Environmental Impact and Sustainability of Bioplastic Production from Food Waste
Abstract
:1. Introduction
2. Methodology
2.1. Goal and Scope, System Boundaries
2.2. Life Cycle Inventory
2.2.1. Raw Material Acquisition
2.2.2. Pilot Unit Description
2.2.3. Avoided Landfilling
2.3. Life Cycle Impact Assessment
2.4. Alternative Feedstock Scenario
2.5. Interpretation
2.6. Sensitivity and Uncertainty Analysis
3. Results and Discussion
3.1. Characterization and Normalization
3.2. Alternative Feedstock Scenario
3.3. Sensitivity and Uncertainty Analysis
4. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Chemical | Characteristics/Supply Company | Amount | Unit |
---|---|---|---|
Sodium hydroxide | ≥98.0–100.5%/Sigma Aldrich (Burlington, MA, USA) | 25 | kg |
Sodium hypochlorite, | without water, in a 15% solution state/market product for cleaning | 100 | kg |
Tetrahydrofuran | Min. 99.5%/Honeywell (Charlotte, NC, USA) | 4.5 | kg |
Acetone, | Pure 100%, Liquid/Manis chemicals (Athens, Greece) | 4 | kg |
Hydrochloric acid from benzene chlorination | Honeywell X31087 hydrochloric acid solution, 6 M HCl | 4 | kg |
1-butanol | p.a. ≥99.5%/Merck (Marousi, Athens, Greece) | 176 | kg |
Tin concentrate (Tin(II) 2-ethylhexanoate) | 92.5–100.0%/Sigma Aldrich (Burlington, MA, USA) | 1 | kg |
Enzyme, Glucoamylase, Novozyme, Spirizyme | Amlyloglucosidases Spirizyme Fuel (SPF) from Novozymes | 5 | kg |
Ammonium Hydroxide | liquid 25%/Manis chemicals (Athens, Greece) | 25 | kg |
Production Energy | Hours of Operation (h) | Power of Devices (kW) | Energy Requirements (kWh) | |
---|---|---|---|---|
Receiving/processing equipment (conveyor belt, conveyor screws, shredder, pulper, monopump) | 2 h in every 8 h shift * 11 batches * 85% | 18.7 | 22.02 kW | 411.8 |
Bioreactor R1 | 4 days * 24 h/day * 11 batches * 85% | 898 | 0.5 kW | 449 |
Bioreactor R2 | 1 day * 4 h/day * 11 batches * 85% | 37.4 | 0.5 kW | 18.7 |
Filter system | 1 day * 2 h/day * 11 batches * 85% | 18.7 | 0.55 kW | 10.3 |
Low temperature heating system: for R1 | 3.5 days * 24 h/day * 11 batches * 85% | 785 | 4.37 kW | 3430.5 |
Burner R1 | 0.5 days * 24 h/day * 11 batches * 85% | 112.2 | 0.035 kW | 3.9 |
Burner R2 | 1 day * 4 h/day * 11 batches * 85% | 37.4 | 0.035 kW | 1.3 |
Polymerization devices | 1 day * 6 h/day * 11 batches * 85% | 56.1 | 2.25 kW | 126.2 |
Building air circulation fans | 55 days * 8 h/day * 85% | 374 | 0.20 kW | 74.8 |
Total energy needs | 4451.7 |
Food Category | % Starch | Total Feedstock Quantity (kg) | Quantity of Starch in Feedstock (kg) |
---|---|---|---|
Spinach | 0.03 | 25.0 | 0.75 |
Broccoli | 0.03 | 28.0 | 0.84 |
Cabbage | 0.03 | 29.0 | 0.87 |
Brussel Sprouts | 0.09 | 18.0 | 1.60 |
White Potato | 0.18 | 100.0 | 18.0 |
Pepper | 0.06 | 32.0 | 1.92 |
Cucumber | 0.03 | 40.0 | 1.20 |
Lettuce | 0.03 | 80.0 | 2.40 |
Tomatoes | 0.03 | 70.0 | 2.10 |
Carrots | 0.09 | 56.5 | 5.08 |
Onions | 0.09 | 93.0 | 8.30 |
Beans | 0.21 | 10.0 | 2.10 |
Green Peas | 0.15 | 40.0 | 6.00 |
Beets | 0.09 | 22.0 | 1.98 |
Total amount of vegetables | -- | 643.5 | 53.0 |
Grapefruit | 0.09 | 5.0 | 0.45 |
Bananas | 0.21 | 25.0 | 5.25 |
Watermelon | 0.06 | 5.0 | 0.30 |
Oranges | 0.12 | 20.0 | 2.40 |
Peaches | 0.12 | 6.0 | 0.72 |
Apples | 0.15 | 10.5 | 1.58 |
Total amount of fruits | -- | 71.5 | 10.70 |
Total Starch | 63.9 | ||
Corn | 0.21 | 100.0 | 21.00 |
Total | -- | 304 | 63.9 |
Impact Category (Unit) | 2021 Energy Mix | 2023 Energy Mix | % Rate of Change |
---|---|---|---|
CC (kg CO2 eq.) | 2360.95 | 1879.05 | −20% |
OD (kg CFC11 eq.) | 0.00 | 0.00 | −21% |
IR (kBq U-235 eq.) | 225.90 | 228.23 | 1% |
POF (kg NMVOC eq.) | 5.62 | 4.56 | −19% |
PM (disease inc.) | 0.00 | 0.00 | −47% |
HT-nc (CTUh) | 0.00 | 0.00 | −12% |
HT-c (CTUh) | 0.00 | 0.00 | −32% |
A (mol H+ eq.) | 12.81 | 8.38 | −35% |
E-f (kg P eq.) | 2.19 | 2.20 | 0% |
E m (kg N eq.) | 0.02 | −0.22 | −1360% |
E-t (mol N eq.) | 12.42 | 9.78 | −21% |
ECoX-f (CTUe) | 21,125.6 | 19,234.86 | −9% |
LU (Pt) | 6978.47 | 6399.44 | −8% |
WU (m3 depriv.) | 4327.67 | 186,362.87 | 4206% |
RU-f (MJ) | 18,815.2 | 18,814.65 | 0% |
RU mm (kg Sb eq.) | 0.015 | 0.015 | 0% |
Label | PLA with Avoided FW and Corn | Low | High |
---|---|---|---|
CC | 0.323 | 0.025 | 0.036 |
OD | 0.003 | 0.001 | 0.001 |
IR | 0.036 | 0.025 | 0.205 |
POF | 0.159 | 0.025 | 0.042 |
PM | 0.141 | 0.032 | 0.09 |
HT-nc | −0.292 | 11.9 | 13.506 |
HT-c | 0.122 | 0.706 | 0.802 |
A | 0.225 | 0.018 | 0.022 |
E-f | 1.375 | 0.175 | 0.32 |
E-m | 0.001 | 0.01 | 0.017 |
E-t | 0.069 | 0.014 | 0.02 |
ECoX-f | −0.084 | 0.358 | 0.372 |
LU | 0.008 | 0.006 | 0.004 |
WU | 0.616 | 3.543 | 2.544 |
RU-f | 0.108 | 0.03 | 0.061 |
RU-mm | 0.198 | 0.071 | 0.107 |
References
- Ramos, A.; Afonso Teixeira, C.; Rouboa, A. Environmental Analysis of Waste-to-Energy—A Portuguese Case Study. Energies 2018, 11, 548. [Google Scholar] [CrossRef]
- Plastics—The Facts 2022 • Plastics Europe. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 5 October 2023).
- OECD. Global Plastics Outlook: Policy Scenarios to 2060; OECD: Paris, France, 2022; ISBN 978-92-64-97364-0. [Google Scholar]
- Browning, S.; Beymer-Farris, B.; Seay, J.R. Addressing the Challenges Associated with Plastic Waste Disposal and Management in Developing Countries. Curr. Opin. Chem. Eng. 2021, 32, 100682. [Google Scholar] [CrossRef]
- Zheng, J.; Suh, S. Strategies to Reduce the Global Carbon Footprint of Plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Schmaltz, E.; Melvin, E.C.; Diana, Z.; Gunady, E.F.; Rittschof, D.; Somarelli, J.A.; Virdin, J.; Dunphy-Daly, M.M. Plastic Pollution Solutions: Emerging Technologies to Prevent and Collect Marine Plastic Pollution. Environ. Int. 2020, 144, 106067. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Lee, J.; Brown, R.J.C.; Kim, K.-H. Micro- and Nano-Plastic Pollution: Behavior, Microbial Ecology, and Remediation Technologies. J. Clean. Prod. 2021, 291, 125240. [Google Scholar] [CrossRef]
- Saley, A.M.; Smart, A.C.; Bezerra, M.F.; Burnham, T.L.U.; Capece, L.R.; Lima, L.F.O.; Carsh, A.C.; Williams, S.L.; Morgan, S.G. Microplastic Accumulation and Biomagnification in a Coastal Marine Reserve Situated in a Sparsely Populated Area. Mar. Pollut. Bull. 2019, 146, 54–59. [Google Scholar] [CrossRef]
- Bishop, G.; Styles, D.; Lens, P.N.L. Environmental Performance Comparison of Bioplastics and Petrochemical Plastics: A Review of Life Cycle Assessment (LCA) Methodological Decisions. Resour. Conserv. Recycl. 2021, 168, 105451. [Google Scholar] [CrossRef]
- Shogren, R.; Wood, D.; Orts, W.; Glenn, G. Plant-Based Materials and Transitioning to a Circular Economy. Sustain. Prod. Consum. 2019, 19, 194–215. [Google Scholar] [CrossRef]
- Blank, L.M.; Narancic, T.; Mampel, J.; Tiso, T.; O’Connor, K. Biotechnological Upcycling of Plastic Waste and Other Non-Conventional Feedstocks in a Circular Economy. Curr. Opin. Biotechnol. 2020, 62, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, E.; Costa, S.; Summa, D.; Battistella, L.; Fano, E.A.; Castaldelli, G. Plastic (PET) vs Bioplastic (PLA) or Refillable Aluminium Bottles—What Is the Most Sustainable Choice for Drinking Water? A Life-Cycle (LCA) Analysis. Environ. Res. 2021, 196, 110974. [Google Scholar] [CrossRef] [PubMed]
- Schneiderman, D.K.; Hillmyer, M.A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules 2017, 50, 3733–3749. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, X.; Sarkar, B.; Ok, Y.S. The COVID-19 Pandemic Necessitates a Shift to a Plastic Circular Economy. Nat. Rev. Earth Environ. 2021, 2, 659–660. [Google Scholar] [CrossRef] [PubMed]
- Document 52018DC0028, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A European Strategy for Plastics in a Circular Economy. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A28%3AFIN (accessed on 10 January 2024).
- Ali, S.S.; Abdelkarim, E.A.; Elsamahy, T.; Al-Tohamy, R.; Li, F.; Kornaros, M.; Zuorro, A.; Zhu, D.; Sun, J. Bioplastic Production in Terms of Life Cycle Assessment: A State-of-the-Art Review. Environ. Sci. Ecotechnol. 2023, 15, 100254. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M. The Bioeconomy Needs Economic, Ecological and Social Sustainability. AIMSES 2022, 9, 33–50. [Google Scholar] [CrossRef]
- Sidek, I.S.; Draman, S.F.S.; Abdullah, S.R.S.; Anuar, N. Current Development on Bioplastics and Its Future Prospects: An Introductory Review. INWASCON Technol. Mag. 2019, 03–08. [Google Scholar] [CrossRef]
- Blum, N.U.; Haupt, M.; Bening, C.R. Why “Circular” Doesn’t Always Mean “Sustainable”. Resour. Conserv. Recycl. 2020, 162, 105042. [Google Scholar] [CrossRef]
- Bajpai, P. Market for Biobased Packaging Material. In Biobased Polymers; Elsevier: Amsterdam, The Netherlands, 2019; pp. 191–196. ISBN 978-0-12-818404-2. [Google Scholar]
- Chia, W.Y.; Ying Tang, D.Y.; Khoo, K.S.; Kay Lup, A.N.; Chew, K.W. Nature’s Fight against Plastic Pollution: Algae for Plastic Biodegradation and Bioplastics Production. Environ. Sci. Ecotechnol. 2020, 4, 100065. [Google Scholar] [CrossRef] [PubMed]
- Imre, B.; García, L.; Puglia, D.; Vilaplana, F. Reactive Compatibilization of Plant Polysaccharides and Biobased Polymers: Review on Current Strategies, Expectations and Reality. Carbohydr. Polym. 2019, 209, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 4712–4732. [Google Scholar] [CrossRef] [PubMed]
- Muniyasamy, S.; Dada, O.E. Recycling of Plastics and Composites Materials and Degradation Technologies for Bioplastics and Biocomposites. In Waste Management in the Fashion and Textile Industries; Elsevier: Amsterdam, The Netherlands, 2021; pp. 311–333. ISBN 978-0-12-818758-6. [Google Scholar]
- Sindhu, R.; Gnansounou, E.; Rebello, S.; Binod, P.; Varjani, S.; Thakur, I.S.; Nair, R.B.; Pandey, A. Conversion of Food and Kitchen Waste to Value-Added Products. J. Environ. Manag. 2019, 241, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo-Leiva, R.; Ladakis, D.; Ioannidou, S.-M.; Koutinas, A.; Moreira, M.T.; González-García, S. Pursuing Single or Combined Wheat Straw Based Poly(Butylene Succinate) Production Routes: A Life Cycle Approach of First- and Second-Generation Feedstocks. Sustain. Mater. Technol. 2023, 37, e00683. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Gupta, M.K.; Singh, H. PLA Based Biocomposites for Sustainable Products: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 382–395. [Google Scholar] [CrossRef]
- Tsiropoulos, I.; Faaij, A.P.C.; Lundquist, L.; Schenker, U.; Briois, J.F.; Patel, M.K. Life Cycle Impact Assessment of Bio-Based Plastics from Sugarcane Ethanol. J. Clean. Prod. 2015, 90, 114–127. [Google Scholar] [CrossRef]
- Vink, E.T.H.; Rábago, K.R.; Glassner, D.A.; Gruber, P.R. Applications of Life Cycle Assessment to NatureWorksTM Polylactide (PLA) Production. Polym. Degrad. Stab. 2003, 80, 403–419. [Google Scholar] [CrossRef]
- Brizga, J.; Hubacek, K.; Feng, K. The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth 2020, 3, 45–53. [Google Scholar] [CrossRef]
- Jõgi, K.; Bhat, R. Valorization of Food Processing Wastes and By-Products for Bioplastic Production. Sustain. Chem. Pharm. 2020, 18, 100326. [Google Scholar] [CrossRef]
- Fonseca, A.; Ramalho, E.; Gouveia, A.; Figueiredo, F.; Nunes, J. Life Cycle Assessment of PLA Products: A Systematic Literature Review. Sustainability 2023, 15, 12470. [Google Scholar] [CrossRef]
- Govil, T.; Wang, J.; Samanta, D.; David, A.; Tripathi, A.; Rauniyar, S.; Salem, D.R.; Sani, R.K. Lignocellulosic Feedstock: A Review of a Sustainable Platform for Cleaner Production of Nature’s Plastics. J. Clean. Prod. 2020, 270, 122521. [Google Scholar] [CrossRef]
- Swetha, T.A.; Ananthi, V.; Bora, A.; Sengottuvelan, N.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Review on Biodegradable Polylactic Acid (PLA) Production from Fermentative Food Waste—Its Applications and Degradation. Int. J. Biol. Macromol. 2023, 234, 123703. [Google Scholar] [CrossRef]
- Tsang, Y.F.; Kumar, V.; Samadar, P.; Yang, Y.; Lee, J.; Ok, Y.S.; Song, H.; Kim, K.-H.; Kwon, E.E.; Jeon, Y.J. Production of Bioplastic through Food Waste Valorization. Environ. Int. 2019, 127, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Elissen, H.J.H.; Kootstra, A.M.J. Production of Short-Chain Volatile Fatty Acids and Lactic Acid during Small-Scale Ensiling of Meadow Grass. Available online: https://edepot.wur.nl/415175 (accessed on 21 November 2023).
- Woodford, M. Modeling Imprecision in Perception, Valuation, and Choice. Annu. Rev. Econ. 2020, 12, 579–601. [Google Scholar] [CrossRef]
- Gong, L.; Passari, A.K.; Yin, C.; Kumar Thakur, V.; Newbold, J.; Clark, W.; Jiang, Y.; Kumar, S.; Gupta, V.K. Sustainable Utilization of Fruit and Vegetable Waste Bioresources for Bioplastics Production. Crit. Rev. Biotechnol. 2024, 44, 236–254. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, T. Biobased Polymers from Food Waste Feedstock and Their Synthesis. In Biobased Products from Food Sector Waste; Springer International Publishing: Cham, Switzerland, 2021; pp. 231–285. ISBN 978-3-030-63435-3. [Google Scholar]
- Sakai, K.; Taniguchi, M.; Miura, S.; Ohara, H.; Matsumoto, T.; Shirai, Y. Making Plastics from Garbage: A Novel Process for Poly-L-Lactate Production from Municipal Food Waste. J. Ind. Ecol. 2003, 7, 63–74. [Google Scholar] [CrossRef]
- Yu, P.H.; Chua, H.; Huang, A.L.; Lo, W.; Chen, G.Q. Conversion of Food Industrial Wastes into Bioplastics. Appl. Biochem. Biotechnol. 1998, 70–72, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Perotto, G.; Ceseracciu, L.; Simonutti, R.; Paul, U.C.; Guzman-Puyol, S.; Tran, T.-N.; Bayer, I.S.; Athanassiou, A. Bioplastics from Vegetable Waste via an Eco-Friendly Water-Based Process. Green Chem. 2018, 20, 894–902. [Google Scholar] [CrossRef]
- Kakadellis, S.; Harris, Z.M. Don’t Scrap the Waste: The Need for Broader System Boundaries in Bioplastic Food Packaging Life-Cycle Assessment—A Critical Review. J. Clean. Prod. 2020, 274, 122831. [Google Scholar] [CrossRef]
- Ramadhan, M.O.; Handayani, M.N. The Potential of Food Waste as Bioplastic Material to Promote Environmental Sustainability: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 980, 012082. [Google Scholar] [CrossRef]
- Bagnani, M.; Peydayesh, M.; Knapp, T.; Appenzeller, E.; Sutter, D.; Kränzlin, S.; Gong, Y.; Wehrle, A.; Greuter, S.; Bucher, M.; et al. From Soy Waste to Bioplastics: Industrial Proof of Concept. Biomacromolecules 2024, 25, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Chroni, C.; Lasaridi, K.; Stylianidis, N.; Velonia, K.; Manios, T.; Daliakopoulos, I.; Tsompanidis, C.; Hafner, G.; Skarvelakis, M.; Drosou, Z. The A2UFood Project—Avoidable and Unavoidable Food Wastes: A Holistic Managing Approach for Urban Environments. Proceedings 2019, 30, 83. [Google Scholar] [CrossRef]
- D’Adamo, I. Adopting Circular Economy Current Practices and Future Perspectives; MDPI: Basel, Switzerland, 2020; ISBN 978-3-03928-343-9. [Google Scholar]
- Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Theodorou, A.; Raptis, V.; Baltzaki, C.I.M.; Manios, T.; Harmandaris, V.; Velonia, K. Synthesis and Modeling of Poly(L-Lactic Acid) via Polycondensation of L-Lactic Acid. Polymers 2023, 15, 4569. [Google Scholar] [CrossRef] [PubMed]
- Maragkaki, A.; Malliaros, N.G.; Sampathianakis, I.; Lolos, T.; Tsompanidis, C.; Manios, T. Evaluation of Biodegradability of Polylactic Acid and Compostable Bags from Food Waste under Industrial Composting. Sustainability 2023, 15, 15963. [Google Scholar] [CrossRef]
- Preethi; Kavitha, S.; Rajesh Banu, J.; Arulazhagan, P.; Gunasekaran, M. Environmental Impacts and Sustainability Assessment of Food Loss and Waste Valorization: Value Chain Analysis of Food Consumption. In Food Waste to Valuable Resources; Elsevier: Amsterdam, The Netherlands, 2020; pp. 359–388. ISBN 978-0-12-818353-3. [Google Scholar]
- Liu, R.; Liang, J.; Yang, Y.; Jiang, H.; Tian, X. Effect of Polylactic Acid Microplastics on Soil Properties, Soil Microbials and Plant Growth. Chemosphere 2023, 329, 138504. [Google Scholar] [CrossRef] [PubMed]
- Perkoulidis, G.; Malamakis, A.; Banias, G.; Moussiopoulos, N. Development of a Methodological Framework for the Evaluation of the Material and Energy Recovery Potential of Municipal Solid Waste Management: Implementation in Five Greek Regions. Circ. Econ. Sustain. 2022, 2, 313–326. [Google Scholar] [CrossRef]
- Powell, J.T.; Townsend, T.G.; Zimmerman, J.B. Estimates of Solid Waste Disposal Rates and Reduction Targets for Landfill Gas Emissions. Nat. Clim. Chang. 2016, 6, 162–165. [Google Scholar] [CrossRef]
- ISO 14040:2006 (En), Environmental Management—Life Cycle Assessment—Principles and Framework. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:14040:ed-2:v1:en (accessed on 23 June 2024).
- Boulay, A.-M.; Bulle, C.; Bayart, J.-B.; Deschênes, L.; Margni, M. Regional Characterization of Freshwater Use in LCA: Modeling Direct Impacts on Human Health. Environ. Sci. Technol. 2011, 45, 8948–8957. [Google Scholar] [CrossRef] [PubMed]
- Hélias, A.; Esnouf, A.; Finkbeiner, M. Consistent Normalization Approach for Life Cycle Assessment Based on Inventory Databases. Sci. Total Environ. 2020, 703, 134583. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.-T.; Auras, R.; Rubino, M. Processing Technologies for Poly(Lactic Acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.R.; Khosravi, F.; Saedi Ardahaei, A.S.; Dai, Y.; Neisiany, R.E.; Foroughi, F.; Wu, M.; Das, O.; Ramakrishna, S. The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers 2021, 13, 1854. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, J.; Sankavaram, K.; Udahogora, M. Advancing Cultural Competencies: Applying the Dietary Exchange List System to Jamaican Foods. Health Sci. J. 2018, 12. [Google Scholar] [CrossRef]
- Karytsas, S.; Vardopoulos, I.; Theodoropoulou, E. Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis. Energies 2019, 12, 3298. [Google Scholar] [CrossRef]
- Oikonomou, T.I.; Andreosatos, C.; Drosou, V.; Karytsas, C. The Influence of Energy Policy Instruments upon the Promotion of Solar Thermal Technology in Greece. In Proceedings of the BEHAVE 2020—6th European Conference on Behaviour and Energy Efficiency, Copenhagen, Denmark, 21–23 October 2020; Available online: https://c2e2.unepccc.org/wp-content/uploads/sites/3/2021/05/442-the-influence-of-energy-policy-instruments-upon-the-promotion-of-solar-thermal-technology-in-greece.pdf (accessed on 12 January 2024).
- Rashid Khan, H.U.; Awan, U.; Zaman, K.; Nassani, A.A.; Haffar, M.; Abro, M.M.Q. Assessing Hybrid Solar-Wind Potential for Industrial Decarbonization Strategies: Global Shift to Green Development. Energies 2021, 14, 7620. [Google Scholar] [CrossRef]
- Al Shidi, H.; Sulaiman, H.; Amoatey, P. Shifting to Renewable Energy to Mitigate Carbon Emissions: Initiatives by the States of Gulf Cooperation Council. Low Carbon Econ. 2016, 07, 123–136. [Google Scholar] [CrossRef]
- Sheldon, S.; Hadian, S.; Zik, O. Beyond Carbon: Quantifying Environmental Externalities as Energy for Hydroelectric and Nuclear Power. Energy 2015, 84, 36–44. [Google Scholar] [CrossRef]
- International Energy Agency. Greece 2023 Energy Policy Review; IEA Energy Policy Reviews; OECD: Paris, France, 2023; ISBN 978-92-64-32569-2. [Google Scholar]
- Plant, A.L.; Becker, C.A.; Hanisch, R.J.; Boisvert, R.F.; Possolo, A.M.; Elliott, J.T. How Measurement Science Can Improve Confidence in Research Results. PLoS Biol. 2018, 16, e2004299. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Shaked, S.; Rosenbaum, R.K.; Jolliet, O. Analytical Uncertainty Propagation in Life Cycle Inventory and Impact Assessment: Application to an Automobile Front Panel. Int. J. Life Cycle Assess. 2010, 15, 499–510. [Google Scholar] [CrossRef]
- Adamczak, S.; Świderski, J.; Dobrowolski, T.; Mathia, T.G. Evaluation of Measurement Uncertainty of Profile Parameters Using a Monte Carlo Method. Mechanik 2018, 418–420. [Google Scholar] [CrossRef]
- Madhavan Nampoothiri, K.; Nair, N.R.; John, R.P. An Overview of the Recent Developments in Polylactide (PLA) Research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Escobar, N.; Haddad, S.; Börner, J.; Britz, W. Land Use Mediated GHG Emissions and Spillovers from Increased Consumption of Bioplastics. Environ. Res. Lett. 2018, 13, 125005. [Google Scholar] [CrossRef]
- Chen, W.; Oldfield, T.L.; Cinelli, P.; Righetti, M.C.; Holden, N.M. Hybrid Life Cycle Assessment of Potato Pulp Valorisation in Biocomposite Production. J. Clean. Prod. 2020, 269, 122366. [Google Scholar] [CrossRef]
- Qiu, H.; Hu, B.; Zhang, Z. Impacts of Land Use Change on Ecosystem Service Value Based on SDGs Report--Taking Guangxi as an Example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- Aymard, V.; Botta-Genoulaz, V. Normalisation in Life-Cycle Assessment: Consequences of New European Factors on Decision-Making. Supply Chain Forum Int. J. 2017, 18, 76–83. [Google Scholar] [CrossRef]
- Lim, S.-R. Application of Life Cycle Assessment to Enhance the Environmental Performance of Process Systems and Products. Clean Technol. 2014, 20, 339–348. [Google Scholar] [CrossRef]
- Fahim, I.S.; Chbib, H.; Mahmoud, H.M. The Synthesis, Production & Economic Feasibility of Manufacturing PLA from Agricultural Waste. Sustain. Chem. Pharm. 2019, 12, 100142. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Samer, M.; Hijazi, O.; Mohamed, B.A.; Abdelsalam, E.M.; Amer, M.A.; Yacoub, I.H.; Attia, Y.A.; Bernhardt, H. Environmental Impact Assessment of Bioplastics Production from Agricultural Crop Residues. Clean Technol. Environ. Policy 2022, 24, 815–827. [Google Scholar] [CrossRef]
- Banu, J.R.; Sharmila, V.G. Review on Food Waste Valorisation for Bioplastic Production towards a Circular Economy: Sustainable Approaches and Biodegradability Assessment. Sustain. Energy Fuels 2023, 7, 3165–3184. [Google Scholar] [CrossRef]
- Berndtsson, M.; Ericsson, A.; Svahn, T. Scaling-Up Data-Driven Pilot Projects. AI Mag. 2020, 41, 94–102. [Google Scholar] [CrossRef]
- Chinnathai, M.K.; Al-Mowafy, Z.; Alkan, B.; Vera, D.; Harrison, R. A Framework for Pilot Line Scale-up Using Digital Manufacturing. Procedia CIRP 2019, 81, 962–967. [Google Scholar] [CrossRef]
Impact Category (Unit) | Total | Chemical for PLA | Electricity, GR_2021 | Avoided FW |
---|---|---|---|---|
CC (kg CO2 eq.) | 2492.15 | 1109.93 | 1433.14 | −50.93 |
OD (kg CFC11 eq.) | 0.0004 | 0.0003 | 0.00013 | −1.6 × 10−6 |
IR (kBq U-235 eq.) | 238.23 | 74.56 | 165.79 | −2.12967 |
POF (kg NMVOC eq.) | 5.99 | 3.55 | 2.5425 | −0.10398 |
PM (disease inc.) | 8.86 × 10−5 | 4.75 × 10−5 | 4.35 × 10−5 | −2.4 × 10−6 |
HT-nc (CTUh) | 1.87 × 10−5 | 1.23 × 10−5 | 7.38 × 10−6 | −9.6 × 10−7 |
HT-c (CTUh) | 5.37 × 10−7 | 3.03 × 10−7 | 2.58 × 10−7 | −2.5 × 10−8 |
A (mol H+ eq.) | 14.33 | 5.845239 | 8.83 | −0.34 |
E-f (kg P eq.) | 2.24 | 0.38 | 1.96 | −0.05 |
E m (kg N eq.) | 2.01 | 1.02 | 1.06 | −0.07 |
E-t (mol N eq.) | 18.45 | 12.41 | 7.25 | −1.16 |
ECoX-f (CTUe) | 31,178.8 | 35,891.19 | 3448.83 | −8161.2 |
LU (Pt) | 7175.5 | 28,241.53 | 240.65 | −21306.7 |
WU (m3 depriv.) | 11,037.2 | 2063.44 | 9211.42 | −237.7 |
RU-f (MJ) | 18,815.9 | 19,070.01 | 1.43 | −255.4 |
RU mm (kg Sb eq.) | 0.015 | 0.02 | 0 | −0.0007 |
Impact Category (Unit) | Total | Chemical for PLA | Electricity GR_2021 | Avoided Raw Material |
---|---|---|---|---|
CC (kg CO2 eq.) | 2360.95 | 1109.94 | 1433.14 | −182.13 |
OD (kg CFC11 eq.) | 0.0004 | 0.00023 | 0.00014 | −1.4 × 10−5 |
IR (kBq U-235 eq.) | 225.89 | 74.56 | 165.79 | −14.463 |
POF (kg NMVOC eq.) | 5.62 | 3.55 | 2.54 | −0.47 |
PM (disease inc.) | 7.84 × 10−5 | 4.75 × 10−5 | 4.35 × 10−5 | −1.3 × 10−5 |
HT-nc (CTUh) | 1.72 × 10−5 | 1.23 × 10−5 | 7.38 × 10−6 | −2.4 × 10−6 |
HT-c (CTUh) | 4.97 × 10−7 | 3.03 × 10−7 | 2.58 × 10−7 | −6.4 × 10−8 |
A (mol H+ eq.) | 12.81 | 5.85 | 8.825883 | −1.86 |
E-f (kg P eq.) | 2.20 | 0.33 | 1.96 | −0.09 |
E m (kg N eq.) | 0.02 | 1.02 | 1.06 | −2.06 |
E-t (mol N eq.) | 12.42 | 12.41 | 7.25 | −7.24 |
ECoX-f (CTUe) | 21,125.6 | 35,891.2 | 3448.83 | −18,214.4 |
LU (Pt) | 6978.47 | 28,241.5 | 240.65 | −21,503.7 |
WU (m3 depriv.) | 4327.67 | 2063.44 | 9211.42 | −6947.19 |
RU-f (MJ) | 18,815.2 | 19,070.0 | 1.43 | −256.24 |
RU mm (kg Sb eq.) | 0.02 | 0.02 | 0 | −0.0007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Synani, K.; Abeliotis, K.; Velonia, K.; Maragkaki, A.; Manios, T.; Lasaridi, K. Environmental Impact and Sustainability of Bioplastic Production from Food Waste. Sustainability 2024, 16, 5529. https://doi.org/10.3390/su16135529
Synani K, Abeliotis K, Velonia K, Maragkaki A, Manios T, Lasaridi K. Environmental Impact and Sustainability of Bioplastic Production from Food Waste. Sustainability. 2024; 16(13):5529. https://doi.org/10.3390/su16135529
Chicago/Turabian StyleSynani, Katerina, Konstadinos Abeliotis, Kelly Velonia, Angeliki Maragkaki, Thrassyvoulos Manios, and Katia Lasaridi. 2024. "Environmental Impact and Sustainability of Bioplastic Production from Food Waste" Sustainability 16, no. 13: 5529. https://doi.org/10.3390/su16135529
APA StyleSynani, K., Abeliotis, K., Velonia, K., Maragkaki, A., Manios, T., & Lasaridi, K. (2024). Environmental Impact and Sustainability of Bioplastic Production from Food Waste. Sustainability, 16(13), 5529. https://doi.org/10.3390/su16135529