Use of Drone Remote Sensing to Identify Increased Marine Macro-Litter Contamination following the Reopening of Salgar Beach (Colombian Caribbean) during Pandemic Restrictions
Abstract
:1. Introduction
2. Materials and Methods
Marine Macro-Litter Mapping
3. Results
4. Discussion
4.1. Temporal and Spatial Variability
4.2. Litter Management in Exceptional Circumstances, Such as a Pandemic
5. Conclusions
- There was a substantial increase in macro-litter during the beach reopening period compared to the lower litter values observed during the beach closure period. This result indicates that at Salgar Beach, the macro-litter sources are the beach use services provided on site, and this source surpasses the waste originating from the Magdalena River, an important source of waste in the central Colombian Caribbean sector.
- The main driving force behind the litter accumulation is the environmental culture established in this sector. Inadequate waste disposal facilities in the service sector (kiosks) result in marine macro-litter and subsequent offshore transport.
- In this study, Salgar Beach can be considered a waste exporter as macro-litter can be incorporated into the longshore current and redistributed either to nearby beaches or the ocean.
- The method described in this article may contribute to a best practice protocol for monitoring both marine macro-litter and the efficiency of waste reduction practices in coastal areas.
- It should be noted that it was easy to identify the marine macro-litter items in the images, with a very good correlation with the visual observation calibration, mainly because the waste items were neither degraded nor very fragmented.
- Actions to reduce marine macro-litter in this sector should be focused on environmental education and the waste disposal processes used in tourist services. In addition, actions are needed to improve the behaviors of beachgoers in terms of their waste disposal practices while at the beach.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Debrot, A.; Meesters, H.; Bron, P.; de León, R. Marine debris in mangroves and on the seabed: Largely-neglected litter problems. Mar. Pollut. Bull. 2013, 72, 1. [Google Scholar] [CrossRef] [PubMed]
- Debrot, A.O.; Tiel, A.B.; Bradshaw, J.E. Beach Debris in Curaçao. Mar. Pollut. Bull. 1999, 38, 795–801. [Google Scholar] [CrossRef]
- Gabrielides, G.; Golik, A.; Loizides, L.; Marino, M.; Bingel, F.; Torregrossa, M. Man-made garbage pollution on the Mediterranean coastline. Mar. Pollut. Bull. 1991, 23, 437–441. [Google Scholar] [CrossRef]
- do Sul, J.A.I.; Costa, M.F. Marine debris review for Latin America and the Wider Caribbean Region: From the 1970s until now, and where do we go from here? Mar. Pollut. Bull. 2007, 54, 1087–1104. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Chapman, M.G.; Thompson, R.C.; Zettler, L.A.A.; Jambeck, J.; Mallos, N.J. Spatial and Temporal Patterns of Stranded Intertidal Marine Debris: Is There a Picture of Global Change? Environ. Sci. Technol. 2015, 49, 7082–7094. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.M. Fishing debris in the Australian marine environment. Mar. Pollut. Bull. 1995, 30, 25–33. [Google Scholar] [CrossRef]
- Lucas, Z. Monitoring persistent litter in the marine environment on Sable Island, Nova Scotia. Mar. Pollut. Bull. 1992, 24, 192–199. [Google Scholar] [CrossRef]
- Poeta, G.; Battisti, C.; Acosta, A.T. Marine litter in Mediterranean sandy littorals: Spatial distribution patterns along central Italy coastal dunes. Mar. Pollut. Bull. 2014, 89, 168–173. [Google Scholar] [CrossRef]
- Portz, L.; Manzolli, R.P.; Sul, J.A.I.D. Marine debris on Rio Grande do Sul north coast, Brazil: Spatial and temporal patterns. Rev. Gestão Costeira Integr. 2011, 11, 41–48. [Google Scholar] [CrossRef]
- Portz, L.; Manzolli, R.P.; Garzon, N. Management priorities in San Andres Island beaches, Colombia: Associated risks. J. Coast. Res. 2018, 85, 1421–1425. [Google Scholar] [CrossRef]
- Portz, L.; Manzolli, R.P.; Herrera, G.V.; Garcia, L.L.; Villate, D.A.; do Sul, J.A.I. Marine litter arrived: Distribution and potential sources on an unpopulated atoll in the Seaflower Biosphere Reserve, Caribbean Sea. Mar. Pollut. Bull. 2020, 157, 111323. [Google Scholar] [CrossRef] [PubMed]
- Portz, L.; Manzolli, R.P.; Villate-Daza, D.A.; Fontán-Bouzas, Á. Where does marine litter hide? The Providencia and Santa Catalina Island problem, SEAFLOWER Reserve (Colombia). Sci. Total. Environ. 2022, 813, 151878. [Google Scholar] [CrossRef] [PubMed]
- Ribic, C.A.; Sheavly, S.B.; Klavitter, J. Baseline for beached marine debris on Sand Island, Midway Atoll. Mar. Pollut. Bull. 2012, 64, 1726–1729. [Google Scholar] [CrossRef] [PubMed]
- Ribic, C.A.; Ganio, L.M. Power analysis for beach surveys of marine debris. Mar. Pollut. Bull. 1996, 32, 554–557. [Google Scholar] [CrossRef]
- Santos, I.R.; Friedrich, A.C.; Wallner-Kersanach, M.; Fillmann, G. Influence of socio-economic characteristics of beach users on litter generation. Ocean Coast. Manag. 2005, 48, 742–752. [Google Scholar] [CrossRef]
- Silva-Iñiguez, L.; Fischer, D.W. Quantification and classification of marine litter on the municipal beach of Ensenada, Baja California, Mexico. Mar. Pollut. Bull. 2003, 46, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.T.; Randerson, P.; Di Giacomo, C.; Anfuso, G.; Macias, A.; Perales, J.A. Distribution of beach litter along the coastline of Cádiz, Spain. Mar. Pollut. Bull. 2016, 107, 77–87. [Google Scholar] [CrossRef]
- Ostle, C.; Thompson, R.C.; Broughton, D.; Gregory, L.; Wootton, M.; Johns, D.G. The rise in ocean plastics evidenced from a 60-year time series. Nat. Commun. 2019, 10, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Galgani, F.; Fleet, D.; Van Franeker, J.; Katsanevakis, S.; Maes, T.; Mouat, J.; Al, E. Marine Strategy Framework Directive: Task Group 10 Report Marine Litter; Office for Official Publications of the European Communities: Luxembourg, 2010. [Google Scholar]
- Costa, L.L.; Rangel, D.F.; Zalmon, I.R. Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787). Mar. Pollut. Bull. 2018, 128, 438–445. [Google Scholar] [CrossRef]
- Izar, G.; Morais, L.; Pereira, C.; Cesar, A.; Abessa, D.; Christofoletti, R. Quantitative analysis of pellets on beaches of the São Paulo coast and associated non-ingested ecotoxicological effects on marine organisms. Reg. Stud. Mar. Sci. 2019, 29, 100705. [Google Scholar] [CrossRef]
- Mascarenhas, R.; Santos, R.; Zeppelini, D. Plastic debris ingestion by sea turtle in Paraíba, Brazil. Mar. Pollut. Bull. 2004, 49, 354–355. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.C.; Scherer, A.L.; Petry, M.V. First record of debris ingestion by the shorebird American Oystercatcher (Haematopus palliatus) on the Southern coast of Brazil. Mar. Pollut. Bull. 2019, 138, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Tavares, D.C.; Moura, J.F.; Acevedo-Trejos, E.; Crawford, R.J.; Makhado, A.; Lavers, J.L.; Witteveen, M.; Ryan, P.G.; Merico, A. Confidence intervals and sample size for estimating the prevalence of plastic debris in seabird nests. Environ. Pollut. 2020, 263, 114394. [Google Scholar] [CrossRef] [PubMed]
- Diez, S.M.; Patil, P.G.; Morton, J.; Rodriguez, D.J.; Vanzella, A.; Obin, D.V.; Maes, T.; Corbin, C. Marine Pollution in the Caribbean: Not a Minute to Waste; World Bank Group: Washington, DC, USA, 2019. [Google Scholar]
- Phillips, W.; Thorne, E.; Roopnarine, C. Economic Implications of the Ban on Single-Use Plastics in the Caribbean: A Case Study of Trinidad and Tobago; Economic Commission for Latin America and the Caribbean (ECLAC): Santiago, Chile, 2020; ISBN 1728-5445. [Google Scholar]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Campos, D.; Duarte, A.C.; Soares, A.M.; Barcelò, D.; Rocha-Santos, T. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total. Environ. 2020, 742, 140565. [Google Scholar] [CrossRef] [PubMed]
- Herron, J.B.T.; Hay-David, A.G.C.; Gilliam, A.D.; Brennan, P.A. Personal Protective Equipment and COVID-19—A Risk to Healthcare Staff? Br. J. Oral Maxillofac. Surg. 2020, 58, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Rakib, R.J.; De-La-Torre, G.E.; Pizarro-Ortega, C.I.; Dioses-Salinas, D.C.; Al-Nahian, S. Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in Cox’s Bazar, the longest natural beach in the world. Mar. Pollut. Bull. 2021, 169, 112497. [Google Scholar] [CrossRef] [PubMed]
- Torres, F.G.; De-La-Torre, G.E. Historical microplastic records in marine sediments: Current progress and methodological evaluation. Reg. Stud. Mar. Sci. 2021, 46, 101868. [Google Scholar] [CrossRef]
- Alfonso, M.B.; Arias, A.H.; Menéndez, M.C.; Ronda, A.C.; Harte, A.; Piccolo, M.C.; Marcovecchio, J.E. Assessing threats, regulations, and strategies to abate plastic pollution in LAC beaches during COVID-19 pandemic. Ocean Coast. Manag. 2021, 208, 105613. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Williams, A.; Costa, M.F.; de Jonge, V. Curbing the inexorable rising in marine litter: An overview. Ocean Coast. Manag. 2020, 188, 105133. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Gracia, A.; Velez-Mendoza, A.; Carvajal-Florián, A.; Mojica-Martinez, L.; Neal, W.J. Where did this refuse come from? Marine anthropogenic litter on a remote island of the Colombian Caribbean sea. Mar. Pollut. Bull. 2019, 149, 110611. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Williams, A.; Anfuso, G. Killing the goose with the golden eggs: Litter effects on scenic quality of the Caribbean coast of Colombia. Mar. Pollut. Bull. 2018, 127, 22–38. [Google Scholar] [CrossRef] [PubMed]
- Andriolo, U.; Gonçalves, G.; Rangel-Buitrago, N.; Paterni, M.; Bessa, F.; Gonçalves, L.M.; Sobral, P.; Bini, M.; Duarte, D.; Fontán-Bouzas, Á.; et al. Drones for litter mapping: An inter-operator concordance test in marking beached items on aerial images. Mar. Pollut. Bull. 2021, 169, 112542. [Google Scholar] [CrossRef] [PubMed]
- Deidun, A.; Gauci, A.; Lagorio, S.; Galgani, F. Optimising beached litter monitoring protocols through aerial imagery. Mar. Pollut. Bull. 2018, 131, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping marine litter using UAS on a beach-dune system: A multidisciplinary approach. Sci. Total. Environ. 2020, 706, 135742. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, P.D.; Borzone, C.A.; Padial, A.A.; Harris, L.R. A semi-automated approach to classify and map ecological zones across the dune-beach interface. Estuar. Coast. Shelf Sci. 2018, 208, 61–69. [Google Scholar] [CrossRef]
- Hengstmann, E.; Gräwe, D.; Tamminga, M.; Fischer, E.K. Marine litter abundance and distribution on beaches on the Isle of Rügen considering the influence of exposition, morphology and recreational activities. Mar. Pollut. Bull. 2017, 115, 297–306. [Google Scholar] [CrossRef]
- Andriolo, U.; Gonçalves, G.; Hidaka, M.; Gonçalves, D.; Gonçalves, L.M.; Bessa, F.; Kako, S. Marine litter weight estimation from UAV imagery: Three potential methodologies to advance macrolitter reports. Mar. Pollut. Bull. 2024, 202, 116405. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, G.; Andriolo, U.; Gonçalves, L.M.; Sobral, P.; Bessa, F. Beach litter survey by drones: Mini-review and discussion of a potential standardization. Environ. Pollut. 2022, 315, 120370. [Google Scholar] [CrossRef]
- Escobar-Sánchez, G.; Markfort, G.; Berghald, M.; Ritzenhofen, L.; Schernewski, G. Aerial and underwater drones for marine litter monitoring in shallow coastal waters: Factors influencing item detection and cost-efficiency. Environ. Monit. Assess. 2022, 194, 863. [Google Scholar] [CrossRef]
- Kabiri, K.; Rezai, H.; Moradi, M. A Drone-Based Method for Mapping the Coral Reefs in the Shallow Coastal Waters—Case Study: Kish Island, Persian Gulf. Earth Sci. Inform. 2020, 13, 1265–1274. [Google Scholar] [CrossRef]
- Higgins, A.; Restrepo, J.C.; Ortiz, J.C.; Pierini, J.; Otero, L. Suspended sediment transport in the Magdalena River (Colombia, South America): Hydrologic regime, rating parameters and effective discharge variability. Int. J. Sediment Res. 2016, 31, 25–35. [Google Scholar] [CrossRef]
- Carvajal, A. Caracterización Fisico-Biotica Del Litoral Del Departamento Del Atlántico. In Caracterización Fisico-Biotica del Litoral Caribe Colombiano Tomo I.; DIMAR, Serie Publicaciones Especiales CIOH Vol. 1.: Cartagena de Indias; Dirección General Marítima-Centro Investigaciones Oceanográficas e Hidrográficas: Bogotá, Colombia, 2009; pp. 97–110. ISBN 978-958-99076-0-3. [Google Scholar]
- Restrepo, J.D.; Kjerfve, B.; Hermelin, M.; Restrepo, J.C. Factors controlling sediment yield in a major South American drainage basin: The Magdalena River, Colombia. J. Hydrol. 2006, 316, 213–232. [Google Scholar] [CrossRef]
- Restrepo, J.; Kjerfve, B. Magdalena river: Interannual variability (1975–1995) and revised water discharge and sediment load estimates. J. Hydrol. 2000, 235, 137–149. [Google Scholar] [CrossRef]
- Marriaga, L. Características Generales Del Caribe Colombiano. In Caracterización Físico-Biótica del Litoral Caribe Colombiano. Tomo I; DIMAR, Serie Publicaciones Especiales CIOH Vol. 1; Castrillón Gálvez, A.M., Espinosa Serna, D.X., Franco Balanta, J.G., Soltau Ospina, J.M., Uribe Alzate, E., Eds.; DIMAR: Cartagena de Indias, Colombia, 2009; pp. 17–23. [Google Scholar]
- OSPAR Guideline for Monitoring Marine Litter on the Beaches in the OSPAR Maritime Area; OSPAR Commission: London, UK, 2010.
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 5 May 2024).
- Rangel-Buitrago, N.; Velez-Mendoza, A.; Gracia, A.; Neal, W.J. The impact of anthropogenic litter on Colombia’s central Caribbean beaches. Mar. Pollut. Bull. 2020, 152, 110909. [Google Scholar] [CrossRef]
- Okuku, E.O.; Kiteresi, L.; Owato, G.; Otieno, K.; Omire, J.; Kombo, M.M.; Mwalugha, C.; Mbuche, M.; Gwada, B.; Wanjeri, V.; et al. Temporal trends of marine litter in a tropical recreational beach: A case study of Mkomani beach, Kenya. Mar. Pollut. Bull. 2021, 167, 112273. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Mekonnen, B.A. Current plastics pollution threats due to COVID-19 and its possible mitigation techniques: A waste-to-energy conversion via Pyrolysis. Environ. Syst. Res. 2021, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Ardusso, M.; Forero-López, A.; Buzzi, N.; Spetter, C.; Severini, F. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci. Total. Environ. 2020, 763, 144365. [Google Scholar] [CrossRef]
- Dharmaraj, S.; Ashokkumar, V.; Hariharan, S.; Manibharathi, A.; Show, P.L.; Chong, C.T.; Ngamcharussrivichai, C. The COVID-19 pandemic face mask waste: A blooming threat to the marine environment. Chemosphere 2021, 272, 129601. [Google Scholar] [CrossRef] [PubMed]
- Thiel, M.; Lorca, B.B.; Bravo, L.; Hinojosa, I.A.; Meneses, H.Z. Daily accumulation rates of marine litter on the shores of Rapa Nui (Easter Island) in the South Pacific Ocean. Mar. Pollut. Bull. 2021, 169, 112535. [Google Scholar] [CrossRef] [PubMed]
- Klemeš, J.J.; Van Fan, Y.; Tan, R.R.; Jiang, P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sustain. Energy Rev. 2020, 127, 109883. [Google Scholar] [CrossRef] [PubMed]
- Garcés-Ordóñez, O.; Díaz, L.F.E.; Cardoso, R.P.; Muniz, M.C. The impact of tourism on marine litter pollution on Santa Marta beaches, Colombian Caribbean. Mar. Pollut. Bull. 2020, 160, 111558. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Buitrago, N.; Williams, A.; Anfuso, G.; Arias, M.; Garcia, A. Magnitudes, sources, and management of beach litter along the Atlantico department coastline, Caribbean coast of Colombia. Ocean Coast. Manag. 2017, 138, 142–157. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Mendoza, A.V.; Mantilla-Barbosa, E.; Arroyo-Olarte, H.; Arana, V.A.; Trilleras, J.; Gracia, A.; Neal, W.J.; Williams, A.T. Plastic pollution on the Colombian central Caribbean beaches. Mar. Pollut. Bull. 2020, 162, 111837. [Google Scholar] [CrossRef] [PubMed]
- Manzolli, R.P.; Blanco, D.; Portz, L.; Yanes, A.; Zielinski, S.; Agudelo, C.A.R.; Suarez, A. Large Wood Debris Contributes to Beach Ecosystems but Colombian Beachgoer’s Do Not Recognize It. Sustainability 2022, 14, 8140. [Google Scholar] [CrossRef]
- Galgani, F.; Hanke, G.; Maes, T. Global Distribution, Composition and Abundance of Marine Litter BT—Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 29–56. ISBN 978-3-319-16510-3. [Google Scholar]
- Critchell, K.; Lambrechts, J. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? Estuar. Coast. Shelf Sci. 2016, 171, 111–122. [Google Scholar] [CrossRef]
- Andriolo, U.; Gonçalves, G.; Sobral, P.; Fontán-Bouzas, Á.; Bessa, F. Beach-dune morphodynamics and marine macro-litter abundance: An integrated approach with Unmanned Aerial System. Sci. Total. Environ. 2020, 749, 141474. [Google Scholar] [CrossRef]
- Dunlop, S.; Dunlop, B.; Brown, M. Plastic pollution in paradise: Daily accumulation rates of marine litter on Cousine Island, Seychelles. Mar. Pollut. Bull. 2020, 151, 110803. [Google Scholar] [CrossRef]
- Lokhandwala, S.; Gautam, P. Indirect impact of COVID-19 on environment: A brief study in Indian context. Environ. Res. 2020, 188, 109807. [Google Scholar] [CrossRef] [PubMed]
- Segal, Y.; Gertner, Y.; Sisma-Ventura, G.; Zurel, D.; Herut, B. The State of Beach Litter Pollution during the COVID-19 Pandemic: A Case Study of the Israeli Coasts. Coast. Manag. 2022, 50, 372–384. [Google Scholar] [CrossRef]
- Peng, M.; Oleson, K.L. Beach Recreationalists’ Willingness to Pay and Economic Implications of Coastal Water Quality Problems in Hawaii. Ecol. Econ. 2017, 136, 41–52. [Google Scholar] [CrossRef]
- Enriquez-Acevedo, T.; Botero, C.M.; Cantero-Rodelo, R.; Pertuz, A.; Suarez, A. Willingness to pay for Beach Ecosystem Services: The case study of three Colombian beaches. Ocean Coast. Manag. 2018, 161, 96–104. [Google Scholar] [CrossRef]
- Britton, E.; Domegan, C.; McHugh, P. Accelerating sustainable ocean policy: The dynamics of multiple stakeholder priorities and actions for oceans and human health. Mar. Policy 2021, 124, 104333. [Google Scholar] [CrossRef]
Beach Closed | Open | |||||||
---|---|---|---|---|---|---|---|---|
April 08 | April 29 | May 05 | May 14 | May 16 | May 30 | June 30 | July 15 | |
Plastic fragment | 2 | 12 | 4 | 31 | 30 | 26 | 35 | 16 |
Plastic cutlery/trays | 2 | 2 | 0 | 2 | 37 | 38 | 70 | 41 |
Plastic lolly sticks/straw | 1 | 0 | 1 | 3 | 38 | 41 | 49 | 32 |
Plastic drinks (bottles, containers, drums) | 0 | 4 | 4 | 4 | 25 | 32 | 65 | 25 |
Plastic bags | 2 | 16 | 0 | 15 | 32 | 29 | 39 | 35 |
Plastic caps | 1 | 0 | 3 | 6 | 25 | 11 | 45 | 22 |
Plastic crisp/sweet packets | 0 | 3 | 0 | 11 | 42 | 51 | 89 | 88 |
Plastic cups | 1 | 4 | 0 | 8 | 60 | 47 | 68 | 40 |
Plastic pots | 0 | 5 | 0 | 3 | 6 | 5 | 8 | 4 |
Expanded polystyrene (frag) | 0 | 6 | 0 | 2 | 20 | 30 | 35 | 23 |
Expanded polystyrene | 3 | 3 | 0 | 8 | 33 | 58 | 55 | 48 |
Rubber (shoes) | 0 | 0 | 0 | 4 | 0 | 2 | 3 | 2 |
Metal (drink cans) | 0 | 2 | 0 | 1 | 15 | 22 | 42 | 20 |
Other | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
Glass | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 5 |
Surgical masks | 0 | 0 | 4 | 4 | 9 | 22 | 15 | 18 |
Undetermined | 5 | 11 | 1 | 5 | 10 | 22 | 15 | 17 |
Density (items·m−2) | 0.004 | 0.013 | 0.003 | 0.037 | 0.121 | 0.178 | 0.208 | 0.142 |
Area (m2) | 4113 | 5392 | 5237 | 2886 | 3074 | 2490 | 3045 | 3143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzolli, R.P.; Portz, L. Use of Drone Remote Sensing to Identify Increased Marine Macro-Litter Contamination following the Reopening of Salgar Beach (Colombian Caribbean) during Pandemic Restrictions. Sustainability 2024, 16, 5399. https://doi.org/10.3390/su16135399
Manzolli RP, Portz L. Use of Drone Remote Sensing to Identify Increased Marine Macro-Litter Contamination following the Reopening of Salgar Beach (Colombian Caribbean) during Pandemic Restrictions. Sustainability. 2024; 16(13):5399. https://doi.org/10.3390/su16135399
Chicago/Turabian StyleManzolli, Rogério Portantiolo, and Luana Portz. 2024. "Use of Drone Remote Sensing to Identify Increased Marine Macro-Litter Contamination following the Reopening of Salgar Beach (Colombian Caribbean) during Pandemic Restrictions" Sustainability 16, no. 13: 5399. https://doi.org/10.3390/su16135399
APA StyleManzolli, R. P., & Portz, L. (2024). Use of Drone Remote Sensing to Identify Increased Marine Macro-Litter Contamination following the Reopening of Salgar Beach (Colombian Caribbean) during Pandemic Restrictions. Sustainability, 16(13), 5399. https://doi.org/10.3390/su16135399