The Biostimulation Activity of Two Novel Benzothiadiazole Derivatives in the Tomato Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Substances
2.2. Field Experiment
2.3. Content of Bioactive Compounds in Tomato Fruit
2.4. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Experiment 2021
3.2.1. General Yield
3.2.2. Tomato Yield Structure
3.2.3. Bioactive Substances
3.3. Experiment 2022
3.3.1. General Yield
3.3.2. Tomato Yield Structure
3.3.3. Bioactive Substances
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Hakeem, K.R.; Akhtar, M.S.; Abdullah, S.N.A. Plant, Soil and Microbes: Volume 1: Implications in Crop Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–366. [Google Scholar] [CrossRef]
- Official Journal of the European Union, Comission Implementating Regulation (EU) 2015/408 of 11 March 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015R0408 (accessed on 21 February 2024).
- Robin, D.C.; Marchand, P.A. Evolution of Directive (EC) No 128/2009 of the European Parliament and of the Council Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. J. Regul. Sci. 2019, 7, 1–7. [Google Scholar]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Molina-Moreno, V.; Camacho-Ferre, F. Strategic Analysis of the Sustainability of the Andalusian Primary Sector. An Instrument for Resilient Management. J. Clean. Prod. 2024, 452, 142199. [Google Scholar] [CrossRef]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Batlles-delaFuente, A.; Camacho-Ferre, F. Strategic evaluation of the sustainability of the Spanish primary sector within the framework of the circular economy. Sustain. Dev. 2023, 1–16. [Google Scholar]
- Bathaei, A.; Štreimikienė, D. A Systematic Review of Agricultural Sustainability Indicators. Agriculture 2023, 13, 241. [Google Scholar] [CrossRef]
- Wang, D.; Liu, B.; Ma, Z.; Feng, J.; Yan, H. Reticine A, a New Potent Natural Elicitor: Isolation from the Fruit Peel of Citrus Reticulate and Induction of Systemic Resistance against Tobacco Mosaic Virus and Other Plant Fungal Diseases. Pest Manag. Sci. 2021, 77, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.; Raikhy, G.; Kumar, D. Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Curr. Plant Biol. 2019, 17, 48–59. [Google Scholar] [CrossRef]
- Mukarram, M.; Ali, J.; Dadkhah-Aghdash, H.; Kurjak, D.; Kačík, F.; Ďurkovič, J. Chitosan-Induced Biotic Stress Tolerance and Crosstalk with Phytohormones, Antioxidants, and Other Signalling Molecules. Front. Plant Sci. 2023, 14, 1217822. [Google Scholar] [CrossRef]
- Van Butselaar, T.; Van den Ackerveken, G. Salicylic Acid Steers the Growth–Immunity Tradeoff. Trends Plant Sci. 2020, 25, 566–576. [Google Scholar] [CrossRef]
- Figueroa-Macías, J.P.; García, Y.C.; Núñez, M.; Díaz, K.; Olea, A.F.; Espinoza, L. Plant Growth-Defense Trade-Offs: Molecular Processes Leading to Physiological Changes. Int. J. Mol. Sci. 2021, 22, 693. [Google Scholar] [CrossRef]
- Ha, C.M.; Rao, X.; Saxena, G.; Dixon, R.A. Growth–Defense Trade-offs and Yield Loss in Plants with Engineered Cell Walls. New Phytol. 2021, 231, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Groszmann, M.; Gonzalez-Bayon, R.; Lyons, R.L.; Greaves, I.; Kazan, K.; Peacock, W.J.; Dennis, E.S. Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc. Natl. Acad. Sci. USA 2015, 112, E6397–E6406. [Google Scholar] [CrossRef] [PubMed]
- Schurter, R.; Kunz, W.; Nyfeler, R. Process and A Composition for Immunizing Plants against Diseases. U.S. Patent No. 4931581, 5 June 1990. [Google Scholar]
- Friedrich, L.; Lawton, K.; Dincher, S.S.; Winter, A.; Staub, T.; Uknes, S.; Kessmann, H.; Ryals, J. Benzothiadiazole Induces Systemic Acquired Resistance in Tobacco. Plant J. 1996, 10, 61–70. [Google Scholar] [CrossRef]
- Frąckowiak, P.; Pospieszny, H.; Smiglak, M.; Obrępalska-Stęplowska, A. Assessment of the Efficacy and Mode of Action of Benzo (1, 2, 3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester (BTH) and Its Derivatives in Plant Protection against Viral Disease. Int. J. Mol. Sci. 2019, 20, 1598. [Google Scholar] [CrossRef] [PubMed]
- Jarecka-Boncela, A.; Spychalski, M.; Ptaszek, M.; Włodarek, A.; Smiglak, M.; Kukawka, R. The Effect of a New Derivative of Benzothiadiazole on the Reduction of Fusariosis and Increase in Growth and Development of Tulips. Agriculture 2023, 13, 853. [Google Scholar] [CrossRef]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruits and Vegetable Products; Tata McGraw Hill Publishing Company Ltd.: New Delhi, India, 2011. [Google Scholar]
- Canet, J.V.; Dobón, A.; Ibáñez, F.; Perales, L.; Tornero, P. Resistance and Biomass in Arabidopsis: A New Model for Salicylic Acid Perception. Plant Biotechnol. J. 2010, 8, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, T.; Groot, E.P.; Kazantsev, F.V.; Teale, W.; Omelyanchuk, N.; Kovrizhnykh, V.; Palme, K.; Mironova, V.V. Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiol. 2019, 180, 1725–1739. [Google Scholar] [CrossRef] [PubMed]
- Azami-Sardooei, Z.; Seifi, H.S.; de Vleesschauwer, D.; Höfte, M. Benzothiadiazole (BTH)-induced resistance against Botrytis cinerea is inversely correlated with vegetative and generative growth in bean and cucumber, but not in tomato. Australas. Plant Pathol. 2013, 42, 485–490. [Google Scholar] [CrossRef]
- Rożek, E.; Nurzyńska-Wierdak, R.; Kosior, M. Quality and Structure of Single Harvest Tomato Fruit Yield. Acta Sci. Pol. Hortorum Cultus 2011, 10, 319–329. [Google Scholar]
- Huan, C.; Xu, Q.; Shuling, S.; Dong, J.; Zheng, X. Effect of benzothiadiazole treatment on quality and anthocyanin biosynthesis in plum fruit during storage at ambient temperature. J. Sci. Food Agric. 2021, 101, 3176–3185. [Google Scholar] [CrossRef]
- Iriti, M.; Mapelli, S.; Faoro, F. Chemical-Induced Resistance against Post-Harvest Infection Enhances Tomato Nutritional Traits. Food Chem. 2007, 105, 1040–1046. [Google Scholar] [CrossRef]
- Javaheri, M.; Mashayekhi, K.; Dadkhah, A.; Tavallaee, F.Z. Effects of Salicylic Acid on Yield and Quality Characters of Tomato Fruit (Lycopersicum Esculentum Mill.). Int. J. Agric. Crop Sci 2012, 4, 1184–1187. [Google Scholar]
- Sariñana-Aldaco, O.; Sánchez-Chávez, E.; Troyo-Diéguez, E.; Tapia-Vargas, L.M.; Díaz-Pérez, J.C.; Preciado-Rangel, P. Foliar Aspersion of Salicylic Acid Improves Nutraceutical Quality and Fruit Yield in Tomato. Agriculture 2020, 10, 482. [Google Scholar] [CrossRef]
- Leh, H.E.; Lee, L.K. Lycopene: A Potent Antioxidant for the Amelioration of Type II Diabetes Mellitus. Molecules 2022, 27, 2335. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, S.; Tokarczyk, G. Lycopene in the Prevention of Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 1957. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Waseem, Z.; Agarwal, S. Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res. Int. 1998, 31, 737–741. [Google Scholar] [CrossRef]
- Kapała, A.; Szlendak, M.; Motacka, E. The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies. Nutrients 2022, 14, 5152. [Google Scholar] [CrossRef] [PubMed]
- Francesca, S.; Cirillo, V.; Raimondi, G.; Maggio, A.; Barone, A.; Rigano, M.M. A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. Plants 2021, 10, 783. [Google Scholar] [CrossRef] [PubMed]
- Mzibra, A.; Aasfar, A.; Khouloud, M.; Farrie, Y.; Boulif, R.; Kadmiri, I.M.; Bamouh, A.; Douira, A. Improving Growth, Yield, and Quality of Tomato Plants (Solanum lycopersicum L.) by the Application of Moroccan Seaweed-Based Biostimulants under Greenhouse Conditions. Agronomy 2021, 11, 1373. [Google Scholar] [CrossRef]
- Nahm, S.; Weinreb, S.M. N-Methoxy-n-Methylamides as Effective Acylating Agents. Tetrahedron Lett. 1981, 22, 3815–3818. [Google Scholar] [CrossRef]
- Safety Data Sheet for Chemical N,O-dimethylhydroxylamine Hydrochloride. Available online: https://www.fishersci.com/store/msds?partNumber=AC116340050&countryCode=US&language=en (accessed on 20 May 2024).
- Zeisel, S.H.; Da Costa, K.-A. Choline: An Essential Nutrient for Public Health. Nutr. Rev. 2009, 67, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Safety Data Sheet for Chemical Choline Chloride. Available online: https://www.sigmaaldrich.com/PL/de/sds/sigma/c1879 (accessed on 20 May 2024).
- Markiewicz, M.; Lewandowski, P.; Spychalski, M.; Kukawka, R.; Feder-Kubis, J.; Beil, S.; Smiglak, M.; Stolte, S. New Bifunctional Ionic Liquid-Based Plant Systemic Acquired Resistance (SAR) Inducers with an Improved Environmental Hazard Profile. Green Chem. 2021, 23, 5138–5149. [Google Scholar] [CrossRef]
- Kukawka, R.; Spychalski, M.; Grzempa, B.; Smiglak, M.; Górski, D.; Gaj, R.; Kiniec, A. The use of a new ionic derivative of salicylic acid in sugar beet cultivation. Agronomy 2024, 14, 827. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
Year of Experiment | Soil Characteristics | pH | N-NO3 | P | K | Ca | Mg | Cl |
---|---|---|---|---|---|---|---|---|
[mg/dm3 of Soil] | ||||||||
2021 | sandy loam | 7.4 | 9.7 | 94.6 | 171.6 | 942.8 | 182.6 | 4.2 |
2022 | sandy loam | 7.5 | 9.4 | 95.2 | 186.5 | 956.1 | 174.9 | 4.8 |
Marketable Yield [t/ha] | Non-Marketable Yield [t/ha] | Total Yield [t/ha] | Ratio of Non-Marketable to Marketable Yield [%] | |
---|---|---|---|---|
SFP | 74.05 ± 2.03 a | 8.30 ± 0.23 a | 82.35 ± 2.26 a | 11.2 |
BTHWA 6 × 20 | 88.78 ± 1.18 d | 9.59 ± 0.13 c | 98.37 ± 1.31 d | 10.79 |
BTHWA 9 × 20 | 83.09 ± 2.67 bc | 8.55 ± 0.28 ab | 91.64 ± 2.95 bc | 10.29 |
BTHWA 6 × 40 | 84.93 ± 1.3 cd | 9.03 ± 0.14 b | 93.96 ± 1.43 cd | 10.63 |
BTHWA 9 × 40 | 79.98 ± 1.59 b | 8.09 ± 0.15 a | 88.07 ± 1.74 b | 10.14 |
SFP | 74.05 ± 2.03 a | 8.30 ± 0.23 a | 82.35 ± 2.26 a | 11.2 |
BTHCholine 6 × 20 | 83.65 ± 3.04 b | 8.97 ± 0.33 c | 92.62 ± 3.37 b | 10.72 |
BTHCholine 9 × 20 | 78.4 ± 2.30 ab | 8.09 ± 0.15 a | 86.49 ± 2.45 ab | 10.32 |
BTHCholine 6 × 40 | 82.89 ± 1.99 b | 8.76 ± 0.21 bc | 91.65 ± 2.2 b | 10.57 |
BTHCholine 9 × 40 | 75.86 ± 1.99 a | 7.74 ± 0.2 a | 83.60 ± 2.19 a | 10.21 |
The Number of Fruits [pcs/plot] | ||||
---|---|---|---|---|
Diameter 3.5–4 cm | Diameter 4.0–4.5 cm | Diameter >4.5 cm | Sum of All Fruits | |
SFP | 249 ± 12.68 d | 294 ± 8.62 a | 418 ± 6.48 a | 961 ± 10.85 |
BTHWA 6 × 20 | 168 ± 8.87 a | 343 ± 9.49 c | 448 ± 20.14 b | 959 ± 36.75 |
BTHWA 9 × 20 | 197 ± 4.64 bc | 314 ± 10.68 ab | 429 ± 14.08 ab | 940 ± 25.17 |
BTHWA 6 × 40 | 189 ± 15.08 ab | 324 ± 14.29 bc | 439 ± 18.73 ab | 952 ± 22.56 |
BTHWA 9 × 40 | 220 ± 10.63 c | 315 ± 7.46 ab | 428 ± 11.61 ab | 963 ± 10.93 |
SFP | 249 ± 18.68 c | 294 ± 8.62 a | 418 ± 6.48 a | 961 ± 10.6 |
BTHCholine 6 × 20 | 159 ± 12.54 a | 350 ± 9.14 c | 419 ± 12.78 a | 928 ± 34.34 |
BTHCholine 9 × 20 | 200 ± 7.27 b | 322 ± 9.81 b | 394 ± 13.2 a | 916 ± 29.60 |
BTHCholine 6 × 40 | 168 ± 9.42 a | 291 ± 11.78 a | 447 ± 9.78 b | 906 ± 29.95 |
BTHCholine 9 × 40 | 210 ± 5.51 b | 301 ± 10.9 ab | 410 ± 12.92 a | 921 ± 34.4 |
Total Mass of Fruits [kg/plot] | ||||
---|---|---|---|---|
Diameter 3.5–4 cm | Diameter 4.0–4.5 cm | Diameter >4.5 cm | Sum | |
SFP | 8.04 ± 0.42 b | 17.18 ± 0.77 a | 38.82 ± 2.5 a | 64.04 ± 2.03 a |
BTHWA 6 × 20 | 6.00 ± 0.52 a | 21.41 ± 0.57 c | 49.36 ± 0.74 c | 76.77 ± 1.18 d |
BTHWA 9 × 20 | 7.37 ± 0.44 b | 19.52 ± 0.68 d | 44.97 ± 2.05 b | 71.86 ± 2.67 bc |
BTHWA 6 × 40 | 7.33 ± 0.24 b | 21.30 ± 0.75 c | 44.81 ± 1.1 b | 73.44 ± 1.29 cd |
BTHWA 9 × 40 | 7.66 ± 0.66 b | 19.67 ± 0.84 b | 41.84 ± 1.09 ab | 69.17 ± 1.58 b |
SFP | 8.04 ± 0.42 c | 17.18 ± 0.77 a | 38.82 ± 2.5 a | 64.04 ± 2.03 a |
BTHCholine 6 × 20 | 5.29 ± 0.29 a | 21.27 ± 0.65 d | 45.77 ± 2.17 b | 72.33 ± 3.04 b |
BTHCholine 9 × 20 | 6.83 ± 0.16 b | 19.68 ± 0.36 c | 41.30 ± 1.81 ab | 67.81 ± 2.29 ab |
BTHCholine 6 × 40 | 5.74 ± 0.37 a | 17.69 ± 0.64 ab | 48.26 ± 0.98 b | 71.69 ± 1.99 b |
BTHCholine 9 × 40 | 7.37 ± 0.2 bc | 18.68 ± 0.61 bc | 39.97 ± 1.29 a | 66.02 ± 1.38 a |
Average Mass of Fruit [g] | ||||
---|---|---|---|---|
Diameter 3.5–4 cm | Diameter 4.0–4.5 cm | Diameter >4.5 cm | Weighted Average of Fruit [g] | |
SFP | 32.27 ± 0.45 a | 58.38 ± 2.82 a | 93.04 ± 3.01 a | 66.66 ± 1.75 a |
BTHWA 6 × 20 | 35.75 ± 1.01 bc | 62.46 ± 1.03 ab | 109.70 ± 3.84 c | 79.90 ± 1.92 d |
BTHWA 9 × 20 | 37.51 ± 1.92 bc | 62.21 ± 2.1 ab | 104.64 ± 1.54 bc | 76.43 ± 0.86 c |
BTHWA 6 × 40 | 38.89 ± 1.94 c | 65.77 ± 1.63 b | 102 ± 4.08 b | 77.10 ± 1.95 cd |
BTHWA 9 × 40 | 34.72 ± 1.78 ab | 65.40 ± 1.86 ab | 97.72 ± 3.69 ab | 71.75 ± 0.95 b |
SFP | 32.27 ± 0.45 a | 58.38 ± 2.82 a | 93.04 ± 3.01 a | 66.66 ± 1.75 a |
BTHCholine 6 × 20 | 33.30 ± 1.3 ab | 60.74 ± 0.7 ab | 109.2 ± 2.21 d | 77.92 ± 0.45 d |
BTHCholine 9 × 20 | 34.05 ± 0.54 b | 61.16 ± 0.77 ab | 104.73 ± 1.29 c | 73.97 ± 0.2 c |
BTHCholine 6 × 40 | 34.15 ± 0.89 b | 60.73 ± 0.33 ab | 108.03 ± 0.87 cd | 79.13 ± 0.48 d |
BTHCholine 9 × 40 | 34.89 ± 0.68 b | 62.09 ± 3.6 b | 97.39 ± 1.35 b | 71.60 ± 0.61 b |
Lycopene [mg/100 g/DW] | TSS [°Brix] | |
---|---|---|
SFP | 3.97 ± 0.1 a | 6.92 ± 0.08 a |
BTHWA 6 × 20 | 4.65 ± 0.09 b | 7.56 ± 0.06 b |
BTHWA 9 × 20 | 4.64 ± 0.078 b | 7.45 ± 0.1 b |
BTHWA 6 × 40 | 4.36 ± 0.07 b | 7.365 ± 0.095 ab |
BTHWA 9 × 40 | 4.375 ± 0.1 b | 7.14 ± 0.09 ab |
SFP | 3.97 ± 0.1 a | 6.92 ± 0.08 a |
BTHCholine 6 × 20 | 4.65 ± 0.067 b | 7.5 ± 0.08 b |
BTHCholine 9 × 20 | 4.55 ± 0.09 b | 7.43 ± 0.06 b |
BTHCholine 6 × 40 | 4.17 ± 0.13 ab | 7.41 ± 0.075 b |
BTHCholine 9 × 40 | 4.21 ± 0.18 ab | 7.23 ± 0.115 ab |
Marketable Yield [t/ha] | Non-Marketable Yield [t/ha] | Total Yield [t/ha] | Ratio of Non-Marketable to Marketable Yield [%] | |
---|---|---|---|---|
SFP | 64.96 ± 1.14 a | 6.44 ± 0.11 a | 71.40 ± 1.25 a | 9.92 |
BTHWA 6 × 20 | 79.00 ± 2.30 d | 7.46 ± 0.51 b | 86.46 ± 2.81 c | 9.44 |
BTHWA 9 × 20 | 73.46 ± 1.39 c | 6.79 ± 0.17 ab | 80.25 ± 1.56 b | 9.24 |
BTHWA 6 × 40 | 75.40 ± 0.85 cd | 6.78 ± 0.12 ab | 82.18 ± 0.97 b | 8.99 |
BTHWA 9 × 40 | 69.46 ± 1.32 b | 6.07 ± 0.31 a | 75.53 ± 1.64 a | 8.74 |
SFP | 64.96 ± 1.14 a | 6.44 ± 0.11 a | 71.40 ± 1.25 a | 9.92 |
BTHCholine 6 × 20 | 75.7 ± 2.75 c | 7.22 ± 0.39 b | 82.92 ± 3.14 c | 9.54 |
BTHCholine 9 × 20 | 70.96 ± 2.08 bc | 7.66 ± 0.15 ab | 77.62 ± 2.23 bc | 9.39 |
BTHCholine 6 × 40 | 75.01 ± 1.80 c | 7.2 ± 0.31 b | 82.21 ± 2.11c | 9.59 |
BTHCholine 9 × 40 | 68.66 ± 1.92 ab | 6.3 ± 0.16 a | 74.96 ± 2.08 ab | 9.18 |
The Number of Fruits [pcs/plot] | ||||
---|---|---|---|---|
Diameter 3.5–4 cm | Diameter 4.0–4.5 cm | Diameter >4.5 cm | Sum of All Fruits | |
SFP | 223 ± 8.98 d | 265 ± 12.62 a | 373 ± 6.27 a | 861 ± 9.48 A |
BTHWA 6 × 20 | 151 ± 15.19 a | 308 ± 9.38 c | 400 ± 13.88 b | 859 ± 27.24 A |
BTHWA 9 × 20 | 176 ± 7.49 bc | 281 ± 11.1 ab | 385 ± 14.32 ab | 842 ± 29.95 A |
BTHWA 6 × 40 | 171 ± 13.51 ab | 289 ± 7.57 bc | 394 ± 11.11 ab | 854 ± 15.42 A |
BTHWA 9 × 40 | 198 ± 9.76 bc | 280 ± 7.83 bc | 381 ± 5.29 ab | 859 ± 8.6 A |
SFP | 223 ± 8.98 d | 265 ± 12.62 a | 373 ± 6.27 a | 861 ± 9.48 A |
BTHCholine 6 × 20 | 146 ± 11.74 a | 321 ± 8.2 c | 384 ± 11.43 b | 851 ± 31.27 A |
BTHCholine 9 × 20 | 184 ± 6.83 b | 295 ± 8.86 b | 361 ± 12.25 a | 840 ± 27.38 A |
BTHCholine 6 × 40 | 154 ± 8.64 a | 267 ± 10.86 a | 409 ± 8.76 c | 830 ± 27.3 A |
BTHCholine 9 × 40 | 193 ± 10.1 b | 276 ± 9.97 ab | 376 ± 11.69 ab | 845 ± 34.40 A |
Total Mass of Fruits [kg/plot] | ||||
---|---|---|---|---|
Diameter 3.5–4 cm | Diameter 4.0–4.5 cm | Diameter > 4.5 cm | Sum | |
SFP | 7 ± 0.26 c | 15 ± 0.44 a | 34.18 ± 1.49 a | 56.18 ± 1.13 a |
BTHWA 6 × 20 | 5.28 ± 0.54 a | 18.73 ± 0.41 d | 44.30 ± 2.06 c | 68.31 ± 2.29 d |
BTHWA 9 × 20 | 6.2 ± 0.18 b | 17.31 ± 0.33 bc | 40.02 ± 0.97 b | 63.53 ± 1.38 c |
BTHWA 6 × 40 | 6.36 ± 0.23 bc | 18.1 ± 0.32 cd | 40.75 ± 0.64 b | 65.21 ± 0.84 cd |
BTHWA 9 × 40 | 6.70 ± 0.46 bc | 16.89 ± 0.48 b | 36.46 ± 1.1 a | 60.05 ± 1.32 b |
SFP | 7 ± 0.26 c | 15 ± 0.44 a | 34.18 ± 1.49 a | 56.18 ± 1.13 a |
BTHCholine 6 × 20 | 4.785 ± 0.27 a | 19.25 ± 0.58 d | 41.42 ± 1.97 c | 65.45 ± 2.7 c |
BTHCholine 9 × 20 | 6.18 ± 0.15 b | 17.8 ± 0.32 c | 37.38 ± 1.64 b | 61.36 ± 2.02 bc |
BTHCholine 6 × 40 | 5.19 ± 0.34 a | 16.00 ± 0.59 ab | 43.67 ± 0.88 c | 64.86 ± 1.8 c |
BTHCholine 9 × 40 | 6.54 ± 0.38 bc | 16.56 ± 0.46 b | 36.27 ± 0.99 b | 59.37 ± 1.76 ab |
Average Mass of Fruit [g] | ||||
---|---|---|---|---|
Diameter 3.5–4 cm | Diameter 4.0–4.5 cm | Diameter >4.5 cm | Weighted Average of Fruit [g] | |
SFP | 31.40 ± 1.0 a | 56.65 ± 1.09 a | 91.60 ± 2.46 a | 65.26 ± 2.0 a |
BTHWA 6 × 20 | 35.00 ± 0.38 bc | 60.84 ± 0.34 b | 110.73 ± 2.32 c | 79.55 ± 1.87 d |
BTHWA 9 × 20 | 35.24 ± 0.55 bc | 61.64 ± 0.66 b | 103.99 ± 1.39 b | 75.48 ± 1.11 c |
BTHWA 6 × 40 | 37.27 ± 1.66 c | 62.64 ± 0.31 b | 103.45 ± 1.44 b | 76.36 ± 0.52 c |
BTHWA 9 × 40 | 33.86 ± 0.95 b | 60.34 ± 0.87 b | 95.7 ± 2.22 a | 69.92 ± 1.24 b |
SFP | 31.40 ± 1.0 a | 56.65 ± 1.09 a | 91.60 ± 2.46 a | 65.26 ± 2.0 a |
BTHCholine 6 × 20 | 32.83 ± 1.16 ab | 59.98 ± 0.35 b | 108.33 ± 5.1 b | 77.15 ± 2.86 c |
BTHCholine 9 × 20 | 33.62 ± 0.54 b | 60.37 ± 0.37 b | 103.51 ± 1.25 b | 73.05 ± 0.2 b |
BTHCholine 6 × 40 | 33.71 ± 0.9 b | 59.95 ± 0.15 b | 106.79 ± 0.85 b | 78.17 ± 0.47 c |
BTHCholine 9 × 40 | 33.9 ± 0.49 b | 60.01 ± 0.48 b | 96.47 ± 1.31 a | 70.28 ± 0.51 b |
Lycopene [mg/100 g/DW] | TSS [°Brix] | |
---|---|---|
SFP | 3.82 ± 0.1 a | 6.82 ± 0.06 a |
BTHWA 6 × 20 | 4.48 ± 0.05 bc | 7.47 ± 0.07 b |
BTHWA 9 × 20 | 4.44 ± 0.07 bc | 7.35 ± 0.08 b |
BTHWA 6 × 40 | 4.38 ± 0.05 bc | 7.19 ± 0.07 ab |
BTHWA 9 × 40 | 4.16 ± 0.06 b | 7.04 ± 0.23 ab |
SFP | 3.85 ± 0.1 a | 6.82 ± 0.06 a |
BTHCholine 6 × 20 | 4.40 ± 0.06 b | 7.40 ± 0.05 b |
BTHCholine 9 × 20 | 4.2 ± 0.08 b | 7.37 ± 0.07 b |
BTHCholine 6 × 40 | 4.07 ± 0.05 ab | 7.28 ± 0.09 ab |
BTHCholine 9 × 40 | 4.06 ± 0.04 ab | 7.12 ± 0.16 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukawka, R.; Spychalski, M.; Smiglak, M.; Gaj, R. The Biostimulation Activity of Two Novel Benzothiadiazole Derivatives in the Tomato Cultivation. Sustainability 2024, 16, 5191. https://doi.org/10.3390/su16125191
Kukawka R, Spychalski M, Smiglak M, Gaj R. The Biostimulation Activity of Two Novel Benzothiadiazole Derivatives in the Tomato Cultivation. Sustainability. 2024; 16(12):5191. https://doi.org/10.3390/su16125191
Chicago/Turabian StyleKukawka, Rafal, Maciej Spychalski, Marcin Smiglak, and Renata Gaj. 2024. "The Biostimulation Activity of Two Novel Benzothiadiazole Derivatives in the Tomato Cultivation" Sustainability 16, no. 12: 5191. https://doi.org/10.3390/su16125191
APA StyleKukawka, R., Spychalski, M., Smiglak, M., & Gaj, R. (2024). The Biostimulation Activity of Two Novel Benzothiadiazole Derivatives in the Tomato Cultivation. Sustainability, 16(12), 5191. https://doi.org/10.3390/su16125191