Effects of Olivine Alteration on Micro-Internal Structure and Geomechanical Properties of Basalts and Strength Prediction in These Rocks
Abstract
:1. Introduction
2. Experimental Studies
2.1. General Geology and Sampling Location
2.2. Geomechanical Tests of Basalts
2.3. Petrographic Examination of Basalts
2.4. Statistical Analysis of Basalts
3. Results and Discussion
3.1. General Evaluation of the Test Results
3.2. Assessment of the Relationships between Data Pairs
3.3. Effect of Olivine Serpentinization on the Geomechanical Properties of Basalts
3.4. Changes in Geotechnical Properties of Basalts Taken from Different Points of the Same Formation
3.4.1. General Geological Assessment of the Sample Points
3.4.2. Mineralogical and Petrographic Assessment of Basalts
3.4.3. SEM-EDS Analysis of Basalts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karaman, K.; Erçıkdı, B.; Kesimal, A. The assessment of slope stability and rock excavatability in a limestone quarry. Earth Sci. Res. J. 2013, 17, 169–181. [Google Scholar]
- Zhang, X.; Altalbawy, F.M.A.; Gasmalla, T.A.S.; Al-Khafaji, A.H.D.; Iraji, A.; Syah, R.B.Y.; Nehdi, M.L. Performance of Statistical and Intelligent Methods in Estimating Rock Compressive Strength. Sustainability 2023, 15, 5642. [Google Scholar] [CrossRef]
- Karaman, K.; Bakhytzhan, A. Prediction of concrete strength from rock properties at the preliminary design stage. Geomech. Eng. 2020, 23, 115–125. [Google Scholar]
- Wang, M.; Xu, W.; Chen, D.; Li, J.; Mu, H.; Mi, J.; Wu, Y. Summary of the Transformational Relationship between Point Load Strength Index and Uniaxial Compressive Strength of Rocks. Sustainability 2022, 14, 12456. [Google Scholar] [CrossRef]
- Jan, M.S.; Hussain, S.; e Zahra, R.; Emad, M.Z.; Khan, N.M.; Rehman, Z.U.; Cao, K.; Alarifi, S.S.; Raza, S.; Sherin, S.; et al. Appraisal of Different Artificial Intelligence Techniques for the Prediction of Marble Strength. Sustainability 2023, 15, 8835. [Google Scholar] [CrossRef]
- Ulusay, R.; Hudson, J.A. The complete ISRM suggested methods for rock characterization, testing and monitoring. In Suggested Methods Prepared by the Commission on Testing Methods; International Society for Rock Mechanics—ISRM: Ankara, Turkey; p. 628.
- Kahraman, S. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock Mech. Min. Sci. 2001, 38, 981–994. [Google Scholar] [CrossRef]
- Karaman, K.; Cihangir, F.; Erçıkdı, B.; Kesimal, A.; Demırel, S. Utilization of the Brazilian test for estimating the uniaxial compressive strength and shear strength parameters. J. South. Afr. Inst. Min. Metall. 2015, 115, 185–192. [Google Scholar] [CrossRef]
- Karaman, K. Evaluation of different surface characteristics and mineral grain size in the estimation of rock strength using the Schmidt Hammer. Afr. Inst. Min. Metall. 2024, 124, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Tugrul, A.; Zarif, I.H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar] [CrossRef]
- Karaman, K.; Kesimal, A. Evaluation of the influence of porosity on the engineering properties of volcanic rocks from the Eastern Black Sea Region: NE Turkey. Arab. J. Geosci. 2015, 8, 557–564. [Google Scholar] [CrossRef]
- Kolay, E.; Baser, T. The effect of the textural characteristics on the engineering properties of the basalts from Yozgat region Turkey. J. Geol. Soc. India. 2017, 90, 102–110. [Google Scholar] [CrossRef]
- Tandon, R.S.; Gupta, V. The control of mineral constituents and textural characteristics on the petrophysical and mechanical (PM) properties of different rocks of the Himalaya. Eng. Geol. 2013, 153, 125–143. [Google Scholar] [CrossRef]
- Shakoor, A.; Bonelli, R.E. Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Bull. Int. Assoc. Eng. Geol. 1991, 28, 55–71. [Google Scholar] [CrossRef]
- Brace, W.F. Dependence of fracture strength of rocks on grain size. In Proceedings of the 4th U.S. Symposium on Rock Mechanics (USRMS), University Park, PA, USA, 30 March 1961; pp. 99–103. [Google Scholar]
- Sonmez, H.; Gokceoglu, C.; Medley, E.W.; Tuncay, E.; Nefeslioglu, H.A. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci. 2006, 43, 554–561. [Google Scholar] [CrossRef]
- Ulusay, R.; Tureli, K.; VeIder, M.H. Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng. Geol. 1994, 38, 135–157. [Google Scholar] [CrossRef]
- Goodman, R.E. Rock in Engineering Construction; Wiley: New York, NY, USA, 1993; p. 412. [Google Scholar]
- Saar, M.O.; Manga, M. Permeability-porosity relationship in vesicular basalts. Geophys. Res. Lett. 1999, 26, 111–114. [Google Scholar] [CrossRef]
- Gurocak, Z.; Kilic, R. Effect of weathering on the geo mechanical properties of the miocene basalts in Malatya, Eastern Turkey. Bull. Eng. Geol. Environ. 2005, 64, 373–381. [Google Scholar] [CrossRef]
- Juneja, A.; Endait, M. Laboratory measurement of elastic waves in basalt rock. Measure 2017, 103, 217–226. [Google Scholar] [CrossRef]
- Murthy, S.K.; Gupta, S.; Kumar, D.; Dixit, M. The effect of porosity on engineering properties of vesicular amygdaloidal basalts. Int. J. Eng. Technol. Appl. Sci. 2021, 5, 134–137. [Google Scholar]
- Pathiranagei, S.V.; Gratchev, I.; Kong, R. Engineering properties of four different rocks after heat treatment. Geomech. Geophys. Geol. 2021, 7, 16. [Google Scholar] [CrossRef]
- Tahir, O.M.O.; Karaman, K. Prediction of the uniaxial compressive strength of basalts from the point load strength index using the conversion factor. Gümüşhane Üniver. Fen Bilim. Enstitüsü Derg. 2021, 11, 1242–1249. (In Turkish) [Google Scholar]
- Liu, Z.; Zhang, C.; Wang, H.; Zhou, H.; Zhou, B. Effects of amygdale heterogeneity and sample size on the mechanical properties of basalt. J. Rock Mech. Geotech. Eng. 2022, 14, 93–107. [Google Scholar] [CrossRef]
- Tarawneh, K.; Amaireh, M.; Abdelhadi, N.; Titi, A.; Dweirj, M. Characterization of the physical and mechanical properties of the harrat ash shaam basalt (HASB)/Northeast Jordan. Open J. Civil Eng. 2022, 12, 463–475. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, X.; Sun, H.; Dong, Q.; Du, W.; Long, Q. Variations in permeability and mechanical properties of basaltic rocks ınduced by carbon mineralization. Sustainability 2022, 14, 15195. [Google Scholar] [CrossRef]
- Sharo, A.A.; Al-Tawaha, M.S. Prediction of engineering properties of basaltic rocks in Jordan. Int. J. Civ. Eng Technol. 2019, 10, 1731–1739. [Google Scholar]
- Yucel, C.; Arslan, M.; Temizel, İ.; Abdioglu, E. Volcanic facies and mineral chemistry of Tertiary volcanics in the northern part of the Eastern Pontides, northeast Turkey: Implications for pre-eruptive crystallization conditions and magma chamber processes. Mineral. Petrol. 2014, 108, 439–467. [Google Scholar] [CrossRef]
- Leeb, D. New dynamic method for hardness testing of metallic materials. Rev. Metal. 1979, 15, 57–63. [Google Scholar]
- Desarnaud, J.; Kiriyama, K.; Simsir, B.; Wilhelm, K.; Viles, H. A laboratory study of equotip surface hardness measurements on a range of sandstones. What influences the values and what do they mean. Earth Surf. Process. Landf. 2019, 44, 1419–1429. [Google Scholar] [CrossRef]
- Korkanc, M.; Tugrul, A.M. Evaluation of selected basalts from Niğde. Turkey. as source of concrete aggregate. Eng. Geol. 2004, 75, 291–307. [Google Scholar] [CrossRef]
- Toft, P.B.; Arkani-Hamed, J.; Haggerty, S.E. The effects of serpentinization on density and magnetic susceptibility. a petrophysical model. Phys. Earth Planet. Inter. 1990, 65, 137–157. [Google Scholar] [CrossRef]
- Kahraman, S.; Gunaydin, O.; Fener, M. The effect of porosity on the relation between uniaxial compressive strength and point load ındex. Int. J. Rock Mech. Min. Sci. 2005, 42, 584–589. [Google Scholar] [CrossRef]
- Kılıc, A.; Teymen, A. Determination of mechanical properties of rocks using simple methods. Bull. Eng. Geol. Environ. 2008, 67, 237–244. [Google Scholar] [CrossRef]
- Diamantis, K.; Exarhakos, G.; Migiros, G.; Gartzos, E. Evaluating the triaxial characteristics of ultamafic rocks from central Greece using the physical, dynamic and mechanical properties. Open Access Libr. J. 2016, 3, 1–20. [Google Scholar] [CrossRef]
- Schuiling, R.D. Troodos: A giant serpentinite diapir. Int. J. Geosci. 2011, 2, 98–101. [Google Scholar] [CrossRef]
- Moody, J.B. Serpentinization: A review. Lithos 1976, 9, 125–138. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Hirth, G. Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation. Earth Planet Sci. Lett. 2012, 345, 81–89. [Google Scholar] [CrossRef]
- Allen, D.E.; Seyfried, W.E. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems ad mid-ocean ridges: An experimental study at 400 °C, 500 bars Geochim. Cosmochim. Acta 2004, 67, 1531–1542. [Google Scholar]
- Streit, E.; Kelemen, P.; Eiler, J. Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman. Contrib Miner. Petrol. 2012, 164, 821–837. [Google Scholar] [CrossRef]
- O’Hanley, D.S. Solution to the volume problem in serpentinization. Geology 1992, 20, 705–708. [Google Scholar] [CrossRef]
- Jamtveit, B.; Putnis, C.V.; Malthe-Sørenssen, A. Reaction induced fracturing during replacement processes. Cont. Miner. Petrol. 2009, 157, 127–133. [Google Scholar] [CrossRef]
- Farough, A.; Moore, D.E.; Lockner, D.A.; Lowell, R.P. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study. Geochem. Geophys. Geosystems 2015, 16, 44–55. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Kendrick, J.E.; Oommen, T.; Lavallée, Y.; Chigna, G. Geomechanical rock properties of a basaltic volcano. Volcanology 2015, 3, 29. [Google Scholar] [CrossRef]
- Pappalardo, G.; Punturo, R.; Mineo, S.; Contrafatto, L. The role of porosity on the engineering geological properties of lavas from Mount Etna. Eng. Geol. 2017, 221, 16–28. [Google Scholar] [CrossRef]
- Heap, M.J.; Xu, T.; Chen, C. The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma. Bull. Volcanol. 2014, 76, 856. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Katayama, I. Pore fluid effects on elastic wave velocities of serpentinite and implications for estimates of serpentinization in oceanic lithosphere. Tectonophysics 2020, 775, 228309. [Google Scholar] [CrossRef]
- Tenthorey, E.; Cox, S.F.; Todd, H.F. Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones. Earth Planet. Sci. Lett. 2003, 206, 161–172. [Google Scholar] [CrossRef]
- Huang, R.; Sun, W.; Song, M.; Ding, X. Influence of pH on Molecular Hydrogen (H2) Generation and Reaction Rates during Serpentinization of Peridotite and Olivine. Minerals 2019, 9, 661. [Google Scholar] [CrossRef]
- Lamadrid, H.M.; Rimstidt, J.D.; Schwarzenbach, E.M.; Klein, F.; Ulrich, S.; Dolocan, A.; Bodnar, R.J. Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 2017, 8, 16107. [Google Scholar] [CrossRef] [PubMed]
- Escartin, J.; Hirth, G.; Evans, B. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology 2001, 29, 1023–1026. [Google Scholar] [CrossRef]
- Deschamps, F.; Godard, M.; Guillot, S.; Hattori, K. Geochemistry of subduction zone serpentinites: A review. Lithos 2013, 178, 96–127. [Google Scholar] [CrossRef]
- Breuninger, T.; Menschik, B.; Demharter, A.; Gamperl, M.; Thuro, K. Investigation of critical geotechnical, petrological and mineralogical parameters for landslides in deeply weathered dunite rock (Medellín, Colombia). Int. J. Environ. Res. Public Health 2021, 18, 11141. [Google Scholar] [CrossRef]
- Franklin, J.A. Classification of Rock According to Its Mechanical Properties. Ph.D. Dissertation, University of London Imperial College, London, UK, 1970. [Google Scholar]
Rock Code | UCS (MPa) Dry-Sat. | PLI (MPa) Dry-Sat. | BTS (MPa) Dry-Sat. | UPV (m/s) Dry-Sat. | R Dry-Sat. | HL Dry-Sat. | ρ (g/cm3) Dry-Sat. | n (%) |
---|---|---|---|---|---|---|---|---|
1 | 167–145 | 8.9–7.8 | 14.2–12.4 | 5904–6131 | 44–42 | 835–789 | 2.90–2.91 | 0.65 |
2 | 184–130 | 10.3–9.5 | 14.8–14.5 | 5932–6088 | 43–41 | 812–770 | 2.89–2.90 | 0.66 |
3 | 185–132 | 9.9–9.6 | 12.1–11.0 | 5905–6116 | 42–39 | 826–802 | 2.88–2.89 | 0.84 |
4 | 180–150 | 9.5–8.7 | 11.8–11.2 | 5665–6118 | 45–42 | 848–807 | 2.91–2.92 | 0.75 |
5 | 139–69 | 4.5–3.7 | 8.9–7.7 | 4945–5653 | 40–38 | 720–663 | 2.80–2.82 | 2.48 |
6 | 100–56 | 3.8–3.3 | 8.3–7.5 | 4567–5394 | 37–34 | 700–641 | 2.79–2.81 | 3.11 |
7 | 60–33 | 2.9–1.6 | 8.1–5.5 | 3856–4671 | 24–20 | 620–580 | 2.78–2.82 | 4.22 |
8 | 51–25 | 2.7–1.3 | 7.4–3.1 | 3365–4430 | 19–15 | 570–501 | 2.78–2.81 | 5.29 |
Minerals | Mineral Contents of Selected Samples (%) | |||||||
---|---|---|---|---|---|---|---|---|
Akçakale 1 (A1) | Mersin 2 (M2) | Mersin 3 (M3) | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Labradorite | 49 | 50 | 48 | 47 | 46 | 48 | 46 | 47 |
Augite | 25 | 27 | 25 | 28 | 26 | 25 | 28 | 27 |
Olivine | 20 | 18 | 20 | 18 | 20 | 19 | 20 | 19 |
Opaque | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 2 |
Biotite | 2 | 2 | 3 | 2 | 3 | 3 | 2 | 3 |
Vesicle | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
SR | 5 | 5–10 | 10 | 10 | 15–20 | 25–35 | 70–75 | 70–80 |
Data Pairs | Equations | R.Type | R2 | ANOVA All Values | ANOVA n > 1% | |
---|---|---|---|---|---|---|
F | SL | SL | ||||
UCSD—PLID | UCSD = 93.5In(PLID)-30 | Logarithmic | 0.95 | 109.489 | 0.000 | 0.000 |
UCSD—BTSD | UCSD= 185ln(BTSD)-300 | Logarithmic | 0.81 | 24.810 | 0.003 | 0.068 |
UCSD—ρD | UCSD = 834 ρD—2237 | Linear | 0.81 | 25.014 | 0.002 | 0.005 |
UCSD—n | UCSD = −30.1 n + 201 | Linear | 0.96 | 157.779 | 0.000 | 0.009 |
UCSD—RD | UCSD = 17.762e0.052RD | Power | 0.96 | 132.445 | 0.000 | 0.016 |
UCSD—HL,D | UCSD = 2 × 10−8 HL,D 3.4125 | Power | 0.95 | 126.151 | 0.000 | 0.026 |
UCSD—UPVD | UCSD = 2 × 10−7 UPVD 2.3729 | Power | 0.97 | 226.823 | 0.000 | 0.012 |
UCSS—PLIS | UCSS = 21.153 PLIS 0.8609 | Power | 0.98 | 280.629 | 0.000 | 0.008 |
UCSS—BTSS | UCSS = 4.6503 BTSS 1.3255 | Power | 0.91 | 59.201 | 0.000 | 0.035 |
UCSS—ρS | UCSS = 1055 ρS -2922 | Linear | 0.93 | 79.111 | 0.000 | 0.702 |
UCSS—n | UCSS = 183.05e−0.387 n | Exponential | 0.99 | 791.034 | 0.000 | 0.006 |
UCSS—RS | UCSS = 8.7832e0.0639 RS | Exponential | 0.90 | 56.246 | 0.000 | 0.002 |
UCSS—HL,S | UCSS = 1.1217e0.0061HL,S | Exponential | 0.99 | 389.417 | 0.000 | 0.024 |
UCSS—UPVS | UCSS = 0.3e0.001UPVS | Exponential | 0.98 | 263.197 | 0.000 | 0.003 |
SR—UCSD | SR = 144,051 UCSD −1.9 | Exponential | 0.91 | 179.514 | 0.000 | 0.006 |
SR—UCSs | SR = 8261.5 UCSs −1.409 | Power | 0.95 | 106.085 | 0.000 | 0.008 |
SR—UPVs | SR = −0.043 UPVs + 266 | Linear | 0.97 | 214.794 | 0.000 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaman, K.; Kolaylı, H. Effects of Olivine Alteration on Micro-Internal Structure and Geomechanical Properties of Basalts and Strength Prediction in These Rocks. Sustainability 2024, 16, 5490. https://doi.org/10.3390/su16135490
Karaman K, Kolaylı H. Effects of Olivine Alteration on Micro-Internal Structure and Geomechanical Properties of Basalts and Strength Prediction in These Rocks. Sustainability. 2024; 16(13):5490. https://doi.org/10.3390/su16135490
Chicago/Turabian StyleKaraman, Kadir, and Hasan Kolaylı. 2024. "Effects of Olivine Alteration on Micro-Internal Structure and Geomechanical Properties of Basalts and Strength Prediction in These Rocks" Sustainability 16, no. 13: 5490. https://doi.org/10.3390/su16135490
APA StyleKaraman, K., & Kolaylı, H. (2024). Effects of Olivine Alteration on Micro-Internal Structure and Geomechanical Properties of Basalts and Strength Prediction in These Rocks. Sustainability, 16(13), 5490. https://doi.org/10.3390/su16135490