Optimizing Wet Hydrolysis for Nitrogen Removal and Alumina Recovery from Secondary Aluminium Dross (SAD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods and Principles
3. Results and Discussion
3.1. Single-Factor Experiment
3.1.1. Reaction Time
3.1.2. Reaction Temperature
3.1.3. Reaction System
3.1.4. NaOH Solution Concentration
3.1.5. Liquid–Solid Ratio
3.1.6. Other Factors
3.2. Analysis of Response Surface Experiment Results
3.3. Recycling
3.3.1. Effect of Time on Al2O3 Content
3.3.2. Effect of Temperature on Al2O3 Content
3.3.3. Effect of NaOH Solution Concentration on Al2O3 Content
3.4. Evaluation and Prospect
3.4.1. Environmental Benefit Assessment
3.4.2. Economic Benefit Evaluation
3.4.3. Future Prospect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahinroosta, M.; Allahverdi, A. Hazardous aluminum dross characterization and recycling strategies: A critical review. J. Environ. Manag. 2018, 223, 452–468. [Google Scholar] [CrossRef] [PubMed]
- David, E.; Kopac, J. Use of Separation and Impurity Removal Methods to Improve Aluminium Waste Recycling Process. Mater. Today Proc. 2015, 2, 5071–5079. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Allahverdi, A. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study. J. Environ. Manag. 2018, 212, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, G.; Yang, Q.; Xun, L.; Zhen, S.; Liu, D. The Investigation of Optimizing Leaching Efficiency of Al in Secondary Aluminum Dross via Pretreatment Operations. Processes 2020, 8, 1269. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, F.; Qu, G.; Ren, N.; Ning, P.; Chen, X.; He, M.; Yang, Y.; Wang, Z.; Hu, Y. Extraction and preparation of metal organic frameworks from secondary aluminum ash for removal mechanism study of fluoride in wastewater. J. Mater. Res. Technol. 2023, 23, 3023–3034. [Google Scholar] [CrossRef]
- Verma, S.K.; Dwivedi, V.K.; Dwivedi, S.P. Utilization of aluminium dross for the development of valuable product—A review. Mater. Today Proc. 2021, 43, 547–550. [Google Scholar] [CrossRef]
- Shi, M.; Yu, A.; Li, Y. Production of Alumina from Secondary Aluminum Dross by Hydrometallurgical Process. JOM 2023, 75, 291–300. [Google Scholar] [CrossRef]
- Zuo, Z.; Lv, H.; Li, R.; Liu, F.; Zhao, H. A new approach to recover the valuable elements in black aluminum dross. Resour. Conserv. Recycl. 2021, 174, 105768. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Lyu, G.; Zhang, Y.; Zhang, T.-A. Removal of Fluorine, Chlorine, and Nitrogen from Aluminum Dross by Wet Process. In Light Metals; Springer International Publishing: Cham, Switzerland, 2022; pp. 48–55. [Google Scholar]
- Li, S.; Liu, W.; Liu, Z.; He, X. Experimental Study on Oxidizing Roasting Process of Black Dross. Trans. Indian Inst. Met. 2019, 72, 2293–2298. [Google Scholar] [CrossRef]
- Lv, S.-S.; Zhang, Y.; Ni, H.-J.; Wang, X.-X.; Wu, W.-Y.; Lu, C.-Y. Effects of Additive and Roasting Processes on Nitrogen Removal from Aluminum Dross. Coatings 2022, 12, 730. [Google Scholar] [CrossRef]
- Ni, H.; Lu, C.; Zhang, Y.; Wang, X.; Zhu, Y.; Lv, S.; Zhang, J. Effects of Sodium Carbonate and Calcium Oxide on Roasting Denitrification of Recycled Aluminum Dross with High Nitrogen Content. Coatings 2022, 12, 922. [Google Scholar] [CrossRef]
- Vallejo Olivares, A.; Pastor-Valles, E.; Pettersen, J.B.; Tranell, G. LCA of recycling aluminium incineration bottom ash, dross and shavings in a rotary furnace and environmental benefits of salt-slag valorisation. Waste Manag. 2024, 182, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, Q.; Zhang, G.; Shi, Q. Investigations on the hydrolysis behavior of AlN in the leaching process of secondary aluminum dross. Hydrometallurgy 2018, 182, 121–127. [Google Scholar] [CrossRef]
- Nosaka, A.; Hiraki, T.; Akiyama, T. Hydrolysis Rate of Aluminum Nitride in a Sodium Hydroxide Solution. High Temp. Mater. Process. 2011, 30, 4–5. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, H.; Zuo, Z.; Li, R.; Liu, F. A thermodynamic and kinetic study of catalyzed hydrolysis of aluminum nitride in secondary aluminum dross. J. Mater. Res. Technol. 2020, 9, 9735–9745. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Huang, X.; Wu, W.; Sun, Z.; Wu, X.; Li, S. Removal of nitrides and fluorides from secondary aluminum dross by catalytic hydrolysis and its mechanism. Heliyon 2023, 9, e12893. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, Z.; Li, C.; Qu, Y.; Wang, H.; Peng, L.; Wang, Y. Hazardous characteristics and transformation mechanism in hydrometallurgical disposing strategy of secondary aluminum dross. J. Environ. Chem. Eng. 2021, 9, 106470. [Google Scholar] [CrossRef]
- Shen, H.; Liu, B.; Ekberg, C.; Zhang, S. Harmless disposal and resource utilization for secondary aluminum dross: A review. Sci. Total Environ. 2021, 760, 143968. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zuo, Z.; Han, J.; Zhao, H.; Li, R. Removal Process and Kinetics of Nitrogen and Chlorine Removal from Black Aluminum Dross. J. Sustain. Metall. 2021, 7, 1805–1818. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Shen, H.; Zhang, J.; Li, W.; Zhang, X.; Liu, J.; Liu, B.; Zhang, S. Synthesis of porous glass ceramics with hierarchical and interconnected pores from secondary aluminum dross and waste glass. Ceram. Int. 2022, 48, 34364–34373. [Google Scholar] [CrossRef]
- Lv, S.; Ni, H.; Wang, X.; Ni, W.; Wu, W. Effects of Hydrolysis Parameters on AlN Content in Aluminum Dross and Multivariate Nonlinear Regression Analysis. Coatings 2022, 12, 552. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Qi, T.; Zhou, Q.; Peng, Z.; Li, X.; Yan, H.; Hao, H. Two-stage process for the safe utilization of secondary aluminum dross in combination with the Bayer process. Hydrometallurgy 2022, 209, 105836. [Google Scholar] [CrossRef]
- Das, B.R.; Dash, B.; Tripathy, B.C.; Bhattacharya, I.N.; Das, S.C. Production of η-alumina from waste aluminium dross. Miner. Eng. 2007, 20, 252–258. [Google Scholar] [CrossRef]
- Lin, W.-C.; Tsai, C.-H.; Zhang, D.-N.; Syu, S.-S.; Kuo, Y.-M. Recycling of aluminum dross for producing calcinated alumina by microwave plasma. Sustain. Environ. Res. 2022, 32, 50. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Ramachandran, K.; Laly, L.G.; Ananthapadmanabhan, P.V.; Yugeswaran, S. Plasma assisted synthesis of γ-alumina from waste aluminium dross. Waste Manag. 2018, 77, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Chen, J.; Hu, X.; Chou, K.-C.; Hou, X. Evolution of aluminum hydroxides at the initial stage of aluminum nitride powder hydrolysis. Ceram. Int. 2016, 42, 11429–11434. [Google Scholar] [CrossRef]
- Li, P.; Guo, M.; Zhang, M.; Teng, L.D.; Seetharaman, S. Leaching process investigation of secondary aluminium dross: Investigation of AlN hydrolysis behaviour in NaCl solution. Miner. Process. Extr. Metall. 2013, 121, 140–146. [Google Scholar] [CrossRef]
- Wang, J.-H.; Zhong, Y.-Q.; Tong, Y.; Xu, X.-L.; Lin, G.-Y. Removal of AlN from secondary aluminum dross by pyrometallurgical treatment. J. Cent. South Univ. 2021, 28, 386–397. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.; Ni, H.; Zhu, Y.; Wang, X.; Wan, X.; Chen, K. Optimization of AlSi10MgMn Alloy Heat Treatment Process Based on Orthogonal Test and Grey Relational Analysis. Crystals 2021, 11, 385. [Google Scholar] [CrossRef]
- Ni, H.; Zhang, J.; Lv, S.; Wang, X.; Zhu, Y.; Gu, T. Preparation and Performance Optimization of Original Aluminum Ash Coating Based on Plasma Spraying. Coatings 2019, 9, 770. [Google Scholar] [CrossRef]
- Fukumoto, S.; Hookabe, T.; Tsubakino, H. Hydrolysis behavior of aluminum nitride in various solutions. J. Mater. Sci. 2000, 35, 2743–2748. [Google Scholar] [CrossRef]
- Yang, H.-L.; Li, Z.-S.; Ding, Y.-D.; Ge, Q.-Q.; Jiang, L. Hydrolysis Behavior and Kinetics of AlN in Aluminum Dross during the Hydrometallurgical Process. Materials 2022, 15, 5499. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, H.; Fu, M.; Li, Y.; Tian, D.; Zhang, L. Enhanced Hydrolysis of Aluminum Nitride from Secondary Aluminum Dross Through Combination of Wet-Stirred Milling and Alkaline Leaching. Waste Biomass Valorization 2023, 14, 4257–4268. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.-H.; Han, Z.-Y.; Xiao, X.-Y. Effects of AlN hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross using response surface methodology. Trans. Nonferrous Met. Soc. China 2018, 28, 2574–2581. [Google Scholar] [CrossRef]
- Dong, L.-M.; Jiao, F.; Liu, W.; Liu, S.-Y.; Huang, Y.-L.; Qin, W.-Q. Optimization of AlN hydrolysis in aluminum dross based on response surface methodology and reaction kinetics. J. Cent. South Univ. 2023, 30, 2993–3005. [Google Scholar] [CrossRef]
- YS/T 803-2012; Smelter Grade Alumina. Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2012.
- Müller-Carneiro, J.; de Figueirêdo, M.C.B.; Rodrigues, C.; de Azeredo, H.M.C.; Freire, F. Ex-ante life cycle assessment framework and application to a nano-reinforced biopolymer film based on mango kernel. Resour. Conserv. Recycl. 2023, 188, 106637. [Google Scholar] [CrossRef]
- Xue, N.; Lu, J.; Gu, D.; Lou, Y.; Yuan, Y.; Li, G.; Kumagai, S.; Saito, Y.; Yoshioka, T.; Zhang, N. Carbon footprint analysis and carbon neutrality potential of desalination by electrodialysis for different applications. Water Res. 2023, 232, 119716. [Google Scholar] [CrossRef]
O | Al | Na | Cl | Si | Ca | Fe | K | S | Others |
---|---|---|---|---|---|---|---|---|---|
37.69 | 35.12 | 3.75 | 3.15 | 2.30 | 1.12 | 1.03 | 0.69 | 0.56 | 1.09 |
Coded Variable | A Time/min | B Temperature/°C | C Concentration/wt.% |
---|---|---|---|
−1 | 180 | 80 | 4 |
0 | 240 | 87.5 | 6 |
1 | 300 | 95 | 8 |
Run | A Time/min | B Temperature/°C | C Concentration/wt.% | Y Denitrification/% |
---|---|---|---|---|
1 | 300 | 80 | 6 | 98.16 |
2 | 240 | 87.5 | 6 | 98.53 |
3 | 180 | 95 | 6 | 96.69 |
4 | 240 | 87.5 | 6 | 98.16 |
5 | 240 | 95 | 8 | 98.9 |
6 | 300 | 95 | 6 | 99.26 |
7 | 240 | 95 | 4 | 98.9 |
8 | 180 | 87.5 | 4 | 93.38 |
9 | 240 | 87.5 | 6 | 98.16 |
10 | 300 | 87.5 | 4 | 96.69 |
11 | 180 | 80 | 6 | 92.64 |
12 | 300 | 87.5 | 8 | 98.9 |
13 | 240 | 87.5 | 6 | 98.53 |
14 | 240 | 80 | 8 | 97.06 |
15 | 180 | 87.5 | 8 | 94.11 |
16 | 240 | 80 | 4 | 95.95 |
17 | 240 | 87.5 | 6 | 98.16 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 66.57 | 9 | 7.40 | 86.43 | <0.0001 | Significant |
A | 32.76 | 1 | 32.76 | 382.82 | <0.0001 | |
B | 12.35 | 1 | 12.35 | 144.30 | <0.0001 | |
C | 2.05 | 1 | 2.05 | 23.96 | 0.0018 | |
AB | 2.18 | 1 | 2.18 | 25.42 | 0.0015 | |
AC | 0.5476 | 1 | 0.5476 | 6.40 | 0.0393 | |
BC | 0.3080 | 1 | 0.3080 | 3.60 | 0.0996 | |
A2 | 13.29 | 1 | 13.29 | 155.26 | <0.0001 | |
B2 | 0.1025 | 1 | 0.1025 | 1.20 | 0.3101 | |
C2 | 2.44 | 1 | 2.44 | 28.53 | 0.0011 | |
Residual | 0.5991 | 7 | 0.0856 | - | - | |
Lack of fit | 0.4348 | 3 | 0.1449 | 3.53 | 0.1273 | Not significant |
R2 | Adeq Precision | CV/% | ||
---|---|---|---|---|
0.9911 | 0.9796 | 0.8926 | 29.1140 | 0.3010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Lee, B. Optimizing Wet Hydrolysis for Nitrogen Removal and Alumina Recovery from Secondary Aluminium Dross (SAD). Sustainability 2024, 16, 5312. https://doi.org/10.3390/su16135312
Jiang Q, Lee B. Optimizing Wet Hydrolysis for Nitrogen Removal and Alumina Recovery from Secondary Aluminium Dross (SAD). Sustainability. 2024; 16(13):5312. https://doi.org/10.3390/su16135312
Chicago/Turabian StyleJiang, Qiao, and Bin Lee. 2024. "Optimizing Wet Hydrolysis for Nitrogen Removal and Alumina Recovery from Secondary Aluminium Dross (SAD)" Sustainability 16, no. 13: 5312. https://doi.org/10.3390/su16135312
APA StyleJiang, Q., & Lee, B. (2024). Optimizing Wet Hydrolysis for Nitrogen Removal and Alumina Recovery from Secondary Aluminium Dross (SAD). Sustainability, 16(13), 5312. https://doi.org/10.3390/su16135312