. 136–147. ISBN 9788894469783. [Google Scholar]
- Gröning, M.; Lutz, H.O.; Roller-Lutz, Z.; Kralik, M.; Gourcy, L.; Pöltenstein, L. A simple rain collector preventing water re-evaporation dedicated for, δ.1.8.O.; δ2H analysis of cumulative precipitation samples. J. Hydrol. 2012, 448–449, 195–200. [Google Scholar] [CrossRef]
- Tassi, F.; Garofalo, P.S.; Turchetti, F.; De Santis, D.; Capecchiacci, F.; Vaselli, O.; Cabassi, J.; Venturi, S.; Vannini, S. Insights into the Porretta Terme (northern Apennines, Italy) hydrothermal system revealed by geochemical data on presently discharging thermal waters and paleofluids. Environ. Geochem. Health 2022, 44, 1925–1948. [Google Scholar] [CrossRef] [PubMed]
- Vaselli, O.; Tassi, F.; Montegrossi, G.; Capaccioni, B.; Giannini, L. Sampling and analysis of volcanic gasses. Acta Vulcanol. 2006, 18, 65–76. [Google Scholar]
- Wilhelm, E.; Battino, R.; Wilcock, R.J. Low-pressure solubility of gasses in liquid waters. Chem. Rev. 1977, 77, 219–262. [Google Scholar] [CrossRef]
- Venturi, S.; Tassi, F.; Cabassi, J.; Gioli, B.; Baronti, S.; Vaselli, O.; Caponi, C.; Vagnoli, C.; Picchi, G.; Zaldei, A.; et al. Seasonal and diurnal variations of greenhouse gases in Florence (Italy): Inferring sources and sinks from carbon isotopic ratios. Sci. Total Environ. 2020, 698, 134245. [Google Scholar] [CrossRef]
- Toscani, L.; Venturelli, G.; Boschetti, T. Sulphide-bearing waters in Northern Apennines, Italy: General features and water-rock interaction. Appl. Geochem. 2001, 7, 195–216. [Google Scholar]
- Venturelli, G.; Boschetti, T.; Duchi, V. Na-carbonate waters of extreme composition: Possible origin and evolution. Geochem. J. 2003, 37, 351–366. [Google Scholar] [CrossRef]
- Nisi, B.; Vaselli, O.; Taussi, M.; Doveri, M.; Menichini, M.; Cabassi, J.; Raco, B.; Botteghi, S.; Mussi, M.; Masetti, G. Hydrogeochemical surveys of shallow coastal aquifers: A conceptual model to set-up a monitoring network and increase the resilience of a strategic groundwater system to climate change and anthropogenic pressure. Appl. Geochem. 2022, 142, 105305. [Google Scholar] [CrossRef]
- Taussi, M.; Gozzi, C.; Vaselli, O.; Cabassi, J.; Menichini, M.; Doveri, M.; Romei, M.; Ferretti, A.; Gambioli, A.; Nisi, B. Contamination assessment and temporal evolution of nitrates in the shallow aquifer of the Metauro River Plain (Adriatic Sea, Italy) after remediation actions. Int. J. Environ. Res. Public Health 2022, 19, 12231. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1979, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Tazioli, A.; Fronzi, D.; Palpacelli, S. Regional vs. local isotopic gradient: Insights and modeling from mid-mountain area in Central Italy. Groundwater 2024. [Google Scholar] [CrossRef] [PubMed]
- Longinelli, A.; Selmo, E. Isotopic composition of precipitation in Italy: A first overall map. J. Hydrol. 2003, 270, 75–88. [Google Scholar] [CrossRef]
- Giustini, F.; Brilli, M.; Patera, A. Mapping oxygen stable isotopes of precipitation in Italy. J. Hydrol. Reg. Stud. 2016, 8, 162–181. [Google Scholar] [CrossRef]
- Orecchia, C.; Giambastiani, B.M.S.; Greggio, N.; Campo, B.; Dinelli, E. Geochemical characterization of groundwater in the confined and unconfined aquifers of the Northern Italy. Appl. Sci. 2022, 12, 7944. [Google Scholar] [CrossRef]
- Raco, B.; Vivaldo, G.; Doveri, M.; Menichini, M.; Masetti, G.; Battaglini, R.; Irace, A.; Fioraso, G.; Marcelli, I.; Brussolo, E. Geochemical, geostatistical, and time series analysis techniques as a tool to achieve the Water Framework Directive goals: An example from Piedmont region (NW Italy). J. Geochem. Explor. 2021, 229, 106832. [Google Scholar] [CrossRef]
- Torres-Martínez, J.A.; Mora, A.; Mahlknecht, J.; Daesslé, L.W.; Cervantes-Avilés, P.A.; Ledesma-Ruiz, R. Estimation of nitrate pollution sources and transformations in groundwater of an intense livestock-agricultural area (Comarca, Lagunera), combining major ions, stable isotopes and MixSTAR model. Environ. Pollut. 2021, 269, 115445. [Google Scholar] [CrossRef] [PubMed]
- Abascal, E.; Gomez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Allègre, C.J.; Négrel, P. Chemical and physical denudation in the Amazon River Basin. Chem. Geol. 1997, 142, 141–173. [Google Scholar] [CrossRef]
- Frondini, F. Geochemistry of regional aquifers systems hosted by carbonate-evaporite formations in Umbria and Southern Tuscany (central Italy). Appl. Geochem. 2008, 23, 2091–2104. [Google Scholar] [CrossRef]
- Nanni, T.; Vivalda, P. Le acque sulfuree della regione marchigiana. Boll. Soc. Geol. Ital. 1999, 118, 585–599. [Google Scholar]
- Nanni, T.; Vivalda, P. Le acque salate dell’Avanfossa marchigiana: Origine, chimismo e caratteri strutturali delle zone di emergenza. Boll. Soc. Geol. Ital. 1999, 118, 191–215. [Google Scholar]
- Marini, L.; Ottonello, G.; Canepa, M.; Cipolli, F. Water-rock interaction in the Bisagno Valley (Genoa, Italy): Application of an inverse approach to model spring water chemistry. Geochim. Cosmochim. Acta 2000, 64, 2617–2635. [Google Scholar] [CrossRef]
- Venturelli, G.; Toscani, L.; Mucchino, C.; Voltolini, C. Study of water-rock interaction of spring waters in the north-Apennines. Ann. Chim. 2000, 90, 359–368. [Google Scholar]
- Dinelli, E.; Lucchini, F.; Mordenti, A.; Paganelli, L. Geochemistry of Oligocene-Miocene sandstones of the Northern Apennines (Italy) and evolution of geochemical features in relation to provenance changes. Sediment. Geol. 1999, 127, 193–207. [Google Scholar] [CrossRef]
- Vespasiano, G.; Cianflone, G.; Marini, L.; De Rosa, R.; Polemio, D.; Walraevens, K.; Vaselli, O.; Pizzino, L.; Cinti, D.; Capecchiacci, F.; et al. Hydrogeochemical and isotopic characterization of the Gioia Tauro coastal plain (Calabria—Southern Italy): A multidisciplinary approach for a focused management of vulnerable strategic systems. Sci. Total Environ. 2023, 862, 160694. [Google Scholar] [CrossRef] [PubMed]
- Leeman, W.P.; Sisson, V.B. Geochemistry of boron and its implications for crustal and mantle processes. In Boron: Mineralogy, Petrology and Geochemistry; Grew, E.S., Anovitz, L.M., Eds.; Review in Mineralogy; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 1996; Volume 33, pp. 645–707. [Google Scholar]
- Cortecci, G.; Calafato, A.; Boschetti, T. New chemical and isotopic data on the groundwater system of Bagno di Romagna, northern Apennines, Emilia-Romagna province, Italy. Miner. Petrog. Acta 1999, XLII, 89–101. [Google Scholar]
- Cerling, T.E.; Solomon, D.K.; Quade, J.; Bowman, J.R. On the isotopic composition of carbon in soil carbon dioxide. Geochim. Cosmochim. Acta 1991, 55, 3403–3405. [Google Scholar] [CrossRef]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Venturi, S.; Tassi, F.; Bicocchi, G.; Cabassi, J.; Capecchiacci, F.; Capasso, G.; Vaselli, O.; Ricci, A.; Grassa, F. Fractionation processes affecting the stable carbon isotope signature of thermal waters from hydrothermal/volcanic systems: The examples of Campi Flegrei and Vulcano Island (southern Italy). J. Volcanol. Geotherm. Res. 2017, 345, 46–57. [Google Scholar] [CrossRef]
- Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 2007, 96, 1–63. [Google Scholar]
- Conrad, R. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 2009, 1, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Merritt, D.A.; Hayes, J.M.; Des Marais, D.J. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry. J. Geophys. Res. 1995, 100D1, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, A.; Asensio-Ramos, M.; Meliàn, G.V.; Venturi, S.; Padròn, E.; Hernandez, P.A.; Pérez, N.M.; Tassi, F. Volatile organic compounds (VOCs) in solid waste landfill cover soil: Chemical and isotopic composition vs. degradation processes. Sci. Total Environ. 2020, 726, 138326. [Google Scholar] [CrossRef] [PubMed]
- Klintzsch, T.; Geisinger, H.; Wieland, A.; Langer, G.; Nehrke, G.; Bizic, B.; Gruele, M.; Lenhart, K.; Borsch, C.; Schroll, M.; et al. Stable carbon isotope signature of methane released from phytoplankton. Geophys. Res. Lett. 2023, 50, e2023GL103317. [Google Scholar] [CrossRef]
- Barbieri, M.; Boschetti, T.; Barberio, M.D.; Billi, A.; Franchini, S.; Iacumin, P.; Selmo, E.; Petitta, M. Tracing deep fluid source contribution to groundwater in an active seismic area (central Italy): A combined geothermometric and isotopic perspective. J. Hydrol. 2020, 582, 124495. [Google Scholar] [CrossRef]
- Chiodini, G.; Cardellini, C.; Di Luccio, F.; Selva, J.; Frondini, F.; Caliro, S.; Rosiello, A.; Beddini, G.; Ventura, G. Correlation between tectonic CO2 earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Sci. Adv. 2020, 6, eabc2938. [Google Scholar] [CrossRef] [PubMed]
- Bonfanti, P.; Genzano, N.; Heinicke, J.; Italiano, F.; Martinelli, G.; Pergola, N.; Telesca, L.; Tramutoli, V. Evidence of CO2-gas emission variations in the Central Apennines (Italy) during L’Aquila seismic sequence (March–April 2009). Boll. Geofis. Teor. Appl. 2012, 53, 147–169. [Google Scholar]
- Sciarra, A.; Cantucci, B.; Coltorti, M. Learning from soil gas change and isotopic signatures during 2012 Emilia seismic sequence. Sci. Rep. 2017, 7, 14187. [Google Scholar] [CrossRef] [PubMed]
ID | Location | East | North | Altitude (m) | δ18O-H2O | δ2H-H2O |
---|---|---|---|---|---|---|
P1 | Fano | 340518 | 4855368 | 14 | −7.96 ± 2.96 | −48.8 ± 18.7 |
P2 | Urbino | 309633 | 4843850 | 476 | −9.14 ± 2.91 | −55.5 ± 20.4 |
P3 | Serravalle di Carda | 287214 | 4824553 | 783 | −9.11 ± 2.47 | −54.4 ± 15.6 |
P4 | Mt. Nerone | 299038 | 4826393 | 1267 | −9.31 ± 1.28 | −53.9 ± 10.9 |
N | min | max | avg | median | Q1 | Q3 | s | |
---|---|---|---|---|---|---|---|---|
B (μg/L) | ||||||||
Autumn 2022 | 61 | 6 | 4010 | 377 | 49 | 23 | 239 | 808.2 |
Li (μg/L) | ||||||||
Spring 2022 | 82 | 0.5 | 420.5 | 27.9 | 8.8 | 2.5 | 25.4 | 55.8 |
Autumn 2022 | 62 | 0.5 | 331.9 | 28.1 | 5.7 | 1.4 | 26.4 | 59.2 |
Al (μg/L) | ||||||||
Spring 2022 | 82 | 1.2 | 101.2 | 10.8 | 7.1 | 3.9 | 17.4 | 17.7 |
Autumn 2022 | 62 | 5.6 | 579.3 | 128.3 | 104.2 | 29 | 188 | 127.7 |
V (μg/L) | ||||||||
Spring 2022 | 82 | 0.03 | 5.79 | 0.61 | 0.33 | 0.18 | 0.73 | 0.9 |
Autumn 2022 | 62 | 0.01 | 5.7 | 0.62 | 0.39 | 0.18 | 0.64 | 0.9 |
Cr (μg/L) | ||||||||
Spring 2022 | 82 | 0.1 | 50.5 | 4.7 | 5.1 | 1.3 | 5.7 | 5.6 |
Autumn 2022 | 62 | 0.2 | 43.5 | 8.1 | 3.3 | 1.5 | 7 | 11.3 |
Mn (μg/L) | ||||||||
Spring 2022 | 82 | 0.2 | 625.1 | 24.7 | 1 | 0.6 | 2.2 | 86.5 |
Autumn 2022 | 62 | 0.2 | 211.4 | 7.6 | 1.9 | 1.1 | 3.4 | 27.7 |
Fe (μg/L) | ||||||||
Spring 2022 | 82 | 3 | 319.3 | 32.5 | 16.9 | 11.7 | 27.4 | 50.6 |
Autumn 2022 | 62 | 0.6 | 378.5 | 46.9 | 28.4 | 11.3 | 54 | 62.3 |
Co (μg/L) | ||||||||
Spring 2022 | 82 | 0.02 | 1.93 | 0.16 | 0.06 | 0.04 | 0.12 | 0.3 |
Autumn 2022 | 60 | 0.01 | 2.37 | 0.14 | 0.07 | 0.03 | 0.13 | 0.3 |
Ni (μg/L) | ||||||||
Spring 2022 | 82 | 0.4 | 36.1 | 4.1 | 2.7 | 1.7 | 4.3 | 5.1 |
Autumn 2022 | 62 | 0.3 | 29.5 | 5.4 | 2.9 | 1.3 | 6.7 | 6.3 |
Cu (μg/L) | ||||||||
Spring 2022 | 82 | 0.5 | 48 | 5 | 4.1 | 2.3 | 5.6 | 5.6 |
Autumn 2022 | 62 | 0.3 | 80.6 | 9.3 | 2.7 | 1.4 | 9.6 | 15.4 |
Zn (μg/L) | ||||||||
Spring 2022 | 82 | 0.4 | 120 | 14.3 | 8.6 | 3.9 | 16.4 | 19.3 |
Autumn 2022 | 62 | 1.2 | 98 | 21.4 | 12.1 | 5.6 | 27.1 | 22.5 |
As (μg/L) | ||||||||
Spring 2022 | 82 | 0.02 | 20.77 | 1.07 | 0.32 | 0.18 | 0.68 | 3.1 |
Autumn 2022 | 62 | 0.01 | 10.48 | 0.79 | 0.29 | 0.17 | 0.61 | 1.6 |
Se (μg/L) | ||||||||
Spring 2022 | 72 | 0.02 | 21.99 | 1.25 | 0.22 | 0.12 | 1 | 3.2 |
Autumn 2022 | 40 | 0.03 | 21.4 | 1.95 | 0.36 | 0.16 | 0.83 | 4.3 |
Sr (μg/L) | ||||||||
Spring 2022 | 82 | 53 | 12227 | 1589 | 847 | 323 | 1528 | 2349 |
Autumn 2022 | 62 | 54 | 12059 | 1384 | 665 | 249 | 1463 | 2301 |
Rb (μg/L) | ||||||||
Spring 2022 | 82 | 0.2 | 30.6 | 2.4 | 1.3 | 0.8 | 2.3 | 4 |
Autumn 2022 | 62 | 0.1 | 33.6 | 2.5 | 1.1 | 0.5 | 2.1 | 5.12 |
Ba (μg/L) | ||||||||
Spring 2022 | 82 | 12 | 782 | 175 | 87 | 43 | 282 | 188.1 |
Autumn 2022 | 62 | 11 | 1031 | 172 | 86 | 41 | 240 | 200.6 |
Pb (μg/L) | ||||||||
Spring 2022 | 82 | 0.03 | 2.41 | 0.5 | 0.34 | 0.18 | 0.61 | 0.5 |
Autumn 2022 | 62 | 0.02 | 3.45 | 0.31 | 0.19 | 0.08 | 0.34 | 0.5 |
Cs (μg/L) | ||||||||
Autumn 2022 | 59 | 0.001 | 8.06 | 0.18 | 0.014 | 0.006 | 0.036 | 1.1 |
Type | Water Chemistry | CO2 | N2 | CH4 | Ar | O2 | He | δ13C-CO2 | δ13C-CH4 | |
---|---|---|---|---|---|---|---|---|---|---|
NC-02 | s | Ca-HCO3 | - | - | ||||||
Spring 2022 | 0.05 | 0.75 | 1.2 × 10−5 | 0.019 | 0.26 | 1.2 × 10−5 | ||||
NC-05 | s | Ca-HCO3 | - | - | ||||||
Spring 2022 | 0.04 | 0.71 | 6 × 10−6 | 0.018 | 0.22 | 1.1 × 10−5 | ||||
NC-10 | s | Ca-HCO3 | - | - | ||||||
Spring 2022 | 0.07 | 0.74 | 3.5 × 10−5 | 0.019 | 0.11 | 1.4 × 10−5 | ||||
NC-12 | s | Ca-HCO3(SO4) | −15.8 | −55.5 | ||||||
Spring 2022 | 0.05 | 0.75 | 8 × 10−6 | 0.019 | 0.24 | 1.0 × 10−5 | ||||
Autumn 2022 | 0.07 | 0.71 | 7 × 10−5 | 0.018 | 0.16 | 1.3 × 10−5 | ||||
NC-16 | w | Ca-HCO3(SO4) | −16.0 | n.d. | ||||||
Spring 2022 | 0.09 | 0.68 | 1.1 × 10−5 | 0.017 | 0.21 | 1.2 × 10−5 | ||||
Autumn 2022 | 0.09 | 0.68 | 1.1 × 10−4 | 0.017 | 0.21 | 1.2 × 10−5 | ||||
NC-19 | s | Ca-HCO3(SO4) | −21.9 | −29.3 | ||||||
Spring 2022 | 0.09 | 0.69 | 8 × 10−6 | 0.017 | 0.18 | 1.4 × 10−5 | ||||
Autumn 2022 | 0.06 | 0.72 | 5 × 10−5 | 0.017 | 0.15 | 1.4 × 10−5 | ||||
NC-22 | s | Ca-HCO3 | −18.1 | −59.3 | ||||||
Winter 2023 | 0.11 | 0.61 | 1.5 × 10−5 | 0.015 | 0.15 | 2.3 × 10−5 | ||||
NC-23 | s | Ca-HCO3 | ||||||||
Winter 2023 | 0.09 | 0.65 | 2 × 10−5 | 0.016 | 0.26 | 1.1 × 10−5 | −21.9 | −47.6 | ||
NC-24 | w | Ca-HCO3(SO4) | −11.6 | −55.4 | ||||||
Spring 2022 | 0.31 | 0.49 | 0.013 | 0.011 | 0.095 | 3.2 × 10−5 | ||||
Autumn 2022 | 0.27 | 0.41 | 0.011 | 0.009 | 0.16 | 1.1 × 10−5 | ||||
NC-26 | s | Ca-SO4 | −12.9 | −46.1 | ||||||
Spring 2022 | 0.05 | 0.76 | 5 × 10−6 | 0.019 | 0.28 | 9 × 10−6 | ||||
Autumn 2022 | 0.06 | 0.66 | 8 × 10−5 | 0.016 | 0.21 | 1.5 × 10−5 | ||||
NC-27 | s | Ca-SO4 | −78.0 | −30.0 | ||||||
Spring 2022 | 0.15 | 0.54 | 0.022 | 0.013 | 0.005 | 1.8 × 10−5 | ||||
Autumn 2022 | 0.11 | 0.61 | 0.004 | 0.016 | 0.16 | 1.6 × 10−5 | ||||
NC-28 | s | Na-HCO3 | n.d. | −68.2 | ||||||
Spring 2022 | 0.11 | 0.61 | 0.019 | 0.014 | 0.007 | 2.1 × 10−5 | ||||
Autumn 2022 | 0.06 | 0.69 | 0.006 | 0.017 | 0.054 | 3.1 × 10−5 | ||||
NC-30 | s | Na-HCO3 | - | - | ||||||
Spring 2022 | 0.17 | 0.51 | 0.019 | 0.013 | 0.011 | 1.5 × 10−5 | ||||
Autumn 2022 | 0.13 | 0.55 | 0.011 | 0.014 | 0.13 | 7 × 10−6 | ||||
BS-01 | s | Na(Ca)-SO4(Cl) | −67.1 | −27.5 | ||||||
Spring 2022 | 0.36 | 0.43 | 0.31 | 0.011 | n.d. | 1.3 × 10−5 | ||||
Autumn 2022 | 0.41 | 0.38 | 0.21 | 0.009 | 0.016 | 1.8 × 10−5 | ||||
BS-02 | w | Ca-HCO3 | −20.2 | −41.7 | ||||||
Spring 2022 | 0.04 | 0.73 | 1.0 × 10−5 | 0.018 | 0.23 | 1.1 × 10−5 | ||||
FU-08 | s | Ca-HCO3 | - | - | ||||||
Spring 2022 | 0.06 | 0.72 | 6 × 10−6 | 0.018 | 0.21 | 9 × 10−6 | ||||
FU-11 | w | Ca-HCO3 | - | - | ||||||
Spring 2022 | 0.05 | 0.68 | 5 × 10−6 | 0.017 | 0.24 | 1.1 × 10−5 | ||||
CS-01 | s | Ca-HCO3 | - | - | ||||||
Spring 2022 | 0.04 | 0.71 | 7 × 10−6 | 0.018 | 0.26 | 1.2 × 10−5 | ||||
CS-03 | w | - | - | |||||||
Spring 2022 | Ca-HCO3 | 0.07 | 0.76 | 5 × 10−6 | 0.019 | 0.23 | 1.4 × 10−5 | |||
Autumn 2022 | Na(Ca)-Cl(HCO3) | 0.05 | 0.69 | 1.3 × 10−4 | 0.017 | 0.18 | 1.5 × 10−5 | |||
IZ-04 | w | Ca-HCO3 | - | - | ||||||
Spring 2022 | 0.05 | 0.72 | 7 × 10−6 | 0.018 | 0.22 | 8 × 10−6 | ||||
IZ-05 | d | unknown | - | - | ||||||
Spring 2022 | 0.06 | 0.74 | 6 × 10−6 | 0.019 | 0.25 | 9 × 10−6 | ||||
IZ-12 | w | NaHCO3(Cl) | −23.3 | −43.8 | ||||||
Spring 2022 | 0.13 | 0.62 | 0.011 | 0.016 | 0.009 | 1.8 × 10−5 | ||||
IZ-13 | s | Ca-SO4 | - | - | ||||||
Spring 2022 | 0.16 | 0.58 | 0.016 | 0.015 | 0.005 | 2.3 × 10−5 | ||||
IZ-14 | s | Ca-SO4 | - | - | ||||||
Spring 2022 | 0.23 | 0.52 | 0.024 | 0.013 | 0.005 | 1.6 × 10−5 | ||||
Autumn 2022 | 0.26 | 0.31 | 1.2 × 10−5 | 0.008 | 0.051 | 1.3 × 10−5 | ||||
NB-06 | s | Na-HCO3 | n.d. | −60.4 | ||||||
Spring 2022 | 0.15 | 0.56 | 0.017 | 0.014 | 0.014 | 1.9 × 10−5 | ||||
Autumn 2022 | 0.12 | 0.55 | 5.0 × 10−5 | 0.014 | 0.11 | 1.4 × 10−5 | ||||
NB-07 | s | Ca-HCO3 | −13.8 | −36.0 | ||||||
Spring 2022 | 0.06 | 0.73 | 1.2 × 10−5 | 0.018 | 0.21 | 1.1 × 10−5 | ||||
Autumn 2022 | 0.09 | 0.69 | 1.8 × 10−5 | 0.018 | 0.16 | 1.3 × 10−5 | ||||
NB-08 | s | Na-HCO3 | - | - | ||||||
Spring 2022 | 0.24 | 0.33 | 0.36 | 0.008 | n.d. | 2.3 × 10−5 | ||||
Autumn 2022 | 0.31 | 0.41 | 0.35 | 0.01 | 0.014 | 1.1 × 10−5 | ||||
NB-09 | s | Na-HCO3 | −11.5 | −66.4 | ||||||
Spring 2022 | 0.27 | 0.31 | 0.39 | 0.008 | n.d. | 2.8 × 10−5 | ||||
Autumn 2022 | 0.35 | 0.33 | 0.29 | 0.008 | 0.013 | 1.2 × 10−5 | ||||
CZ-02 | s | Ca-HCO3 | −20.1 | −58.6 | ||||||
Autumn 2022 | 0.07 | 0.68 | 1.5 × 10−4 | 0.017 | 0.16 | 2.1 × 10−5 | ||||
CZ-03 | s | Ca-HCO3 | −27.3 | −50.2 | ||||||
Spring 2022 | 0.05 | 0.76 | 5.0 × 10−5 | 0.019 | 0.26 | 9 × 10−6 | ||||
Autumn 2022 | 0.15 | 0.56 | 1.9 × 10−4 | 0.014 | 0.14 | 7 × 10−6 | ||||
CZ-04 | w | Ca-HCO3 | - | - | ||||||
Autumn 2022 | 0.06 | 0.72 | 3.0 × 10−5 | 0.018 | 0.23 | 1.6 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chemeri, L.; Taussi, M.; Cabassi, J.; Capecchiacci, F.; Randazzo, A.; Tassi, F.; Renzulli, A.; Vaselli, O. Groundwater and Dissolved Gases Geochemistry in the Pesaro-Urbino Province (Northern Marche, Central Italy) as a Tool for Seismic Surveillance and Sustainability. Sustainability 2024, 16, 5178. https://doi.org/10.3390/su16125178
Chemeri L, Taussi M, Cabassi J, Capecchiacci F, Randazzo A, Tassi F, Renzulli A, Vaselli O. Groundwater and Dissolved Gases Geochemistry in the Pesaro-Urbino Province (Northern Marche, Central Italy) as a Tool for Seismic Surveillance and Sustainability. Sustainability. 2024; 16(12):5178. https://doi.org/10.3390/su16125178
Chicago/Turabian StyleChemeri, Lorenzo, Marco Taussi, Jacopo Cabassi, Francesco Capecchiacci, Antonio Randazzo, Franco Tassi, Alberto Renzulli, and Orlando Vaselli. 2024. "Groundwater and Dissolved Gases Geochemistry in the Pesaro-Urbino Province (Northern Marche, Central Italy) as a Tool for Seismic Surveillance and Sustainability" Sustainability 16, no. 12: 5178. https://doi.org/10.3390/su16125178
APA StyleChemeri, L., Taussi, M., Cabassi, J., Capecchiacci, F., Randazzo, A., Tassi, F., Renzulli, A., & Vaselli, O. (2024). Groundwater and Dissolved Gases Geochemistry in the Pesaro-Urbino Province (Northern Marche, Central Italy) as a Tool for Seismic Surveillance and Sustainability. Sustainability, 16(12), 5178. https://doi.org/10.3390/su16125178